
ANUGA v1.0 User Manual
Release 1.0beta 7013

Geoscience Australia and the Australian National University

Wednesday 13th May, 2009, Ten minutes past Four in the afternoon

Geoscience Australia
Email: ole.nielsen@ga.gov.au

Copyright c©2004, 2005, 2006 Australian National University and Geoscience Australia. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose without fee is hereby granted under
the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version, provided that this entire notice is included in all copies of any software
which is or includes a copy or modification of this software and in all copies of the supporting documentation for such
software.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
Public License (http://www.gnu.org/copyleft/gpl.html) for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307

This work was produced at Geoscience Australia and the Australian National University funded by the Commonwealth
of Australia. Neither the Australian Government, the Australian National University, Geoscience Australia nor any of
their employees, makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use
would not infringe privately-owned rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, rec-
ommendation, or favoring by the Australian Government, Geoscience Australia or the Australian National University.
The views and opinions of authors expressed herein do not necessarily state or reflect those of the Australian Gov-
ernment, Geoscience Australia or the Australian National University, and shall not be used for advertising or product
endorsement purposes.

This document does not convey a warranty, express or implied, of merchantability or fitness for a particular purpose.

ANUGA v1.0

Manual typeset with LATEX

Credits:

• ANUGA v1.0 was developed and is maintained by Stephen Roberts, Ole Nielsen, Duncan Gray and Jane Sexton.

License:

• ANUGA v1.0 is freely available and distributed under the terms of the GNU General Public Licence.

Acknowledgments:

• John Jakeman, Rudy van Drie, Ted Rigby, Joaquim Luis, Nils Goseberg, William Power, Petar Milevski, Trevor
Dhu, Linda Stals, Matt Hardy, Jack Kelly and Christopher Zoppou who contributed to this project at various
times.

• A stand alone visualiser (anugaviewer) based on Open-scene-graph was developed by Darran Edmundson.

• The mesh generator engine was written by Jonathan Richard Shewchuk and made freely available under the
following license. See source codetriangle.c for more details on the origins of this code. The license reads

/***/
/* */
/* 888888888 ,o, / 888 */
/* 888 88o88o " o8888o 88o8888o o88888o 888 o88888o */
/* 888 888 888 88b 888 888 888 888 888 d888 88b */
/* 888 888 888 o88ˆo888 888 888 "88888" 888 8888oo888 */
/* 888 888 888 C888 888 888 888 / 888 q888 */
/* 888 888 888 "88oˆ888 888 888 Cb 888 "88oooo" */
/* "8oo8D */
/* */
/* A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator. */
/* (triangle.c) */
/* */
/* Version 1.6 */
/* July 28, 2005 */
/* */
/* Copyright 1993, 1995, 1997, 1998, 2002, 2005 */
/* Jonathan Richard Shewchuk */
/* 2360 Woolsey #H */
/* Berkeley, California 94705-1927 */
/* jrs@cs.berkeley.edu */
/* */
/* This program may be freely redistributed under the condition that the */
/* copyright notices (including this entire header and the copyright */
/* notice printed when the ‘-h’ switch is selected) are not removed, and */
/* no compensation is received. Private, research, and institutional */
/* use is free. You may distribute modified versions of this code UNDER */
/* THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE */
/* SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE */
/* AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR */
/* NOTICE IS GIVEN OF THE MODIFICATIONS. Distribution of this code as */
/* part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT */
/* WITH THE AUTHOR. (If you are not directly supplying this code to a */
/* customer, and you are instead telling them how they can obtain it for */
/* free, then you are not required to make any arrangement with me.) */
/***/

• Pmw is a toolkit for building high-level compound widgets in Python using the Tkinter module. Parts of Pmw
have been encorpoated into the graphical mesh generator. The license for Pmw reads

"""
Pmw copyright

Copyright 1997-1999 Telstra Corporation Limited,
Australia Copyright 2000-2002 Really Good Software Pty Ltd, Australia

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

"""

Abstract

ANUGA v1.0 is a hydrodynamic modelling tool that allows users to model realistic flow problems in complex 2D
geometries. Examples include dam breaks or the effects of natural hazards such as riverine flooding, storm surges and
tsunami.

The user must specify a study area represented by a mesh of triangular cells, the topography and bathymetry, frictional
resistance, initial values for water level (calledstagewithin ANUGA v1.0), boundary conditions and forces such as
rainfall, stream flows, windstress or pressure gradients if applicable.

ANUGA v1.0 tracks the evolution of water depth and horizontal momentum within each cell over time by solving the
shallow water wave equation governing equation using a finite-volume method.

ANUGA v1.0 also incorporates a mesh generator that allows the user to set up the geometry of the problem in-
teractively as well as tools for interpolation and surface fitting, and a number of auxiliary tools for visualising and
interrogating the model output.

Most ANUGA v1.0 components are written in the object-oriented programming language Python and most users
will interact with ANUGA v1.0 by writing small Python programs based on theANUGA v1.0 library functions.
Computationally intensive components are written for efficiency in C routines working directly with the Numerical
Python structures.

CONTENTS

1 Introduction 1
1.1 Purpose. 1
1.2 Scope. 1
1.3 Audience. 1

2 Background 3

3 Restrictions and limitations on ANUGA v1.0 5

4 Getting Started 7
4.1 A Simple Example. 7

4.1.1 Overview . 7
4.1.2 Outline of the Program. 7
4.1.3 The Code. 8
4.1.4 Establishing the Mesh. 9
4.1.5 Initialising the Domain. 9
4.1.6 Initial Conditions . 10

4.1.6.1 Elevation. 10
4.1.6.2 Friction . 10
4.1.6.3 Stage. 11

4.1.7 Boundary Conditions. 11
4.1.8 Evolution . 13
4.1.9 Output. 13

4.2 How to Run the Code. 13
4.3 Exploring the Model Output. 14
4.4 A slightly more complex example. 16

4.4.1 Overview . 16
4.4.2 Overview . 16
4.4.3 The Code. 16
4.4.4 Establishing the Mesh. 17

4.5 Model Output. 18
4.5.1 Changing boundary conditions on the fly. 18
4.5.2 Output. 20
4.5.3 Flow through more complex topograhies. 20

4.6 An Example with Real Data. 23
4.6.1 Overview . 23
4.6.2 The Code. 23
4.6.3 Establishing the Mesh. 26
4.6.4 Initialising the Domain. 30

i

4.6.5 Initial Conditions . 31
4.6.5.1 Stage. 31
4.6.5.2 Friction . 31
4.6.5.3 Elevation. 31

4.6.6 Boundary Conditions. 32
4.6.7 Evolution . 32

4.7 Exploring the Model Output. 33

5 ANUGA v1.0 Public Interface 41
5.1 Mesh Generation. 42

5.1.1 Advanced mesh generation. 44
5.1.1.1 Key Methods of Class Mesh. 44

5.2 Initialising the Domain. 45
5.2.1 Key Methods of Domain. 45

5.3 Initial Conditions. 48
5.4 Boundary Conditions. 50

5.4.1 Predefined boundary conditions. 50
5.4.2 User-defined boundary conditions. 52

5.5 Forcing Terms . 52
5.6 Evolution . 55

5.6.1 Diagnostics. 55
5.7 Queries of SWW model output files. 58
5.8 Other . 60

6 ANUGA v1.0 System Architecture 61
6.1 File Formats . 61

6.1.1 Manually Created Files. 61
6.1.2 Automatically Created Files. 62
6.1.3 SWW, STS and TMS Formats. 62
6.1.4 Mesh File Formats. 64
6.1.5 Formats for Storing Arbitrary Points and Attributes. 65
6.1.6 ArcView Formats. 65
6.1.7 DEM Format . 65
6.1.8 Other Formats. 65
6.1.9 Basic File Conversions. 65

7 ANUGA v1.0 mathematical background 67
7.1 Introduction . 67
7.2 Model. 67
7.3 Finite Volume Method. 67
7.4 Flux limiting . 69
7.5 Slope limiting . 70

8 Basic ANUGA v1.0 Assumptions 73
8.1 Time . 73
8.2 Spatial data. 73

8.2.1 Projection. 73
8.2.2 Internal coordinates. 73
8.2.3 Polygons . 74

A Supporting Tools 75
A.1 caching . 75
A.2 ANUGA viewer - animate. 76
A.3 utilities/polygons. 77
A.4 coordinatetransforms . 78

ii

A.5 geospatialdata . 78
A.6 Graphical Mesh Generator GUI. 80
A.7 alphashape. 80
A.8 Numerical Tools . 81
A.9 Finding the Optimal Alpha Value. 82

B Modules available in ANUGA v1.0 83
B.1 abstract_2d_finite_volumes.general_mesh . 83
B.2 abstract_2d_finite_volumes.neighbour_mesh . 83
B.3 abstract_2d_finite_volumes.domain . 83
B.4 abstract_2d_finite_volumes.quantity . 83
B.5 shallow_water . 83

C ANUGA Full-scale Validations 85
C.1 Overview . 85
C.2 Patong Beach. 85

D Frequently Asked Questions 87

E Glossary 89

Index 91

Index 93

iii

iv

CHAPTER

ONE

Introduction

1.1 Purpose

The purpose of this user manual is to introduce the new user to the inundation software, describe what it can do and give
step-by-step instructions for setting up and running hydrodynamic simulations. The stable release ofANUGA v1.0
and this manual are available on sourceforge athttp://sourceforge.net/projects/anuga. A snapshot of work in progress
is available through theANUGA v1.0 software repository athttps://datamining.anu.edu.au/svn/ga/anuga core where
the more adventurous reader might like to go.

1.2 Scope

This manual covers only what is needed to operate the software after installation and configuration. It does not
includes instructions for installing the software or detailed API documentation, both of which will be covered in
separate publications and by documentation in the source code.

1.3 Audience

Readers are assumed to be familiar with the Python Programming language and its object ori-
ented approach. Python tutorials includehttp://docs.python.org/tut, http://www.sthurlow.com/python, and
http://datamining.anu.edu.au/˜ole/work/teaching/ctac2006/exercise1.pdf.

Readers also need to have a general understanding of scientific modelling, as well as enough programming experience
to adapt the code to different requirements.

1

2

CHAPTER

TWO

Background

Modelling the effects on the built environment of natural hazards such as riverine flooding, storm surges and tsunami
is critical for understanding their economic and social impact on our urban communities. Geoscience Australia and
the Australian National University are developing a hydrodynamic inundation modelling tool calledANUGA v1.0 to
help simulate the impact of these hazards.

The core ofANUGA v1.0 is the fluid dynamics module, calledshallow_water , which is based on a finite-volume
method for solving the Shallow Water Wave Equation. The study area is represented by a mesh of triangular cells. By
solving the governing equation within each cell, water depth and horizontal momentum are tracked over time.

A major capability ofANUGA v1.0 is that it can model the process of wetting and drying as water enters and leaves
an area. This means that it is suitable for simulating water flow onto a beach or dry land and around structures such as
buildings.ANUGA v1.0 is also capable of modelling hydraulic jumps due to the ability of the finite-volume method to
accommodate discontinuities in the solution/footnoteWhileANUGA v1.0 works with discontinuities in the conserved
quantities stage, xmomentum and ymomentum, it does not allow discontinuities in the bed elevation.

To set up a particular scenario the user specifies the geometry (bathymetry and topography), the initial water level
(stage), boundary conditions such as tide, and any forcing terms that may drive the system such as rainfall, abstraction
of water, wind stress or atmospheric pressure gradients. Gravity and frictional resistance from the different terrains
in the model are represented by predefined forcing terms. See section 5.5 for details on forcing terms available in
ANUGA.

The built-in mesh generator, calledgraphical_mesh_generator , allows the user to set up the geometry of the
problem interactively and to identify boundary segments and regions using symbolic tags. These tags may then be
used to set the actual boundary conditions and attributes for different regions (e.g. the Manning friction coefficient)
for each simulation.

Most ANUGA v1.0 components are written in the object-oriented programming language Python. Software written
in Python can be produced quickly and can be readily adapted to changing requirements throughout its lifetime.
Computationally intensive components are written for efficiency in C routines working directly with the Numerical
Python structures. The animation tool developed forANUGA v1.0 is based on OpenSceneGraph, an Open Source
Software (OSS) component allowing high level interaction with sophisticated graphics primitives. See [nielsen2005]
for more background onANUGA v1.0 .

3

4

CHAPTER

THREE

Restrictions and limitations on ANUGA
v1.0

Although a powerful and flexible tool for hydrodynamic modelling,ANUGA v1.0 has a number of limitations that
any potential user need to be aware of. They are

• The mathematical model is the 2D shallow water wave equation. As such it cannot resolve vertical convection
and consequently not breaking waves or 3D turbulence (e.g. vorticity).

• All spatial coordinates are assumed to be UTM (meters). As such, ANUGA is unsuitable for modelling flows in
areas larger than one UTM zone (6 degrees wide).

• Fluid is assumed to be inviscid - i.e. no kinematic viscosity included.

• The finite volume is a very robust and flexible numerical technique, but it is not the fastest method around. If
the geometry is sufficiently simple and if there is no need for wetting or drying, a finite-difference method may
be able to solve the problem faster thanANUGA v1.0 .

• Frictional resistance is implemented using Manning’s formula, butANUGA v1.0 has not yet been fully validated
in regard to bottom roughness

5

6

CHAPTER

FOUR

Getting Started

This section is designed to assist the reader to get started withANUGA v1.0 by working through some examples.
Two examples are discussed; the first is a simple example to illustrate many of the concepts, and the second is a more
realistic example.

4.1 A Simple Example

4.1.1 Overview

What follows is a discussion of the structure and operation of a script called ‘runup.py’.

This example carries out the solution of the shallow-water wave equation in the simple case of a configuration compris-
ing a flat bed, sloping at a fixed angle in one direction and having a constant depth across each line in the perpendicular
direction.

The example demonstrates the basic ideas involved in setting up a complex scenario. In general the user specifies the
geometry (bathymetry and topography), the initial water level, boundary conditions such as tide, and any forcing terms
that may drive the system such as rainfall, abstraction of water, wind stress or atmospheric pressure gradients. Fric-
tional resistance from the different terrains in the model is represented by predefined forcing terms. In this example,
the boundary is reflective on three sides and a time dependent wave on one side.

The present example represents a simple scenario and does not include any forcing terms, nor is the data taken from a
file as it would typically be.

The conserved quantities involved in the problem are stage (absolute height of water surface),x-momentum andy-
momentum. Other quantities involved in the computation are the friction and elevation.

Water depth can be obtained through the equation

depth = stage − elevation

4.1.2 Outline of the Program

In outline, ‘runup.py’ performs the following steps:

1. Sets up a triangular mesh.

2. Sets certain parameters governing the mode of operation of the model-specifying, for instance, where to store
the model output.

3. Inputs various quantities describing physical measurements, such as the elevation, to be specified at each mesh
point (vertex).

7

4. Sets up the boundary conditions.

5. Carries out the evolution of the model through a series of time steps and outputs the results, providing a results
file that can be visualised.

4.1.3 The Code

For reference we include below the complete code listing for ‘runup.py’. Subsequent paragraphs provide a ‘commen-
tary’ that describes each step of the program and explains it significance.

"""Simple water flow example using ANUGA

Water driven up a linear slope and time varying boundary,
similar to a beach environment
"""

#--
Import necessary modules
#--

from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water import Domain
from anuga.shallow_water import Reflective_boundary
from anuga.shallow_water import Dirichlet_boundary
from anuga.shallow_water import Time_boundary
from anuga.shallow_water import Transmissive_boundary

from math import sin, pi, exp

#--
Setup computational domain
#--

points, vertices, boundary = rectangular_cross(10, 10) # Basic mesh

domain = Domain(points, vertices, boundary) # Create domain
domain.set_name(’runup’) # Output to file runup.sww
domain.set_datadir(’.’) # Use current directory for output

#--
Setup initial conditions
#--

def topography(x,y):
return -x/2 # linear bed slope
#return x*(-(2.0-x)*.5) # curved bed slope

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.1) # Constant friction
domain.set_quantity(’stage’, -.4) # Constant negative initial stage

#--
Setup boundary conditions
#--

8 Chapter 4. Getting Started

Br = Reflective_boundary(domain) # Solid reflective wall
Bt = Transmissive_boundary(domain) # Continue all values on boundary
Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values
Bw = Time_boundary(domain=domain, # Time dependent boundary

f=lambda t: [(.1*sin(t*2*pi)-0.3) * exp(-t), 0.0, 0.0])

Associate boundary tags with boundary objects
domain.set_boundary({’left’: Br, ’right’: Bw, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--

for t in domain.evolve(yieldstep = 0.1, finaltime = 10.0):
print domain.timestepping_statistics()

4.1.4 Establishing the Mesh

The first task is to set up the triangular mesh to be used for the scenario. This is carried out through the statement:

points, vertices, boundary = rectangular_cross(10, 10)

The functionrectangular_cross is imported from a modulemesh_factory defined elsewhere. (ANUGA
v1.0 also contains several other schemes that can be used for setting up meshes, but we shall not discuss these.) The
above assignment sets up a10× 10 rectangular mesh, triangulated in a regular way. The assignment

points, vertices, boundary = rectangular_cross(m, n)

returns:

• a listpoints giving the coordinates of each mesh point,

• a listvertices specifying the three vertices of each triangle, and

• a dictionaryboundary that stores the edges on the boundary and associates each with one of the symbolic tags
‘left’ , ‘right’ , ‘top’ or ‘bottom’ .

(For more details on symbolic tags, see page 12.)

An example of a general unstructured mesh and the associated data structurespoints , vertices andboundary
is given in Section 5.1.

4.1.5 Initialising the Domain

These variables are then used to set up a data structuredomain , through the assignment:

domain = Domain(points, vertices, boundary)

4.1. A Simple Example 9

This creates an instance of theDomain class, which represents the domain of the simulation. Specific options are set
at this point, including the basename for the output file and the directory to be used for data:

domain.set_name(’runup’)

domain.set_datadir(’.’)

In addition, the following statement now specifies that the quantitiesstage , xmomentum andymomentum are to
be stored:

domain.set_quantities_to_be_stored([’stage’, ’xmomentum’,
’ymomentum’])

4.1.6 Initial Conditions

The next task is to specify a number of quantities that we wish to set for each mesh point. The classDomain
has a methodset_quantity , used to specify these quantities. It is a flexible method that allows the user to set
quantities in a variety of ways—using constants, functions, numeric arrays, expressions involving other quantities, or
arbitrary data points with associated values, all of which can be passed as arguments. All quantities can be initialised
usingset_quantity . For a conserved quantity (such asstage, xmomentum, ymomentum) this is called an
initial condition. However, other quantities that aren’t updated by the equation are also assigned values using the same
interface. The code in the present example demonstrates a number of forms in which we can invokeset_quantity .

4.1.6.1 Elevation

The elevation, or height of the bed, is set using a function, defined through the statements below, which is specific to
this example and specifies a particularly simple initial configuration for demonstration purposes:

def f(x,y):
return -x/2

This simply associates an elevation with each point(x, y) of the plane. It specifies that the bed slopes linearly in
thex direction, with slope− 1

2 , and is constant in they direction.

Once the functionf is specified, the quantityelevation is assigned through the simple statement:

domain.set_quantity(’elevation’, f)

NOTE: If using function to setelevation it must be vector compatible. For example square root will not work.

4.1.6.2 Friction

The assignment of the friction quantity (a forcing term) demonstrates another way we can useset_quantity to set
quantities—namely, assign them to a constant numerical value:

10 Chapter 4. Getting Started

domain.set_quantity(’friction’, 0.1)

This specifies that the Manning friction coefficient is set to 0.1 at every mesh point.

4.1.6.3 Stage

The stage (the height of the water surface) is related to the elevation and the depth at any time by the equation

stage = elevation + depth

For this example, we simply assign a constant value tostage , using the statement

domain.set_quantity(’stage’, -.4)

which specifies that the surface level is set to a height of−0.4, i.e. 0.4 units (m) below the zero level.

Although it is not necessary for this example, it may be useful to digress here and mention a variant to this requirement,
which allows us to illustrate another way to useset_quantity —namely, incorporating an expression involving
other quantities. Suppose, instead of setting a constant value for the stage, we wished to specify a constant value for
thedepth. For such a case we need to specify thatstage is everywhere obtained by adding that value to the value
already specified forelevation . We would do this by means of the statements:

h = 0.05 # Constant depth
domain.set_quantity(’stage’, expression = ’elevation + %f’ %h)

That is, the value ofstage is set toh = 0.05 plus the value ofelevation already defined.

The reader will probably appreciate that this capability to incorporate expressions into statements usingset_-
quantity greatly expands its power.) See Section 5.3 for more details.

4.1.7 Boundary Conditions

The boundary conditions are specified as follows:

Br = Reflective_boundary(domain)

Bt = Transmissive_boundary(domain)

Bd = Dirichlet_boundary([0.2,0.,0.])

Bw = Time_boundary(domain=domain,
f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])

The effect of these statements is to set up a selection of different alternative boundary conditions and store them in
variables that can be assigned as needed. Each boundary condition specifies the behaviour at a boundary in terms of the
behaviour in neighbouring elements. The boundary conditions introduced here may be briefly described as follows:

• Reflective boundaryReturns samestage as as present in its neighbour volume but momentum vector reversed
180 degrees (reflected). Specific to the shallow water equation as it works with the momentum quantities

4.1. A Simple Example 11

assumed to be the second and third conserved quantities. A reflective boundary condition models a solid wall.

• Transmissive boundaryReturns same conserved quantities as those present in its neighbour volume. This is
one way of modelling outflow from a domain, but it should be used with caution if flow is not steady state as
replication of momentum at the boundary may cause numerical instabilities propagating into the domain and
eventually causing ANUGA to crash. If this occurs, consider using e.g. a Dirichlet boundary condition with a
stage value less than the elevation at the boundary.

• Dirichlet boundary Specifies constant values for stage,x-momentum andy-momentum at the boundary.

• Time boundary Like a Dirichlet boundary but with behaviour varying with time.

Before describing how these boundary conditions are assigned, we recall that a mesh is specified using three variables
points , vertices and boundary . In the code we are discussing, these three variables are returned by the
function rectangular ; however, the example given in Section 4.6 illustrates another way of assigning the values,
by means of the functioncreate_mesh_from_regions .

These variables store the data determining the mesh as follows. (You may find that the example given in Section 5.1
helps to clarify the following discussion, even though that example is anon-rectangularmesh.)

• The variablepoints stores a list of 2-tuples giving the coordinates of the mesh points.

• The variablevertices stores a list of 3-tuples of numbers, representing vertices of triangles in the mesh. In
this list, the triangle whose vertices arepoints[i] , points[j] , points[k] is represented by the 3-tuple
(i, j, k) .

• The variableboundary is a Python dictionary that not only stores the edges that make up the boundary but
also assigns symbolic tags to these edges to distinguish different parts of the boundary. An edge with endpoints
points[i] and points[j] is represented by the 2-tuple(i, j) . The keys for the dictionary are the
2-tuples(i, j) corresponding to boundary edges in the mesh, and the values are the tags are used to label
them. In the present example, the valueboundary[(i, j)] assigned to(i, j)] is one of the four tags
‘left’ , ‘right’ , ‘top’ or ‘bottom’ , depending on whether the boundary edge represented by(i,
j) occurs at the left, right, top or bottom of the rectangle bounding the mesh. The functionrectangular
automatically assigns these tags to the boundary edges when it generates the mesh.

The tags provide the means to assign different boundary conditions to an edge depending on which part of the boundary
it belongs to. (In Section 4.6 we describe an example that uses different boundary tags — in general, the possible tags
are entirely selectable by the user when generating the mesh and not limited to ‘left’, ‘right’, ‘top’ and ‘bottom’ as
in this example.) All segments in bounding polygon must be tagged. If a tag is not supplied, the default tag name
’exterior’ will be assigned by ANUGA.

Using the boundary objects described above, we assign a boundary condition to each part of the boundary by means
of a statement like

domain.set_boundary({’left’: Br, ’right’: Bw, ’top’: Br, ’bottom’: Br})

It is critical that all tags are assoctiated with a boundary conditing in this statement. If not the program will halt with
a statement like

12 Chapter 4. Getting Started

Traceback (most recent call last):
File "mesh_test.py", line 114, in ?

domain.set_boundary({’west’: Bi, ’east’: Bo, ’north’: Br, ’south’: Br})
File "X:\inundation\sandpits\onielsen\anuga_core\source\anuga\abstract_2d_finite_volumes\domain.py", line 505, in set_boundary

raise msg
ERROR (domain.py): Tag "exterior" has not been bound to a boundary object.
All boundary tags defined in domain must appear in the supplied dictionary.
The tags are: [’ocean’, ’east’, ’north’, ’exterior’, ’south’]

The commandset_boundary stipulates that, in the current example, the right boundary varies with time, as defined
by the lambda function, while the other boundaries are all reflective.

The reader may wish to experiment by varying the choice of boundary types for one or more of the boundaries.
(In the case ofBd andBw, the three arguments in each case represent thestage , x-momentum andy-momentum,
respectively.)

Bw = Time_boundary(domain=domain,
f=lambda t: [(0.1*sin(t*2*pi)-0.3), 0.0, 0.0])

4.1.8 Evolution

The final statement

for t in domain.evolve(yieldstep = 0.1, duration = 4.0):
print domain.timestepping_statistics()

causes the configuration of the domain to ‘evolve’, over a series of steps indicated by the values ofyieldstep and
duration , which can be altered as required. The value ofyieldstep controls the time interval between successive
model outputs. Behind the scenes more time steps are generally taken.

4.1.9 Output

The output is a NetCDF file with the extension.sww . It contains stage and momentum information and can be used
with the ANUGA vieweranimate (see Section A.2) visualisation package to generate a visual display. See Section
6.1 (page 61) for more on NetCDF and other file formats.

The following is a listing of the screen output seen by the user when this example is run:

$ python runup.py
Time = 0.0000, steps=0 (0)
Time = 0.1000, delta t in [0.01373568, 0.01683588], steps=7 (7)
Time = 0.2000, delta t in [0.01203520, 0.01357912], steps=8 (8)
Time = 0.3000, delta t in [0.01144234, 0.01193508], steps=9 (9)
Time = 0.4000, delta t in [0.01141301, 0.01152065], steps=9 (9)
...

4.2 How to Run the Code

The code can be run in various ways:

4.2. How to Run the Code 13

• from a Windows or Unix command line as inpython runup.py

• within the Python IDLE environment

• within emacs

• within Windows, by double-clicking therunup.py file.

4.3 Exploring the Model Output

The following figures are screenshots from theANUGA v1.0 visualisation toolanimate . Figure 4.1 shows the
domain with water surface as specified by the initial condition,t = 0. Figure 4.2 shows later snapshots fort = 2.3
andt = 4 where the system has been evolved and the wave is encroaching on the previously dry bed. All figures are
screenshots from an interactive animation tool called animate which is part ofANUGA v1.0 and distributed as in the
package anugaviewer. Animate is described in more detail is Section A.2.

Figure 4.1: Runup example viewed with the ANUGA viewer

14 Chapter 4. Getting Started

Figure 4.2: Runup example viewed with ANGUA viewer

4.3. Exploring the Model Output 15

4.4 A slightly more complex example

4.4.1 Overview

The next example is about waterflow in a channel with varying boundary conditions and more complex topograhies.
These examples build on the concepts introduced through the ‘runup.py’ in Section 4.1. The example will be built up
through three progressively more complex scripts.

4.4.2 Overview

As in the case of ‘runup.py’, the actions carried out by the program can be organised according to this outline:

1. Set up a triangular mesh.

2. Set certain parameters governing the mode of operation of the model—specifying, for instance, where to store
the model output.

3. Set up initial conditions for various quantities such as the elevation, to be specified at each mesh point (vertex).

4. Set up the boundary conditions.

5. Carry out the evolution of the model through a series of time steps and output the results, providing a results file
that can be visualised.

4.4.3 The Code

Here is the code for the first version of the channel flow ‘channel1.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel
"""

#--
Import necessary modules
#--
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water import Domain
from anuga.shallow_water import Reflective_boundary
from anuga.shallow_water import Dirichlet_boundary

#--
Setup computational domain
#--
points, vertices, boundary = rectangular_cross(10, 5,

len1=10.0, len2=5.0) # Mesh

domain = Domain(points, vertices, boundary) # Create domain
domain.set_name(’channel1’) # Output name

#--
Setup initial conditions
#--

16 Chapter 4. Getting Started

def topography(x,y):
return -x/10 # linear bed slope

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’, # Dry bed

expression=’elevation + 0.0’)

#--
Setup boundary conditions
#--
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall

domain.set_boundary({’left’: Bi, ’right’: Br, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep = 0.2, finaltime = 40.0):

print domain.timestepping_statistics()

In discussing the details of this example, we follow the outline given above, discussing each major step of the code in
turn.

4.4.4 Establishing the Mesh

In this example we use a similar simple structured triangular mesh as inrunup.py for simplicity, but this time we
will use a symmetric one and also change the physical extent of the domain. The assignment

points, vertices, boundary = rectangular_cross(m, n,
len1=length, len2=width)

returns a m x n mesh similar to the one used in the previous example, except that now the extent in the x and y
directions are given by the value oflength andwidth respectively.

Defining m and n in terms of the extent as in this example provides a convenient way of controlling the resolution:
By defining dx and dy to be the desired size of each hypothenuse in the mesh we can write the mesh generation as
follows:

length = 10.
width = 5.
dx = dy = 1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)

which yields a mesh of length=10m, width=5m with 1m spacings. To increase the resolution, as we will later in this
example, one merely decrease the values of dx and dy.

The rest of this script is as in the previous example.

4.4. A slightly more complex example 17

4.5 Model Output

The following figure is a screenshot from theANUGA v1.0 visualisation toolanimate of output from this example.

Figure 4.3: Simple channel example viewed with the ANUGA viewer.

4.5.1 Changing boundary conditions on the fly

Here is the code for the second version of the channel flow ‘channel2.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel with changing boundary conditions
"""

#--
Import necessary modules
#--
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water import Domain
from anuga.shallow_water import Reflective_boundary
from anuga.shallow_water import Dirichlet_boundary
from anuga.shallow_water import Time_boundary

#--
Setup computational domain
#--
length = 10.
width = 5.
dx = dy = 1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)

18 Chapter 4. Getting Started

domain = Domain(points, vertices, boundary)
domain.set_name(’channel2’) # Output name

#--
Setup initial conditions
#--
def topography(x,y):

return -x/10 # linear bed slope

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’,

expression=’elevation’) # Dry initial condition

#--
Setup boundary conditions
#--
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow

domain.set_boundary({’left’: Bi, ’right’: Br, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep = 0.2, finaltime = 40.0):

print domain.timestepping_statistics()

if domain.get_quantity(’stage’).\
get_values(interpolation_points=[[10, 2.5]]) > 0:

print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

This example differs from the first version in that a constant outflow boundary condition has been defined

Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow

and that it is applied to the right hand side boundary when the water level there exceeds 0m.

for t in domain.evolve(yieldstep = 0.2, finaltime = 40.0):
domain.write_time()

if domain.get_quantity(’stage’).get_values(interpolation_points=[[10, 2.5]]) > 0:
print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

The if statement in the timestepping loop (evolve) gets the quantitystage and obtain the interpolated value at the
point (10m, 2.5m) which is on the right boundary. If the stage exceeds 0m a message is printed and the old boundary

4.5. Model Output 19

condition at tag ’right’ is replaced by the outflow boundary using the method

domain.set_boundary({’right’: Bo})

This type of dynamically varying boundary could for example be used to model the breakdown of a sluice door when
water exceeds a certain level.

4.5.2 Output

The text output from this example looks like this

...
Time = 15.4000, delta t in [0.03789902, 0.03789916], steps=6 (6)
Time = 15.6000, delta t in [0.03789896, 0.03789908], steps=6 (6)
Time = 15.8000, delta t in [0.03789891, 0.03789903], steps=6 (6)
Stage > 0: Changing to outflow boundary
Time = 16.0000, delta t in [0.02709050, 0.03789898], steps=6 (6)
Time = 16.2000, delta t in [0.03789892, 0.03789904], steps=6 (6)
...

4.5.3 Flow through more complex topograhies

Here is the code for the third version of the channel flow ‘channel3.py’:

"""Simple water flow example using ANUGA

Water flowing down a channel with more complex topography
"""

#--
Import necessary modules
#--
from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross
from anuga.shallow_water import Domain
from anuga.shallow_water import Reflective_boundary
from anuga.shallow_water import Dirichlet_boundary
from anuga.shallow_water import Time_boundary

#--
Setup computational domain
#--
length = 40.
width = 5.
dx = dy = .1 # Resolution: Length of subdivisions on both axes

points, vertices, boundary = rectangular_cross(int(length/dx), int(width/dy),
len1=length, len2=width)

domain = Domain(points, vertices, boundary)
domain.set_name(’channel3’) # Output name
print domain.statistics()

20 Chapter 4. Getting Started

#--
Setup initial conditions
#--
def topography(x,y):

"""Complex topography defined by a function of vectors x and y
"""

z = -x/10

N = len(x)
for i in range(N):

Step
if 10 < x[i] < 12:

z[i] += 0.4 - 0.05*y[i]

Constriction
if 27 < x[i] < 29 and y[i] > 3:

z[i] += 2

Pole
if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:

z[i] += 2

return z

domain.set_quantity(’elevation’, topography) # Use function for elevation
domain.set_quantity(’friction’, 0.01) # Constant friction
domain.set_quantity(’stage’,

expression=’elevation’) # Dry initial condition

#--
Setup boundary conditions
#--
Bi = Dirichlet_boundary([0.4, 0, 0]) # Inflow
Br = Reflective_boundary(domain) # Solid reflective wall
Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow

domain.set_boundary({’left’: Bi, ’right’: Bo, ’top’: Br, ’bottom’: Br})

#--
Evolve system through time
#--
for t in domain.evolve(yieldstep = 0.1, finaltime = 16.0):

print domain.timestepping_statistics()

if domain.get_quantity(’stage’).\
get_values(interpolation_points=[[10, 2.5]]) > 0:

print ’Stage > 0: Changing to outflow boundary’
domain.set_boundary({’right’: Bo})

This example differs from the first two versions in that the topography contains obstacles.

This is accomplished here by defining the functiontopography as follows

4.5. Model Output 21

def topography(x,y):
"""Complex topography defined by a function of vectors x and y
"""

z = -x/10

N = len(x)
for i in range(N):

Step
if 10 < x[i] < 12:

z[i] += 0.4 - 0.05*y[i]

Constriction
if 27 < x[i] < 29 and y[i] > 3:

z[i] += 2

Pole
if (x[i] - 34)**2 + (y[i] - 2)**2 < 0.4**2:

z[i] += 2

return z

In addition, changing the resolution to dx=dy=0.1 creates a finer mesh resolving the new featurse better.

A screenshot of this model at time == 15s is

Figure 4.4: More complex flow in a channel

22 Chapter 4. Getting Started

4.6 An Example with Real Data

The following discussion builds on the concepts introduced through the ‘runup.py’ example and introduces a second
example, ‘runcairns.py’. This refers to ahypothetical scenario using real-life data, in which the domain of interest
surrounds the Cairns region. Two scenarios are given; firstly, a hypothetical tsunami wave is generated by a submarine
mass failure situated on the edge of the continental shelf, and secondly, a fixed wave of given amplitude and period is
introduced through the boundary.

Each scenario has been designed to generate a tsunami which will inundate the Cairns region. To achieve
this, suitably large parameters were chosen and were not based on any known tsunami sources or realistic
amplitudes.

4.6.1 Overview

As in the case of ‘runup.py’, the actions carried out by the program can be organised according to this outline:

1. Set up a triangular mesh.

2. Set certain parameters governing the mode of operation of the model—specifying, for instance, where to store
the model output.

3. Input various quantities describing physical measurements, such as the elevation, to be specified at each mesh
point (vertex).

4. Set up the boundary conditions.

5. Carry out the evolution of the model through a series of time steps and output the results, providing a results file
that can be visualised.

4.6.2 The Code

Here is the code for ‘runcairns.py’:

"""Script for running a tsunami inundation scenario for Cairns, QLD Australia.

Source data such as elevation and boundary data is assumed to be available in
directories specified by project.py
The output sww file is stored in directory named after the scenario, i.e
slide or fixed_wave.

The scenario is defined by a triangular mesh created from project.polygon,
the elevation data and a tsunami wave generated by a submarine mass failure.

Geoscience Australia, 2004-present
"""

#--
Import necessary modules
#--

Standard modules
import os
import time
import sys

Related major packages

4.6. An Example with Real Data 23

from anuga.interface import create_domain_from_regions
from anuga.interface import Reflective_boundary
from anuga.interface import Dirichlet_boundary
from anuga.interface import Time_boundary
from anuga.interface import File_boundary
from anuga.interface import Transmissive_stage_zero_momentum_boundary

from anuga.shallow_water.data_manager import convert_dem_from_ascii2netcdf
from anuga.shallow_water.data_manager import dem2pts

from anuga.shallow_water.smf import slide_tsunami

Application specific imports
import project # Definition of file names and polygons

#--
Preparation of topographic data
Convert ASC 2 DEM 2 PTS using source data and store result in source data
#--

Create DEM from asc data
convert_dem_from_ascii2netcdf(project.demname, use_cache=True, verbose=True)

Create pts file for onshore DEM
dem2pts(project.demname, use_cache=True, verbose=True)

#--
Create the triangular mesh and domain based on
overall clipping polygon with a tagged
boundary and interior regions as defined in project.py
#--

domain = create_domain_from_regions(project.bounding_polygon,
boundary_tags={’top’: [0],

’ocean_east’: [1],
’bottom’: [2],
’onshore’: [3]},

maximum_triangle_area=project.default_res,
mesh_filename=project.meshname,
interior_regions=project.interior_regions,
use_cache=True,
verbose=True)

Print some stats about mesh and domain
print ’Number of triangles = ’, len(domain)
print ’The extent is ’, domain.get_extent()
print domain.statistics()

#--
Setup parameters of computational domain
#--

domain.set_name(’cairns_’ + project.scenario) # Name of sww file
domain.set_datadir(’.’) # Store sww output here
domain.set_minimum_storable_height(0.01) # Store only depth > 1cm

24 Chapter 4. Getting Started

#--
Setup initial conditions
#--

tide = 0.0
domain.set_quantity(’stage’, tide)
domain.set_quantity(’friction’, 0.0)
domain.set_quantity(’elevation’,

filename=project.demname + ’.pts’,
use_cache=True,
verbose=True,
alpha=0.1)

#--
Setup information for slide scenario (to be applied 1 min into simulation
#--

if project.scenario == ’slide’:
Function for submarine slide
tsunami_source = slide_tsunami(length=35000.0,

depth=project.slide_depth,
slope=6.0,
thickness=500.0,
x0=project.slide_origin[0],
y0=project.slide_origin[1],
alpha=0.0,
domain=domain,
verbose=True)

#--
Setup boundary conditions
#--

print ’Available boundary tags’, domain.get_boundary_tags()

Bd = Dirichlet_boundary([tide,0,0]) # Mean water level
Bs = Transmissive_stage_zero_momentum_boundary(domain) # Neutral boundary

if project.scenario == ’fixed_wave’:
Huge 50m wave starting after 60 seconds and lasting 1 hour.
Bw = Time_boundary(domain=domain,

function=lambda t: [(60<t<3660)*50, 0, 0])

domain.set_boundary({’ocean_east’: Bw,
’bottom’: Bs,
’onshore’: Bd,
’top’: Bs})

if project.scenario == ’slide’:
Boundary conditions for slide scenario
domain.set_boundary({’ocean_east’: Bd,

’bottom’: Bd,
’onshore’: Bd,

4.6. An Example with Real Data 25

’top’: Bd})

#--
Evolve system through time
#--

import time
t0 = time.time()

from Numeric import allclose
from anuga.abstract_2d_finite_volumes.quantity import Quantity

if project.scenario == ’slide’:

for t in domain.evolve(yieldstep=10, finaltime=60):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Add slide
thisstagestep = domain.get_quantity(’stage’)
if allclose(t, 60):

slide = Quantity(domain)
slide.set_values(tsunami_source)
domain.set_quantity(’stage’, slide + thisstagestep)

for t in domain.evolve(yieldstep=10, finaltime=5000,
skip_initial_step = True):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

if project.scenario == ’fixed_wave’:

Save every two mins leading up to wave approaching land
for t in domain.evolve(yieldstep=120, finaltime=5000):

print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

Save every 30 secs as wave starts inundating ashore
for t in domain.evolve(yieldstep=10, finaltime=10000,

skip_initial_step=True):
print domain.timestepping_statistics()
print domain.boundary_statistics(tags=’ocean_east’)

print ’That took %.2f seconds’ %(time.time()-t0)

In discussing the details of this example, we follow the outline given above, discussing each major step of the code in
turn.

4.6.3 Establishing the Mesh

One obvious way that the present example differs from ‘runup.py’ is in the use of a more complex method to create
the mesh. Instead of imposing a mesh structure on a rectangular grid, the technique used for this example involves
building mesh structures inside polygons specified by the user, using a mesh-generator.

In its simplest form, the mesh-generator creates the mesh within a single polygon whose vertices are at geographical
locations specified by the user. The user specifies theresolution—that is, the maximal area of a triangle used for

26 Chapter 4. Getting Started

triangulation—and a triangular mesh is created inside the polygon using a mesh generation engine. On any given
platform, the same mesh will be returned.

Boundary tags are not restricted to‘left’ , ‘bottom’ , ‘right’ and‘top’ , as in the case of ‘runup.py’. Instead
the user specifies a list of tags appropriate to the configuration being modelled.

In addition, the mesh-generator provides a way to adapt to geographic or other features in the landscape, whose
presence may require an increase in resolution. This is done by allowing the user to specify a number ofinterior
polygons, each with a specified resolution. It is also possible to specify one or more ‘holes’—that is, areas bounded
by polygons in which no triangulation is required.

In its general form, the mesh-generator takes for its input a bounding polygon and (optionally) a list of interior poly-
gons. The user specifies resolutions, both for the bounding polygon and for each of the interior polygons. Given this
data, the mesh-generator first creates a triangular mesh with varying resolution.

The function used to implement this process iscreate_mesh_from_regions . Its arguments include the bound-
ing polygon and its resolution, a list of boundary tags, and a list of pairs[polygon, resolution] , specifying
the interior polygons and their resolutions.

The resulting mesh is output to amesh file. This term is used to describe a file of a specific format used to store the data
specifying a mesh. (There are in fact two possible formats for such a file: it can either be a binary file, with extension
.msh , or an ASCII file, with extension.tsh . In the present case, the binary file format.msh is used. See Section
6.1 (page 61) for more on file formats.)

In practice, the details of the polygons used are read from a separate file ‘project.py’. Here is a complete listing of
‘project.py’:

"""Common filenames and locations for topographic data, meshes and outputs.
"""

from anuga.utilities.polygon import read_polygon, plot_polygons, \
polygon_area, is_inside_polygon

#--
Define scenario as either slide or fixed_wave.
#--
#scenario = ’slide’
scenario = ’fixed_wave’

#--
Filenames
#--
demname = ’cairns’
meshname = demname + ’.msh’

Filename for locations where timeseries are to be produced
gauge_filename = ’gauges.csv’

#--
Domain definitions
#--

bounding polygon for study area
bounding_polygon = read_polygon(’extent.csv’)

A = polygon_area(bounding_polygon)/1000000.0
print ’Area of bounding polygon = %.2f kmˆ2’ % A

4.6. An Example with Real Data 27

#--
Interior region definitions
#--

Read interior polygons
poly_cairns = read_polygon(’cairns.csv’)
poly_island0 = read_polygon(’islands.csv’)
poly_island1 = read_polygon(’islands1.csv’)
poly_island2 = read_polygon(’islands2.csv’)
poly_island3 = read_polygon(’islands3.csv’)
poly_shallow = read_polygon(’shallow.csv’)

Optionally plot points making up these polygons
#plot_polygons([bounding_polygon,poly_cairns,poly_island0,poly_island1,\
poly_island2,poly_island3,poly_shallow],\
style=’boundingpoly’,verbose=False)

Define resolutions (max area per triangle) for each polygon
default_res = 10000000 # Background resolution
islands_res = 100000
cairns_res = 100000
shallow_res = 500000

Define list of interior regions with associated resolutions
interior_regions = [[poly_cairns, cairns_res],

[poly_island0, islands_res],
[poly_island1, islands_res],
[poly_island2, islands_res],
[poly_island3, islands_res],
[poly_shallow, shallow_res]]

#--
Data for exporting ascii grid
#--
eastingmin = 363000
eastingmax = 418000
northingmin = 8026600
northingmax = 8145700

#--
Data for landslide
#--
slide_origin = [451871, 8128376] # Assume to be on continental shelf
slide_depth = 500.

Figure 4.5 illustrates the landscape of the region for the Cairns example. Understanding the landscape is important
in determining the location and resolution of interior polygons. The supporting data is found in the ASCII grid,
cairns.asc , which has been sourced from the publically available Australian Bathymetry and Topography Grid

28 Chapter 4. Getting Started

2005, [grid250]. The required resolution for inundation modelling will depend on the underlying topography and
bathymetry; as the terrain becomes more complex, the desired resolution would decrease to the order of tens of
metres.

Figure 4.5: Landscape of the Cairns scenario.

The following statements are used to read in the specific polygons fromproject.cairns and assign a defined
resolution to each polygon.

islands_res = 100000
cairns_res = 100000
shallow_res = 500000
interior_regions = [[project.poly_cairns, cairns_res],

[project.poly_island0, islands_res],
[project.poly_island1, islands_res],
[project.poly_island2, islands_res],
[project.poly_island3, islands_res],
[project.poly_shallow, shallow_res]]

Figure 4.6 illustrates the polygons used for the Cairns scenario.

The statement

4.6. An Example with Real Data 29

Figure 4.6: Interior and bounding polygons for the Cairns example.

remainder_res = 10000000
create_mesh_from_regions(project.bounding_polygon,

boundary_tags={’top’: [0],
’ocean_east’: [1],
’bottom’: [2],
’onshore’: [3]},

maximum_triangle_area=remainder_res,
filename=meshname,
interior_regions=interior_regions,
use_cache=True,
verbose=True)

is then used to create the mesh, taking the bounding polygon to be the polygonbounding_polygon specified
in ‘project.py’. The argumentboundary_tags assigns a dictionary, whose keys are the names of the boundary
tags used for the bounding polygon—‘top’ , ‘ocean_east’ , ‘bottom’ , and‘onshore’ — and whose values
identify the indices of the segments associated with each of these tags. The polygon may be arranged either clock-wise
or counter clock-wise and the indices refer to edges in the order they appear: Edge 0 connects vertex 0 and vertex 1,
edge 1 connects vertex 1 and 2; and so forth. (Here, the values associated with each boundary tag are one-element
lists, but they can have as many indices as there are edges) If polygons intersect, or edges coincide (or are even very
close) the resolution may be undefined in some regions. Use the underlying mesh interface for such cases. See Section
5. If a segment is omitted in the tags definition an Exception is raised.

Note that every point on each polygon defining the mesh will be used as vertices in triangles. Consequently, polygons
with points very close together will cause triangles with very small areas to be generated irrespective of the requested
resolution. Make sure points on polygons are spaced to be no closer than the smallest resolution requested.

4.6.4 Initialising the Domain

As with ‘runup.py’, once we have created the mesh, the next step is to create the data structuredomain . We did this
for ‘ runup.py’ by inputting lists of points and triangles and specifying the boundary tags directly. However, in the
present case, we use a method that works directly with the mesh filemeshname, as follows:

30 Chapter 4. Getting Started

domain = Domain(meshname, use_cache=True, verbose=True)

Providing a filename instead of the lists used in ‘runup.py’ above causesDomain to convert a mesh filemeshname
into an instance ofDomain , allowing us to use methods likeset_quantity to set quantities and to apply other
operations.

The following statements specify a basename and data directory, and identify quantities to be stored. For the first two,
values are taken from ‘project.py’.

domain.set_name(project.basename)
domain.set_datadir(project.outputdir)
domain.set_quantities_to_be_stored([’stage’, ’xmomentum’,

’ymomentum’])

4.6.5 Initial Conditions

Quantities for ‘runcairns.py’ are set using similar methods to those in ‘runup.py’. However, in this case, many of the
values are read from the auxiliary file ‘project.py’ or, in the case ofelevation , from an ancillary points file.

4.6.5.1 Stage

For the scenario we are modelling in this case, we use a callable objecttsunami_source , assigned by means of a
functionslide_tsunami . This is similar to how we set elevation in ‘runup.py’ using a function—however, in this
case the function is both more complex and more interesting.

The function returns the water displacement for allx and y in the domain. The water displacement is a double
Gaussian function that depends on the characteristics of the slide (length, width, thickness, slope, etc), its location
(origin) and the depth at that location. For this example, we choose to apply the slide function at a specified time into
the simulation.Note, the parameters used in this example have been deliberately chosen to generate a suitably
large amplitude tsunami which would inundate the Cairns region.

4.6.5.2 Friction

We assign the friction exactly as we did for ‘runup.py’:

domain.set_quantity(’friction’, 0.0)

4.6.5.3 Elevation

The elevation is specified by reading data from a file:

domain.set_quantity(’elevation’,
filename = project.dem_name + ’.pts’,
use_cache = True,
verbose = True)

4.6. An Example with Real Data 31

4.6.6 Boundary Conditions

Setting boundaries follows a similar pattern to the one used for ‘runup.py’, except that in this case we need to associate
a boundary type with each of the boundary tag names introduced when we established the mesh. In place of the four
boundary types introduced for ‘runup.py’, we use the reflective boundary for each of the eight tagged segments defined
by create_mesh_from_regions :

Bd = Dirichlet_boundary([0.0,0.0,0.0])
domain.set_boundary({’ocean_east’: Bd, ’bottom’: Bd, ’onshore’: Bd,

’top’: Bd})

4.6.7 Evolution

With the basics established, the running of the ‘evolve’ step is very similar to the corresponding step in ‘runup.py’. For
the slide scenario, the simulation is run for 5000 seconds with the output stored every ten seconds. For this example,
we choose to apply the slide at 60 seconds into the simulation.

import time t0 = time.time()

for t in domain.evolve(yieldstep = 10, finaltime = 60):
domain.write_time()
domain.write_boundary_statistics(tags = ’ocean_east’)

add slide
thisstagestep = domain.get_quantity(’stage’)
if allclose(t, 60):

slide = Quantity(domain)
slide.set_values(tsunami_source)
domain.set_quantity(’stage’, slide + thisstagestep)

for t in domain.evolve(yieldstep = 10, finaltime = 5000,
skip_initial_step = True):

domain.write_time()
domain.write_boundary_statistics(tags = ’ocean_east’)

For the fixed wave scenario, the simulation is run to 10000 seconds, with the first half of the simulation stored at two
minute intervals, and the second half of the simulation stored at ten second intervals. This functionality is especially
convenient as it allows the detailed parts of the simulation to be viewed at higher time resolution.

32 Chapter 4. Getting Started

save every two mins leading up to wave approaching land
for t in domain.evolve(yieldstep = 120, finaltime = 5000):

domain.write_time()
domain.write_boundary_statistics(tags = ’ocean_east’)

save every 30 secs as wave starts inundating ashore
for t in domain.evolve(yieldstep = 10, finaltime = 10000,

skip_initial_step = True):
domain.write_time()
domain.write_boundary_statistics(tags = ’ocean_east’)

4.7 Exploring the Model Output

Now that the scenario has been run, the user can view the output in a number of ways. As described earlier, the user
may run animate to view a three-dimensional representation of the simulation.

The user may also be interested in a maximum inundation map. This simply shows the maximum water depth over
the domain and is achieved with the function sww2dem (described in Section 6.1.9). ‘ExportResults.py’ demonstrates
how this function can be used:

import project, os
import sys

from anuga.shallow_water.data_manager import sww2dem
from anuga.abstract_2d_finite_volumes.util import start_screen_catcher
from os import sep

scenario = ’slide’
#scenario = ’fixed_wave’

name = scenario + sep + scenario + ’source’

print ’output dir:’, name
which_var = 4
if which_var == 0: # Stage

outname = name + ’_stage’
quantityname = ’stage’

if which_var == 1: # Absolute Momentum
outname = name + ’_momentum’
quantityname = ’(xmomentum**2 + ymomentum**2)**0.5’ #Absolute momentum

if which_var == 2: # Depth
outname = name + ’_depth’
quantityname = ’stage-elevation’ #Depth

if which_var == 3: # Speed
outname = name + ’_speed’
quantityname = ’(xmomentum**2 + ymomentum**2)**0.5/(stage-elevation+1.e-30)’ #Speed

if which_var == 4: # Elevation
outname = name + ’_elevation’
quantityname = ’elevation’ #Elevation

4.7. Exploring the Model Output 33

print ’start sww2dem’

sww2dem(name, basename_out = outname,
quantity = quantityname,
cellsize = 100,
easting_min = project.eastingmin,
easting_max = project.eastingmax,
northing_min = project.northingmin,
northing_max = project.northingmax,
reduction = max,
verbose = True,
format = ’ers’)

The script generates an maximum water depth ASCII grid at a defined resolution (here 100 m2) which can then be
viewed in a GIS environment, for example. The parameters used in the function are defined in ‘project.py’. Figures 4.7
and 4.8 show the maximum water depth within the defined region for the slide and fixed wave scenario respectively.
Note, these inundation maps have been based on purely hypothetical scenarios and were designed explicitly for
demonstration purposes only.The user could develop a maximum absolute momentum or other expressions which
can be derived from the quantities. It must be noted here that depth is more meaningful when the elevation is positive
(depth = stage − elevation) as it describes the water height above the available elevation. When the elevation
is negative, depth is meauring the water height from the sea floor. With this in mind, maximum inundation maps are
typically ”clipped” to the coastline. However, the data input here did not contain a coastline.

The user may also be interested in interrogating the solution at a particular spatial location to understand the behaviour
of the system through time. To do this, the user must first define the locations of interest. A number of locations have
been identified for the Cairns scenario, as shown in Figure 4.9.

These locations must be stored in either a .csv or .txt file. The corresponding .csv file for the gauges shown in Figure
4.9 is ‘gauges.csv’

easting,northing,name,elevation
367622.63,8128196.42,Cairns,0
360245.11,8142280.78,Trinity Beach,0
386133.51,8131751.05,Cairns Headland,0
430250,8128812.23,Elford Reef,0
367771.61,8133933.82,Cairns Airport,0

Header information has been included to identify the location in terms of eastings and northings, and each gauge is
given a name. The elevation column can be zero here. This information is then passed to the functionsww2csv_-
gauges (shown in ‘GetTimeseries.py’ which generates the csv files for each point location. The csv files can then be
used incsv2timeseries_graphs to create the timeseries plot for each desired quantity.csv2timeseries_-
graphs relies onpylab to be installed which is not part of the standardanuga release, however it can be down-
loaded and installed fromhttp://matplotlib.sourceforge.net/

"""
Generate time series of nominated "gauges" read from project.gauge_filename. This
is done by first running sww2csv_gauges on two different directories to make
’csv’ files. Then running csv2timeseries_graphs detailing the two directories
containing the csv file and produces one set of graphs in the ’output_dir’ containing
the details at the gauges for both these sww files.

Note, this script will only work if pylab is installed on the platform

"""

from os import sep

34 Chapter 4. Getting Started

import project
from anuga.abstract_2d_finite_volumes.util import sww2csv_gauges,csv2timeseries_graphs

sww2csv_gauges(’slide’+sep+’slidesource.sww’,
project.gauge_filename,
quantities = [’stage’,’speed’,’depth’,’elevation’],
verbose=True)

sww2csv_gauges(’fixed_wave’+sep+’fixed_wavesource.sww’,
project.gauge_filename,
quantities = [’stage’, ’speed’,’depth’,’elevation’],
verbose=True)

try:
import pylab
csv2timeseries_graphs(directories_dic={’slide’+sep:[’Slide’,0, 0],

’fixed_wave’+sep:[’Fixed Wave’,0,0]},
output_dir=’fixed_wave’+sep,
base_name=’gauge_’,
plot_numbers=’’,
quantities=[’stage’,’speed’,’depth’],
extra_plot_name=’’,
assess_all_csv_files=True,
create_latex=False,
verbose=True)

except ImportError:
#ANUGA does not rely on pylab to work
print ’must have pylab installed to generate plots’

Here, the time series for the quantities stage, depth and speed will be generated for each gauge defined in the gauge
file. As described earlier, depth is more meaningful for onshore gauges, and stage is more appropriate for offshore
gauges.

As an example output, Figure 4.10 shows the time series for the quantity stage for the Elford Reef location for each
scenario (the elevation at this location is negative, therefore stage is the more appropriate quantity to plot). Note the
large negative stage value when the slide was introduced. This is due to the double gaussian form of the initial surface
displacement of the slide. By contrast, the time series for depth is shown for the onshore location of the Cairns Airport
in Figure 4.11.

4.7. Exploring the Model Output 35

Figure 4.7: Maximum inundation map for the Cairns slide scenario.Note, this inundation map has been based on
a purely hypothetical scenario which was designed explictiy for demonstration purposes only.

36 Chapter 4. Getting Started

Figure 4.8: Maximum inundation map for the Cairns fixed wave scenario.Note, this inundaiton map has been based
on a purely hypothetical scenario which was designed explictiy for demonstration purposes only.

4.7. Exploring the Model Output 37

Figure 4.9: Point locations to show time series information for the Cairns scenario.

38 Chapter 4. Getting Started

Figure 4.10: Time series information of the quantity stage for the Elford Reef location for the fixed wave and slide
scenario.

4.7. Exploring the Model Output 39

Figure 4.11: Time series information of the quantity depth for the Cairns Airport location for the slide and fixed wave
scenario.

40 Chapter 4. Getting Started

CHAPTER

FIVE

ANUGA V1.0 Public Interface

This chapter gives an overview of the features ofANUGA v1.0 available to the user at the public interface. These are
grouped under the following headings, which correspond to the outline of the examples described in Chapter 4:

• Establishing the Mesh: Section 5.1

• Initialising the Domain: Section 5.2

• Specifying the Quantities: Section??

• Initial Conditions: Section 5.3

• Boundary Conditions: Section 5.4

• Forcing Terms: Section 5.5

• Evolution: Section 5.6

The listings are intended merely to give the reader an idea of what each feature is, where to find it and how it can
be used—they do not give full specifications; for these the reader may consult the code. The code for every function
or class contains a documentation string, or ‘docstring’, that specifies the precise syntax for its use. This appears
immediately after the line introducing the code, between two sets of triple quotes.

Each listing also describes the location of the module in which the code for the feature being described can be found.
All modules are in the folder ‘inundation’ or one of its subfolders, and the location of each module is described
relative to ‘inundation’. Rather than using pathnames, whose syntax depends on the operating system, we use the
format adopted for importing the function or class for use in Python code. For example, suppose we wish to specify
that the functioncreate_mesh_from_regions is in a module calledmesh_interface in a subfolder of
inundation calledpmesh. In Linux or Unix syntax, the pathname of the file containing the function, relative to
‘ inundation’, would be

pmesh/mesh_interface.py

while in Windows syntax it would be

pmesh\mesh_interface.py

Rather than using either of these forms, in this chapter we specify the location simply aspmesh.mesh_interface ,
in keeping with the usage in the Python statement for importing the function, namely:

from pmesh.mesh_interface import create_mesh_from_regions

41

Each listing details the full set of parameters for the class or function; however, the description is generally limited to
the most important parameters and the reader is again referred to the code for more details.

The following parameters are common to many functions and classes and are omitted from the descriptions given
below:

usecache Specifies whether caching is to be used for improved performance. See Section A.1 for details on the underlying caching functionality
verbose If True , provides detailed terminal output to the user

5.1 Mesh Generation

Before discussing the part of the interface relating to mesh generation, we begin with a description of a simple example
of a mesh and use it to describe how mesh data is stored.

Figure 5.1 represents a very simple mesh comprising just 11 points and 10 triangles.

Figure 5.1: A simple mesh

The variablespoints , triangles andboundary represent the data displayed in Figure 5.1 as follows. The list
points stores the coordinates of the points, and may be displayed schematically as in Table 5.1.

The list triangles specifies the triangles that make up the mesh. It does this by specifying, for each triangle, the
indices (the numbers shown in the first column above) that correspond to the three points at the triangles vertices, taken
in an anti-clockwise order around the triangle. Thus, in the example shown in Figure 5.1, the variabletriangles
contains the entries shown in Table 5.2. The starting point is arbitrary so triangle(0, 1, 3) is considered the same as
(1, 3, 0) and(3, 0, 1).

Finally, the variableboundary identifies the boundary triangles and associates a tag with each.

pmesh.meshinterface]pmesh.meshinterface

create_mesh_from_regions (boundingpolygon, boundarytags, maximumtriangle area, filename=None,
interior regions=None, polygeo reference=None, meshgeo reference=None,
minimumtriangle angle=28.0)

42 Chapter 5. ANUGA v1.0 Public Interface

index x y
0 1 1
1 4 2
2 8 1
3 1 3
4 5 5
5 8 6
6 11 5
7 3 6
8 1 8
9 4 9
10 10 7

Table 5.1: Point coordinates for mesh in Figure 5.1

index points
0 0 1 3
1 1 2 4
2 2 5 4
3 2 6 5
4 4 5 9
5 4 9 7
6 3 4 7
7 7 9 8
8 1 4 3
9 5 10 9

Table 5.2: Triangles for mesh in Figure 5.1

5.1. Mesh Generation 43

Module: pmesh.mesh_interface

This function allows a user to initiate the automatic creation of a mesh inside a specified polygon (input
bounding_polygon). Among the parameters that can be set are theresolution(maximal area for any tri-
angle in the mesh) and the minimal angle allowable in any triangle. The user can specify a number of internal
polygons within each of which the resolution of the mesh can be specified.interior_regions is a paired
list containing the interior polygon and its resolution. Additionally, the user specifies a list of boundary tags,
one for each edge of the bounding polygon.

WARNING . Note that the dictionary structure used for the parameterboundary_tags is different from that
used for the variableboundary that occurs in the specification of a mesh. In the case ofboundary , the tags
are thevaluesof the dictionary, whereas in the case ofboundary_tags , the tags are thekeysand thevalue
corresponding to a particular tag is a list of numbers identifying boundary edges labelled with that tag. Because
of this, it is theoretically possible to assign the same edge to more than one tag. However, an attempt to do this
will cause an error.

WARNING . Do not have polygon lines cross or be on-top of each other. This can result in regions of unspecified
resolutions. Do not have polygon close to each other. This can result in the area between the polygons having
small triangles. For more control over the mesh outline use the methods described below.

5.1.1 Advanced mesh generation

For more control over the creation of the mesh outline, use the methods of the classMesh.

classMesh(userSegments=None, userVertices=None, holes=None, regions=None)
Module: pmesh.mesh

A class used to build a mesh outline and generate a two-dimensional triangular mesh. The mesh outline is used
to describe features on the mesh, such as the mesh boundary. Many of this classes methods are used to build a
mesh outline, such asadd_vertices andadd_region_from_polygon .

5.1.1.1 Key Methods of Class Mesh

add_hole (x,y)
Module: pmesh.mesh , Class:Mesh

This method is used to build the mesh outline. It defines a hole, when the boundary of the hole has already been
defined, by selecting a point within the boundary.

add_hole_from_polygon (self, polygon, tags=None)
Module: pmesh.mesh , Class:Mesh

This method is used to add a ‘hole’ within a region —that is, to define a interior region where the triangular
mesh will not be generated—to aMesh instance. The region boundary is described by the polygon passed in.
Additionally, the user specifies a list of boundary tags, one for each edge of the bounding polygon.

add_points_and_segments (self, points, segments, segmenttags=None)
Module: pmesh.mesh , Class:Mesh

This method is used to build the mesh outline. It adds points and segments connecting the points. Points is a list
of points. Segments is a list of segments. Each segment is defined by the start and end of the line by it’s point
index, e.g. usesegments = [[0,1],[1,2]] to make a polyline between points 0, 1 and 2. A tag for each
segment can optionally be added.

add_region (x,y)
Module: pmesh.mesh , Class:Mesh

This method is used to build the mesh outline. It defines a region, when the boundary of the region has already
been defined, by selecting a point within the boundary. A region instance is returned. This can be used to set the
resolution.

44 Chapter 5. ANUGA v1.0 Public Interface

add_region_from_polygon (self, polygon, segmenttags=None, regiontag=None maxtriangle area=None)
Module: pmesh.mesh , Class:Mesh

This method is used to build the mesh outline. It adds a region to aMesh instance. Regions are commonly
used to describe an area with an increased density of triangles, by settingmax_triangle_area . The region
boundary is described by the inputpolygon . Additionally, the user specifies a list of segment tags, one for
each edge of the bounding polygon. The regional tag is set usingregion .

add_vertices (point data)
Module: pmesh.mesh , Class:Mesh

Add user vertices. The pointdata can be a list of (x,y) values, a numeric array or a geospatialdata instance.

auto_segment (raw boundary=rawboundary, removeholes=removeholes, smoothindents=smoothindents, ex-
pandpinch=expandpinch)

Module: pmesh.mesh , Class:Mesh

Add segments between some of the user vertices to give the vertices an outline. The outline is an alpha shape.
This method is useful since a set of user vertices need to be outlined by segments before generatemesh is called.

export_mesh_file (self,ofile)
Module: pmesh.mesh , Class:Mesh

This method is used to save the mesh to a file.ofile is the name of the mesh file to be written, including
the extension. Use the extension.msh for the file to be in NetCDF format and.tsh for the file to be ASCII
format.

generate_mesh (self, maximumtriangle area=None, minimumtriangle angle=28.0, verbose=False)
Module: pmesh.mesh , Class:Mesh

This method is used to generate the triangular mesh. The maximal area of any triangle in the mesh can be
specified, which is used to control the triangle density, along with the minimum angle in any triangle.

import_ungenerate_file (self,ofile, tag=None, regiontag=None)
Module: pmesh.mesh , Class:Mesh

This method is used to import a polygon file in the ungenerate format, which is used by arcGIS. The polygons
from the file are converted to vertices and segments.ofile is the name of the polygon file.tag is the tag
given to all the polygon’s segments.region_tag is the tag given to all the polygon’s segments. If it is a string
the one value will be assigned to all regions. If it is a list the first value in the list will be applied to the first
polygon etc. Iftag is not given a value it defaults to None, which means the segement will not effect the water
flow, it will only effect the mesh generation.

This function can be used to import building footprints.

5.2 Initialising the Domain

classDomain (source=None, triangles=None, boundary=None, conservedquantities=None, otherquanti-
ties=None, taggedelements=None, useinscribedcircle=False, meshfilename=None, use-
cache=False, verbose=False, fullsenddict=None, ghostrecv dict=None, processor=0,
numproc=1)

Module: abstract_2d_finite_volumes.domain

This class is used to create an instance of a data structure used to store and manipulate data associated with a
mesh. The mesh is specified either by assigning the name of a mesh file tosource or by specifying the points,
triangle and boundary of the mesh.

5.2.1 Key Methods of Domain

set_name (name)
Module: abstract_2d_finite_volumes.domain , page 83

5.2. Initialising the Domain 45

Assigns the namename to the domain.

get_name ()
Module: abstract_2d_finite_volumes.domain

Returns the name assigned to the domain byset_name . If no name has been assigned, returns‘domain’ .

set_datadir (name)
Module: abstract_2d_finite_volumes.domain

Specifies the directory used for SWW files, assigning it to the pathnamename. The default value, before
set_datadir has been run, is the valuedefault_datadir specified inconfig.py .

Since different operating systems use different formats for specifying pathnames, it is necessary to specify
path separators using the Python codeos.sep , rather than the operating-specific ones such as ‘/’ or ‘ \’. For
this to work you will need to include the statementimport os in your code, before the first appearance of
set_datadir .

For example, to set the data directory to a subdirectorydata of the directoryproject , you could use the
statements:

import os
domain.set_datadir{’project’ + os.sep + ’data’}

get_datadir ()
Module: abstract_2d_finite_volumes.domain

Returns the data directory set byset_datadir or, if set_datadir has not been run, returns the value
default_datadir specified inconfig.py .

set_minimum_allowed_height ()
Module: shallow_water.shallow_water_domain

Set the minimum depth (in meters) that will be recognised in the numerical scheme (including limiters and flux
computations)

Default value is10−3 m, but by setting this to a greater value, e.g. for large scale simulations, the computation
time can be significantly reduced.

set_minimum_storable_height ()
Module: shallow_water.shallow_water_domain

Sets the minimum depth that will be recognised when writing to an sww file. This is useful for removing thin
water layers that seems to be caused by friction creep.

set_maximum_allowed_speed ()
Module: shallow_water.shallow_water_domain

Set the maximum particle speed that is allowed in water shallower than minimumallowedheight. This is useful
for controlling speeds in very thin layers of water and at the same time allow some movement avoiding pooling
of water.

set_time (time=0.0)
Module: abstract_2d_finite_volumes.domain

Sets the initial time, in seconds, for the simulation. The default is 0.0.

set_default_order (n)
Sets the default (spatial) order to the value specified byn, which must be either 1 or 2. (Assigning any other
value ton will cause an error.)

set_store_vertices_uniquely (flag)
Decide whether vertex values should be stored uniquely as computed in the model or whether they should be
reduced to one value per vertex using averaging.

46 Chapter 5. ANUGA v1.0 Public Interface

Triangles stored in the sww file can be discontinuous reflecting the internal representation of the finite-volume
scheme (this is a feature allowing for arbitrary steepness of the water surface gradient as well as the momentum
gradients). However, for visual purposes and also for use withField_boundary (andFile_boundary) it
is often desirable to store triangles with values at each vertex point as the average of the potentially discontinuous
numbers found at vertices of different triangles sharing the same vertex location.

Storing one way or the other is controlled in ANUGA through the methoddomain.store_vertices_-
uniquely . Options are

•domain.store_vertices_uniquely(True) : Allow discontinuities in the sww file

•domain.store_vertices_uniquely(False) : (Default). Average values to ensure continuity in
sww file. The latter also makes for smaller sww files.

Note that when model data in the sww file are averaged (i.e. not stored uniquely), then there will most likely be
a small discrepancy between values extracted from the sww file and the same data stored in the model domain.
This must be borne in mind when comparing data from the sww files with that of the model internally.

get_nodes (absolute=False)
Return x,y coordinates of all nodes in mesh.

The nodes are ordered in an Nx2 array where N is the number of nodes. This is the same format they were
provided in the constructor i.e. without any duplication.

Boolean keyword argument absolute determines whether coordinates are to be made absolute by taking georef-
erence into account Default is False as many parts of ANUGA expects relative coordinates.

get_vertex_coordinates (absolute=False)
Return vertex coordinates for all triangles.

Return all vertex coordinates for all triangles as a 3*M x 2 array where the jth vertex of the ith triangle is located
in row 3*i+j and M the number of triangles in the mesh.

Boolean keyword argument absolute determines whether coordinates are to be made absolute by taking georef-
erence into account Default is False as many parts of ANUGA expects relative coordinates.

get_centroid_coordinates (absolute=False)
Return centroid coordinates for all triangles.

Return all centroid coordinates for all triangles as a M x 2 array

Boolean keyword argument absolute determines whether coordinates are to be made absolute by taking georef-
erence into account Default is False as many parts of ANUGA expects relative coordinates.

get_triangles (indices=None)
Return Mx3 integer array where M is the number of triangles. Each row corresponds to one triangle and the
three entries are indices into the mesh nodes which can be obtained using the method getnodes()

Optional argument, indices is the set of triangle ids of interest.

get_disconnected_triangles ()
Get mesh based on nodes obtained from getvertexcoordinates.

Return array Mx3 array of integers where each row corresponds to a triangle. A triangle is a triplet of indices
into point coordinates obtained from getvertexcoordinates and each index appears only once.

This provides a mesh where no triangles share nodes (hence the name disconnected triangles) and different
nodes may have the same coordinates.

This version of the mesh is useful for storing meshes with discontinuities at each node and is e.g. used for
storing data in sww files.

The triangles created will have the format

5.2. Initialising the Domain 47

[[0,1,2],
[3,4,5],
[6,7,8],
...
[3*M-3 3*M-2 3*M-1]]

5.3 Initial Conditions

In standard usage of partial differential equations, initial conditions refers to the values associated to the system
variables (the conserved quantities here) fortime = 0 . In setting up a scenario script as described in Sections 4.1
and 4.6,set_quantity is used to define the initial conditions of variables other than the conserved quantities,
such as friction. Here, we use the terminology of initial conditions to refer to initial values for variables which need
prescription to solve the shallow water wave equation. Further, it must be noted thatset_quantity does not
necessarily have to be used in the initial condition setting; it can be used at any time throughout the simulation.

set_quantity (name, numeric = None, quantity = None, function = None, geospatialdata = None, expression
= None, filename = None, attributename = None, alpha = None, location = ’vertices’, indices =
None, verbose = False, usecache = False)

Module: abstract_2d_finite_volumes.domain (see also abstract_2d_finite_-
volumes.quantity.set_values)

This function is used to assign values to individual quantities for a domain. It is very flexible and can be used
with many data types: a statement of the formdomain.set_quantity(name, x) can be used to define
a quantity having the namename, where the other argumentx can be any of the following:

•a number, in which case all vertices in the mesh gets that for the quantity in question.

•a list of numbers or a Numeric array ordered the same way as the mesh vertices.

•a function (e.g. see the samples introduced in Chapter 2)

•an expression composed of other quantities and numbers, arrays, lists (for example, a linear combination
of quantities, such asdomain.set_quantity(’stage’,’elevation’+x))

•the name of a file from which the data can be read. In this case, the optional argument attributename will
select which attribute to use from the file. If left out, setquantity will pick one. This is useful in cases
where there is only one attribute.

•a geospatial dataset (See Section A.5). Optional argument attributename applies here as with files.

Exactly one of the arguments numeric, quantity, function, points, filename must be present.

Set quantity will look at the type of the second argument (numeric) and determine what action to take.

Values can also be set using the appropriate keyword arguments. If x is a function, for ex-
ample, domain.set_quantity(name, x) , domain.set_quantity(name, numeric=x) , and
domain.set_quantity(name, function=x) are all equivalent.

Other optional arguments are

•indices which is a list of ids of triangles to which setquantity should apply its assignment of values.

•location determines which part of the triangles to assign to. Options are ’vertices’ (default), ’edges’,
’unique vertices’, and ’centroids’. If ’vertices’ are use, edge and centroid values are automatically com-
puted as the appropriate averages. This option ensures continuity of the surface. If, on the other hand,
’centroids’ is used vertex and edge values will be set to the same value effectively creating a piecewise
constant surface with possible discontinuities at the edges.

ANUGA v1.0 provides a number of predefined initial conditions to be used withset_quantity . See for
example callable objectslump_tsunami below.

48 Chapter 5. ANUGA v1.0 Public Interface

add_quantity (name, numeric = None, quantity = None, function = None, geospatialdata = None, expression
= None, filename = None, attributename = None, alpha = None, location = ’vertices’, indices =
None, verbose = False, usecache = False)

Module: abstract_2d_finite_volumes.domain (see also abstract_2d_finite_-
volumes.domain.set_quantity)

This function is used toadd values to individual quantities for a domain. It has the same syntax as
domain.set_quantity(name, x) .

A typical use of this function is to add structures to an existing elevation model:

Create digital elevation model from points file
domain.set_quantity(’elevation’,

filename = ’elevation_file.pts,
verbose = True)

Add buildings from file
building_polygons, building_heights = csv2building_polygons(building_file)

B = []
for key in building_polygons:

poly = building_polygons[key]
elev = building_heights[key]
B.append((poly, elev))

domain.add_quantity(’elevation’, Polygon_function(B, default=0.0))

set_region (tag, quantity, X, location=’vertices’)
Module: abstract_2d_finite_volumes.domain

(see alsoabstract_2d_finite_volumes.quantity.set_values)

This function is used to assign values to individual quantities given a regional tag. It is similar toset_-
quantity . For example, if in the mesh-generator a regional tag of ’ditch’ was used, setregion can be used to
set elevation of this region to -10m. X is the constant or function to be applied to the quantity, over the tagged
region. Location describes how the values will be applied. Options are ’vertices’ (default), ’edges’, ’unique
vertices’, and ’centroids’.

This method can also be called with a list of region objects. This is useful for adding quantities in regions, and
having one quantity value based on another quantity. Seeabstract_2d_finite_volumes.region for
more details.

slump_tsunami (length, depth, slope, width=None, thickness=None, x0=0.0, y0=0.0, alpha=0.0, gravity=9.8,
gamma=1.85, massco=1, dragco=1, frictionco=0, psi=0, dx=None, kappa=3.0, kappad=0.8,
zsmall=0.01, domain=None, verbose=False)

Module: shallow_water.smf

This function returns a callable object representing an initial water displacement generated by a submarine
sediment failure. These failures can take the form of a submarine slump or slide. In the case of a slide, use
slide_tsunami instead.

The arguments include as a minimum, the slump or slide length, the water depth to the centre of sediment mass,
and the bathymetric slope. Other slump or slide parameters can be included if they are known.

file_function (filename, domain = None, quantities = None, interpolationpoints = None, verbose = False,
usecache = False)

Module: abstract_2d_finite_volumes.util

Reads the time history of spatial data for specified interpolation points from a NetCDF file (filename) and
returns a callable object.filename could be aswwor sts file. Returns interpolated values based on the input
file using the underlyinginterpolation_function .

5.3. Initial Conditions 49

quantities is either the name of a single quantity to be interpolated or a list of such quantity names. In the
second case, the resulting function will return a tuple of values—one for each quantity.

interpolation_points is a list of absolute coordinates or a geospatial object for points at which values
are sought.

boundary_polygon is a list of coordinates specifying the vertices of the boundary. This must be the same
polygon as used when callingcreate_mesh_from_regions . This argument can only be used when read-
ing boundary data from the STS format.

The model time stored within the file function can be accessed using the methodf.get_time()

The underlying algorithm used is as follows:
Given a time series (i.e. a series of values associated with different times), whose values are either just numbers,
a set of numbers defined at the vertices of a triangular mesh (such as those stored in SWW files) or a set of
numbers defined at a number of points on the boundary (such as those stored in STS files),Interpolation_-
function is used to create a callable object that interpolates a value for an arbitrary timet within the model
limits and possibly a point(x, y) within a mesh region.

The actual time series at which data is available is specified by means of an arraytime of monotonically
increasing times. The quantities containing the values to be interpolated are specified in an array—or dictionary
of arrays (used in conjunction with the optional argumentquantity_names) — calledquantities . The
optional argumentsvertex_coordinates andtriangles represent the spatial mesh associated with the
quantity arrays. If omitted the function must be created using an STS file or a TMS file.

Since, in practice, values need to be computed at specified points, the syntax allows the user to specify, once
and for all, a listinterpolation_points of points at which values are required. In this case, the function
may be called using the formf(t, id) , whereid is an index for the listinterpolation_points .

5.4 Boundary Conditions

ANUGA v1.0 provides a large number of predefined boundary conditions, represented by objects such as
Reflective_boundary(domain) and Dirichlet_boundary([0.2, 0.0, 0.0]) , described in the
examples in Chapter 2. Alternatively, you may prefer to “roll your own”, following the method explained in Sec-
tion 5.4.2.

These boundary objects may be used with the functionset_boundary described below to assign boundary condi-
tions according to the tags used to label boundary segments.

set_boundary (boundarymap)
Module: abstract_2d_finite_volumes.domain

This function allows you to assign a boundary object (corresponding to a pre-defined or user-specified boundary
condition) to every boundary segment that has been assigned a particular tag.

This is done by specifying a dictionaryboundary_map , whose values are the boundary objects and whose
keys are the symbolic tags.

get_boundary_tags ()
Module: abstract_2d_finite_volumes.domain

Returns a list of the available boundary tags.

5.4.1 Predefined boundary conditions

classReflective_boundary (Boundary)
Module: shallow_water

Reflective boundary returns same conserved quantities as those present in the neighbouring volume but reflected.

50 Chapter 5. ANUGA v1.0 Public Interface

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

classTransmissive_boundary (domain = None)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A transmissive boundary returns the same conserved quantities as those present in the neighbouring volume.

The underlying domain must be specified when the boundary is instantiated.

classDirichlet_boundary (conservedquantities=None)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A Dirichlet boundary returns constant values for each of conserved quantities. In the example of
Dirichlet_boundary([0.2, 0.0, 0.0]) , the stage value at the boundary is 0.2 and the
xmomentum andymomentum at the boundary are set to 0.0. The list must contain a value for each conserved
quantity.

classTime_boundary (domain = None, f = None)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

A time-dependent boundary returns values for the conserved quantities as a functionf(t) of time. The user
must specify the domain to get access to the model time.

Optional argumentdefault_boundary can be used to specify another boundary object to be used in case
model time exceeds the time availabel in the file used byFile_boundary . Thedefault_boundary could
be a simple Dirichlet condition or even anotherTime_boundary typically using data pertaining to another
time interval.

classFile_boundary (Boundary)
Module: abstract_2d_finite_volumes.generic_boundary_conditions

This method may be used if the user wishes to apply a SWW file, STS file or a time series file (TMS) to a
boundary segment or segments. The boundary values are obtained from a file and interpolated to the appropriate
segments for each conserved quantity.

Optional argumentdefault_boundary can be used to specify another boundary object to be used in case
model time exceeds the time availabel in the file used byFile_boundary . Thedefault_boundary could
be a simple Dirichlet condition or even anotherFile_boundary typically using data pertaining to another
time interval.

classField_boundary (Boundary)
Module: shallow_water.shallow_water_domain

This method works in the same way asFile_boundary except that it allows for the value of stage to be offset
by a constant specified in the keyword argumentmean_stage .

This functionality allows for models to be run for a range of tides using the same boundary information (from
.sts, .sww or .tms files). The tidal value for each run would then be specified in the keyword argumentmean_-
stage . If mean_stage = 0.0,Field_boundary andFile_boundary behave identically.

Note that if the optional argumentdefault_boundary is specified it’s stage value will be adjusted by
mean_stage just like the values obtained from the file.

SeeFile_boundary for further details.

classTransmissive_momentum_set_stage_boundary (Boundary)
Module: shallow_water

This boundary returns same momentum conserved quantities as those present in its neighbour volume but sets
stage as in a Timeboundary. The underlying domain must be specified when boundary is instantiated

This type of boundary is useful when stage is known at the boundary as a function of time, but momenta (or
speeds) aren’t.

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

5.4. Boundary Conditions 51

In some circumstances, this boundary condition may cause numerical instabilities for similar reasons as what
has been observed with the simple fully transmissive boundary condition (see Page 51). This could for example
be the case if a planar wave is reflected out through this boundary.

classTransmissive_stage_zero_momentum_boundary (Boundary)
Module: shallow_water

This boundary returns same stage conserved quantities as those present in its neighbour volume but sets mo-
mentum to zero. The underlying domain must be specified when boundary is instantiated

This type of boundary is useful when stage is known at the boundary as a function of time, but momentum
should be set to zero. This is for example the case where a boundary is needed in the ocean on the two sides
perpendicular to the coast to maintain the wave height of the incoming wave.

This class is specific to the shallow water equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

This boundary condition should not cause the numerical instabilities seen with the transmissive momentum
boundary conditions (see Page 51 and Page 51).

classDirichlet_discharge_boundary (Boundary)
Module: shallow_water

Sets stage (stage0) Sets momentum (wh0) in the inward normal direction.

5.4.2 User-defined boundary conditions

All boundary classes must inherit from the generic boundary classBoundary and have a method calledevaluate
which must take as inputsself, vol_id, edge_id where self refers to the object itself and volid and edgeid
are integers referring to particular edges. The method must return a list of three floating point numbers representing
values forstage , xmomentum andymomentum, respectively.

The constructor of a particular boundary class may be used to specify particular values or flags to be used by the
evaluate method. Please refer to the source code for the existing boundary conditions for examples of how to
implement boundary conditions.

5.5 Forcing Terms

ANUGA v1.0 provides a number of predefined forcing functions to be used with simulations. Gravity and friction are
always calculated using the elevation and friction quantities, but the user may additionally add forcing terms to the list
domain.forcing_terms and have them affect the model.

Currently, predefined forcing terms are

General_forcing ()
Module: shallow_water.shallow_water_domain

This is a general class to modify any quantity according to a given rate of change. Other specific forcing terms
are based on this class but it can be used by itself as well (e.g. to modify momentum).

The Generalforcing class takes as input:

•domain : a reference to the domain being evolved

•quantity_name : The name of the quantity that will be affected by this forcing term

•rate : The rate at which the quantity should change. The parameterrate can be eithe a constant or
a function of time. Positive values indicate increases, negative values indicate decreases. The parametr
rate can beNone at initialisation but must be specified before forcing term is applied (i.e. simulation
has started). The default value is 0.0 - i.e. no forcing.

52 Chapter 5. ANUGA v1.0 Public Interface

•center, radius : Optionally restrict forcing to a circle with given center and radius.

•polygon : Optionally restrict forcing to an area enclosed by given polygon.

Note specifying both center, radius and polygon will cause an exception to be thrown. Moreover, if the specified
polygon or circle does not lie fully within the mesh boundary an Exception will be thrown.

Example:

P = [[x0, y0], [x1, y0], [x1, y1], [x0, y1]] # Square polygon

xmom = General_forcing(domain, ’xmomentum’, polygon=P)
ymom = General_forcing(domain, ’ymomentum’, polygon=P)

xmom.rate = f
ymom.rate = g

domain.forcing_terms.append(xmom)
domain.forcing_terms.append(ymom)

Here,f , g are assumed to be defined as functions of time providing a time dependent rate of change for xmo-
mentum and ymomentum respectively. P is assumed to be polygon, specified as a list of points.

Inflow ()
Module: shallow_water.shallow_water_domain

This is a general class for inflow and abstraction of water according to a given rate of change. This class will
always modify thestage quantity.

Inflow is based on the Generalforcing class so the functionality is similar.

The Inflow class takes as input:

•domain : a reference to the domain being evolved

•rate : The flow rate inm3/s at which the stage should change. The parameterrate can be eithe a
constant or a function of time. Positive values indicate inflow, negative values indicate outflow.
Note: The specified flow will be divided by the area of the inflow region and then applied to update the
stage quantity.

•center, radius : Optionally restrict forcing to a circle with given center and radius.

•polygon : Optionally restrict forcing to an area enclosed by given polygon.

Example:

hydrograph = Inflow(center=(320, 300), radius=10,
rate=file_function(’QPMF_Rot_Sub13.tms’))

domain.forcing_terms.append(hydrograph)

Here,’QPMF_Rot_Sub13.tms’ is assumed to be a NetCDF file in the formattms defining a timeseries for
a hydrograph.

Rainfall ()
Module: shallow_water.shallow_water_domain

This is a general class for implementing rainfall over the domain, possibly restricted to a given circle or polygon.
This class will always modify thestage quantity.

Rainfall is based on the Generalforcing class so the functionality is similar.

The Rainfall class takes as input:

5.5. Forcing Terms 53

•domain : a reference to the domain being evolved

•rate : Total rain rate over the specified domain. Note: Raingauge Data needs to reflect the time step.
For example: if rain gauge is mm read everydt seconds, then the input here is asmm/dt so 10 mm in 5
minutes becomes 10/(5x60) = 0.0333mm/s.

This parameter can be either a constant or a function of time. Positive values indicate rain being added
(or be used for general infiltration), negative values indicate outflow at the specified rate (presumably this
could model evaporation or abstraction).

•center, radius : Optionally restrict forcing to a circle with given center and radius.

•polygon : Optionally restrict forcing to an area enclosed by given polygon.

Example:

catchmentrainfall = Rainfall(rate=file_function(’Q100_2hr_Rain.tms’))
domain.forcing_terms.append(catchmentrainfall)

Here,’Q100_2hr_Rain.tms’ is assumed to be a NetCDF file in the formattms defining a timeseries for
the rainfall.

Culvert_flow ()
Module: culver_flows.culvert_class

This is a general class for implementing flow through a culvert. This class modifies the quantitiesstage,
xmomentum, ymomentum in areas at both ends of the culvert.

The Culvertflow forcing term usesInflow and Generalforcing to update the quantities. The flow drection
is determined on-the-fly so openings are referenced simple as opening0 and opening1 with either being able to
take the role as Inflow and Outflow.

The Culvertflow class takes as input:

•domain : a reference to the domain being evolved

•label : Short text naming the culvert

•description : Text describing it

•end_point0 : Coordinates of one opening

•end_point1 : Coordinates of other opening

•width :

•height :

•diameter :

•manning : Mannings Roughness for Culvert

•invert_level0 : Invert level if not the same as the Elevation on the Domain

•invert_level1 : Invert level if not the same as the Elevation on the Domain

•culvert_routine : Function specifying the calculation of flow based on energy difference between
the two openings (see below)

•number_of_barrels : Number of identical pipes in the culvert. Default == 1.

The user can specify different culvert routines. Hower ANUGA currently provides only one, namely the
boyd_generalised_culvert_model as used in the example below.

Example:

54 Chapter 5. ANUGA v1.0 Public Interface

from anuga.culvert_flows.culvert_class import Culvert_flow
from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model

culvert1 = Culvert_flow(domain,
label=’Culvert No. 1’,
description=’This culvert is a test unit 1.2m Wide by 0.75m High’,
end_point0=[9.0, 2.5],
end_point1=[13.0, 2.5],
width=1.20,height=0.75,
culvert_routine=boyd_generalised_culvert_model,

number_of_barrels=1,
verbose=True)

culvert2 = Culvert_flow(domain,
label=’Culvert No. 2’,
description=’This culvert is a circular test with d=1.2m’,
end_point0=[9.0, 1.5],
end_point1=[30.0, 3.5],
diameter=1.20,
invert_level0=7,
culvert_routine=boyd_generalised_culvert_model,

number_of_barrels=1,
verbose=True)

domain.forcing_terms.append(culvert1)
domain.forcing_terms.append(culvert2)

5.6 Evolution

evolve (yieldstep = None, finaltime = None, duration = None, skipinitial step = False)
Module: abstract_2d_finite_volumes.domain

This function (a method ofdomain) is invoked once all the preliminaries have been completed, and causes the
model to progress through successive steps in its evolution, storing results and outputting statistics whenever
a user-specified periodyieldstep is completed (generally during this period the model will evolve through
several steps internally as the method forces the water speed to be calculated on successive new cells).

The code specified by the user in the block following the evolve statement is only executed once every
yieldstep even though ANUGA typically will take many more internal steps behind the scenes.

The user specifies the total time period over which the evolution is to take place, by specifying values (in
seconds) for eitherduration or finaltime , as well as the interval in seconds after which results are to be
stored and statistics output.

You can includeevolve in a statement of the type:

for t in domain.evolve(yieldstep, finaltime):
<Do something with domain and t>

5.6.1 Diagnostics

5.6. Evolution 55

statistics ()
Module: abstract_2d_finite_volumes.domain

timestepping_statistics ()
Module: abstract_2d_finite_volumes.domain

Returns a string of the following type for each timestep:

Time = 0.9000, delta t in [0.00598964, 0.01177388], steps=12 (12)

Here the numbers insteps=12 (12) indicate the number of steps taken and the number of first-order steps,
respectively.

The optional keyword argumenttrack_speeds=True will generate a histogram of speeds generated by each
triangle. The speeds relate to the size of the timesteps used by ANUGA and this diagnostics may help pinpoint
problem areas where excessive speeds are generated.

boundary_statistics (quantities = None, tags = None)
Module: abstract_2d_finite_volumes.domain

Returns a string of the following type whenquantities = ’stage’ and tags = [’top’,
’bottom’] :

Boundary values at time 0.5000:
top:

stage in [-0.25821218, -0.02499998]
bottom:

stage in [-0.27098821, -0.02499974]

get_quantity (name, location=’vertices’, indices = None)
Module: abstract_2d_finite_volumes.domain

This function returns a Quantity object Q. Access to it’s values should be done through Q.getvalues docu-
mented on Page 57.

set_quantities_to_be_monitored ()
Module: abstract_2d_finite_volumes.domain

Selects quantities and derived quantities for which extrema attained at internal timesteps will be collected.

Information can be tracked in the evolve loop by printingquantity_statistics and collected data will
be stored in the sww file.

Optional parameterspolygon andtime_interval may be specified to restrict the extremum computation.

quantity_statistics ()
Module: abstract_2d_finite_volumes.domain

Reports on extrema attained by selected quantities.

Returns a string of the following type for each timestep:

56 Chapter 5. ANUGA v1.0 Public Interface

Monitored quantities at time 1.0000:
stage-elevation:

values since time = 0.00 in [0.00000000, 0.30000000]
minimum attained at time = 0.00000000, location = (0.16666667, 0.33333333)
maximum attained at time = 0.00000000, location = (0.83333333, 0.16666667)

ymomentum:
values since time = 0.00 in [0.00000000, 0.06241221]
minimum attained at time = 0.00000000, location = (0.33333333, 0.16666667)
maximum attained at time = 0.22472667, location = (0.83333333, 0.66666667)

xmomentum:
values since time = 0.00 in [-0.06062178, 0.47886313]
minimum attained at time = 0.00000000, location = (0.16666667, 0.33333333)
maximum attained at time = 0.35103646, location = (0.83333333, 0.16666667)

The quantities (and derived quantities) listed here must be selected at model initialisation using the method
domain.set_quantities_to_be_monitored .

The optional keyword argumentprecision=’%.4f’ will determine the precision used for floating point
values in the output. This diagnostics helps track extrema attained by the selected quantities at every internal
timestep.

These values are also stored in the sww file for post processing.

get_values (location=’vertices’, indices = None)
Module: abstract_2d_finite_volumes.quantity

Extract values for quantity as a Numeric array.

Inputs:
interpolation_points: List of x, y coordinates where value is

sought (using interpolation). If points
are given, values of location and indices
are ignored. Assume either absolute UTM
coordinates or geospatial data object.

location: Where values are to be stored.
Permissible options are: vertices, edges, centroids
and unique vertices. Default is ’vertices’

The returned values will have the leading dimension equal to length of the indices list or N (all values) if indices
is None.

In case of location == ’centroids’ the dimension of returned values will be a list or a Numerical array of length
N, N being the number of elements.

In case of location == ’vertices’ or ’edges’ the dimension of returned values will be of dimension Nx3

In case of location == ’unique vertices’ the average value at each vertex will be returned and the dimension of
returned values will be a 1d array of length ”number of vertices”

Indices is the set of element ids that the operation applies to.

The values will be stored in elements following their internal ordering.

set_values (location=’vertices’, indices = None)
Module: abstract_2d_finite_volumes.quantity

Assign values to a quantity object. This method works the same way asset_quantity except that it doesn’t
take a quantity name as the first argument. The reason to useset_values is for example to assign values to
a new quantity that has been created but which is not part of the domain’s predefined quantities.

5.6. Evolution 57

The methodset_values is always called byset_quantity behind the scenes.

get_integral ()
Module: abstract_2d_finite_volumes.quantity

Return computed integral over entire domain for this quantity

get_maximum_value (indices = None)
Module: abstract_2d_finite_volumes.quantity

Return maximum value of quantity (on centroids)

Optional argument indices is the set of element ids that the operation applies to. If omitted all elements are
considered.

We do not seek the maximum at vertices as each vertex can have multiple values - one for each triangle sharing
it.

get_maximum_location (indices = None)
Module: abstract_2d_finite_volumes.quantity

Return location of maximum value of quantity (on centroids)

Optional argument indices is the set of element ids that the operation applies to.

We do not seek the maximum at vertices as each vertex can have multiple values - one for each triangle sharing
it.

If there are multiple cells with same maximum value, the first cell encountered in the triangle array is returned.

get_wet_elements (indices=None)
Module: shallow_water.shallow_water_domain

Return indices for elements where h> minimum allowedheight Optional argument indices is the set of element
ids that the operation applies to.

get_maximum_inundation_elevation (indices=None)
Module: shallow_water.shallow_water_domain

Return highest elevation where h> 0.
Optional argument indices is the set of element ids that the operation applies to.

Example to find maximum runup elevation:
z = domain.getmaximuminundationelevation()

get_maximum_inundation_location (indices=None)
Module: shallow_water.shallow_water_domain

Return location (x,y) of highest elevation where h> 0.
Optional argument indices is the set of element ids that the operation applies to.

Example to find maximum runup location:
x, y = domain.getmaximuminundationlocation()

5.7 Queries of SWW model output files

After a model has been run, it is often useful to extract various information from the sww output file (see Section
6.1.3). This is typically more convenient than using the diagnostics described in Section 5.6.1 which rely on the model
running - something that can be very time consuming. The sww files are easy and quick to read and offer much
information about the model results such as runup heights, time histories of selected quantities, flow through cross
sections and much more.

58 Chapter 5. ANUGA v1.0 Public Interface

get_maximum_inundation_elevation (filename, polygon=None, timeinterval=None, verbose=False)
Module: shallow_water.data_manager

Return highest elevation where depth is positive (h > 0)

Example to find maximum runup elevation:
max runup = getmaximuminundationelevation(filename, polygon=None, timeinterval=None, ver-
bose=False)

filename is a NetCDF sww file containing ANUGA model output. Optional arguments polygon and time-
interval restricts the maximum runup calculation to a points that lie within the specified polygon and time
interval.

If no inundation is found within polygon and timeinterval the return value is None signifying ”No Runup” or
”Everything is dry”.

See doc string for general function getmaximuminundationdata for details.

get_maximum_inundation_location (filename, polygon=None, timeinterval=None, verbose=False)
Module: shallow_water.data_manager

Return location (x,y) of highest elevation where depth is positive (h > 0)

Example to find maximum runup location:
max runup location = getmaximuminundationlocation(filename, polygon=None, timeinterval=None, ver-
bose=False)

filename is a NetCDF sww file containing ANUGA model output. Optional arguments polygon and time-
interval restricts the maximum runup calculation to a points that lie within the specified polygon and time
interval.

If no inundation is found within polygon and timeinterval the return value is None signifying ”No Runup” or
”Everything is dry”.

See doc string for general function getmaximuminundationdata for details.

sww2timeseries (swwfiles, gaugefilename, productiondirs, report = None, reportname = None, plotquantity =
None, generatefig = False, surface = None, timemin = None, timemax = None, timethinning
= 1, time unit = None, titleon = None, usecache = False, verbose = False)

Module: anuga.abstract_2d_finite_volumes.util

Return csv files for the location in thegauge_filename and can also return plots of them

See doc string for general function sww2timeseries for details.

get_flow_through_cross_section (filename, crosssection, verbose=False)
Module: shallow_water.data_manager

Obtain flow[m3/s] perpendicular to specified cross section.

Inputs:

•filename: Name of sww file containing ANUGA model output.

•polyline: Representation of desired cross section - it may contain multiple sections allowing for complex
shapes. Assume absolute UTM coordinates.

Output:

•time: All stored times in sww file

•Q: Hydrograph of total flow across given segments for all stored times.

The normal flow is computed for each triangle intersected by the polyline and added up. Multiple segments at
different angles are specified the normal flows may partially cancel each other.

Example to find flow through cross section:

5.7. Queries of SWW model output files 59

cross_section = [[x, 0], [x, width]]
time, Q = get_flow_through_cross_section(filename,

cross_section,
verbose=False)

See doc string for general function getmaximuminundationdata for details.

5.8 Other

domain.create_quantity_from_expression (string)
Handy for creating derived quantities on-the-fly as for example

Depth = domain.create_quantity_from_expression(’stage-elevation’)

exp = ’(xmomentum*xmomentum + ymomentum*ymomentum)**0.5’)
Absolute_momentum = domain.create_quantity_from_expression(exp)

60 Chapter 5. ANUGA v1.0 Public Interface

CHAPTER

SIX

ANUGA V1.0 System Architecture

6.1 File Formats

ANUGA v1.0 makes use of a number of different file formats. The following table lists all these formats, which are
described in more detail in the paragraphs below.

Extension Description
.sww NetCDF format for storing model output with mesh informationf(t,x,y)
.sts NetCDF format for storing model ouputf(t,x,y) without any mesh information
.tms NetCDF format for storing time seriesf(t)
.csv/.txt ASCII format called points csv for storing arbitrary points and associated attributes
.pts NetCDF format for storing arbitrary points and associated attributes
.asc ASCII format of regular DEMs as output from ArcView
.prj Associated ArcView file giving more metadata for.asc format
.ers ERMapper header format of regular DEMs for ArcView
.dem NetCDF representation of regular DEM data
.tsh ASCII format for storing meshes and associated boundary and region info
.msh NetCDF format for storing meshes and associated boundary and region info
.nc Native ferret NetCDF format
.geo Houdinis ASCII geometry format (?)

The above table shows the file extensions used to identify the formats of files. However, typically, in referring to a
format we capitalise the extension and omit the initial full stop—thus, we refer, for example, to ‘SWW files’ or ‘PRJ
files’.

A typical dataflow can be described as follows:

6.1.1 Manually Created Files

ASC, PRJ Digital elevation models (gridded)
NC Model outputs for use as boundary conditions (e.g. from MOST)

61

6.1.2 Automatically Created Files

ASC, PRJ→ DEM → PTS Convert DEMs to native.pts file
NC→ SWW Convert MOST boundary files to boundary.sww
PTS + TSH→ TSH with elevation Least squares fit
TSH→ SWW Convert TSH to.sww -viewable usinganimate
TSH + Boundary SWW→ SWW Simulation usingANUGAv1.0
Polygonal mesh outline→ TSH or MSH

6.1.3 SWW, STS and TMS Formats

The SWW, STS and TMS formats are all NetCDF formats, and are of key importance forANUGA v1.0 .

An SWW file is used for storingANUGA v1.0 output and therefore pertains to a set of points and a set of times at
which a model is evaluated. It contains, in addition to dimension information, the following variables:

• x andy : coordinates of the points, represented as Numeric arrays

• elevation , a Numeric array storing bed-elevations

• volumes , a list specifying the points at the vertices of each of the triangles

• time , a Numeric array containing times for model evaluation

The contents of an SWW file may be viewed using the anuga vieweranimate , which creates an on-screen geometric
representation. See section A.2 (page 76) in Appendix A for more onanimate .

Alternatively, there are tools, such asncdump, that allow you to convert an NetCDF file into a readable format such
as the Class Definition Language (CDL). The following is an excerpt from a CDL representation of the output file
‘ runup.sww’ generated from running the simple example ‘runup.py’ of Chapter 4:

netcdf bedslope {
dimensions:

number_of_volumes = 200 ;
number_of_vertices = 3 ;
number_of_points = 121 ;
number_of_timesteps = UNLIMITED ; // (41 currently)

variables:
float x(number_of_points) ;
float y(number_of_points) ;
float elevation(number_of_points) ;
float z(number_of_points) ;
int volumes(number_of_volumes, number_of_vertices) ;
float time(number_of_timesteps) ;
float stage(number_of_timesteps, number_of_points) ;
float xmomentum(number_of_timesteps, number_of_points) ;
float ymomentum(number_of_timesteps, number_of_points) ;

// global attributes:
:institution = "Geoscience Australia" ;
:description = "Output from pyvolution suitable for plotting" ;
:smoothing = "Yes" ;
:order = 1 ;
:starttime = 0 ;
:xllcorner = 0. ;
:yllcorner = 0. ;

62 Chapter 6. ANUGA v1.0 System Architecture

:zone = 56 ;
:false_easting = 500000 ;
:false_northing = 10000000 ;
:datum = "wgs84" ;
:projection = "UTM" ;
:units = "m" ;

data:

x = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1,
0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2,
0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.4, 0.4, 0.4,
0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5,
0.5, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6, 0.6,
0.6, 0.6, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.7, 0.8,
0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9, 0.9,
0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 0.9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ;

y = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1,
0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 1, 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 ;

elevation = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.05, -0.05, -0.05, -0.05,
-0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.1, -0.1, -0.1, -0.1,
-0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.15, -0.15, -0.15, -0.15,
-0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.2, -0.2, -0.2, -0.2,
-0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.25, -0.25, -0.25, -0.25,
-0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.3, -0.3, -0.3, -0.3,
-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.35, -0.35, -0.35, -0.35,
-0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.4, -0.4, -0.4, -0.4,
-0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.45, -0.45, -0.45, -0.45,
-0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5, -0.5 ;

z = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.05, -0.05, -0.05, -0.05, -0.05,
-0.05, -0.05, -0.05, -0.05, -0.05, -0.05, -0.1, -0.1, -0.1, -0.1, -0.1,
-0.1, -0.1, -0.1, -0.1, -0.1, -0.1, -0.15, -0.15, -0.15, -0.15, -0.15,
-0.15, -0.15, -0.15, -0.15, -0.15, -0.15, -0.2, -0.2, -0.2, -0.2, -0.2,
-0.2, -0.2, -0.2, -0.2, -0.2, -0.2, -0.25, -0.25, -0.25, -0.25, -0.25,
-0.25, -0.25, -0.25, -0.25, -0.25, -0.25, -0.3, -0.3, -0.3, -0.3, -0.3,
-0.3, -0.3, -0.3, -0.3, -0.3, -0.3, -0.35, -0.35, -0.35, -0.35, -0.35,
-0.35, -0.35, -0.35, -0.35, -0.35, -0.35, -0.4, -0.4, -0.4, -0.4, -0.4,
-0.4, -0.4, -0.4, -0.4, -0.4, -0.4, -0.45, -0.45, -0.45, -0.45, -0.45,
-0.45, -0.45, -0.45, -0.45, -0.45, -0.45, -0.5, -0.5, -0.5, -0.5, -0.5,
-0.5, -0.5, -0.5, -0.5, -0.5, -0.5 ;

volumes =
11, 12, 0,
1, 0, 12,
12, 13, 1,
2, 1, 13,
13, 14, 2,
3, 2, 14,
14, 15, 3,
4, 3, 15,

6.1. File Formats 63

...,
109, 108, 120 ;

time = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,
2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4 ;

stage =
0.025, 0.02777778, 0.02777778, 0.02777778, 0.02777778, 0.02777778,

0.02777778, 0.02777778, 0.02777778, 0.02777778, 0.03333334, -0.01111111,
5.782412e-019, 5.782412e-019, 5.782412e-019, 5.782412e-019,
5.782412e-019, 5.782412e-019, 5.782412e-019, 5.782412e-019,
...
-0.1654055, -0.1558442, -0.1504084 ;

xmomentum =
_, _, _, _, _, ,... _, _ ;

ymomentum =
_, _, _, _, _, ,... _, _ ;

}

The SWW format is used not only for output but also serves as input for functions such asfile_boundary and
file_function , described in Chapter 5.

An STS file is used for storing a set of points and and associated set of times. It contains, in addition to dimension
information, the following variables:

• x andy : coordinates of the points, represented as Numeric arrays

• permutation : Original indices of the points as specified by the optionalordering_file (see the function
urs2sts in Section 6.1.9).

• elevation , a Numeric array storing bed-elevations

• time , a Numeric array containing times for model evaluation

The only difference between the STS format and the SWW format is the former does not contain a list specifying the
points at the vertices of each of the triangles (volumes). Consequenlty information (arrays) stored within an STS file
such aselevation can be accessed in exactly the same way as it would be extraced from an SWW file.

A TMS file is used to store time series data that is independent of position.

6.1.4 Mesh File Formats

A mesh file is a file that has a specific format suited to triangular meshes and their outlines. A mesh file can have one
of two formats: it can be either a TSH file, which is an ASCII file, or an MSH file, which is a NetCDF file. A mesh
file can be generated from the functioncreate_mesh_from_regions (see Section 5.1) and used to initialise a
domain.

A mesh file can define the outline of the mesh—the vertices and line segments that enclose the region in which the
mesh is created—and the triangular mesh itself, which is specified by listing the triangles and their vertices, and the
segments, which are those sides of the triangles that are associated with boundary conditions.

In addition, a mesh file may contain ‘holes’ and/or ‘regions’. A hole represents an area where no mesh is to be created,
while a region is a labelled area used for defining properties of a mesh, such as friction values. A hole or region is
specified by a point and bounded by a number of segments that enclose that point.

A mesh file can also contain a georeference, which describes an offset to be applied tox andy values — e.g. to the
vertices.

64 Chapter 6. ANUGA v1.0 System Architecture

6.1.5 Formats for Storing Arbitrary Points and Attributes

A CSV/TXT file is used to store data representing arbitrary numerical attributes associated with a set of points.

The format for an CSV/TXT file is:

first line: [column names]
other lines:[x value], [y value], [attributes]

for example:
x, y, elevation, friction
0.6, 0.7, 4.9, 0.3
1.9, 2.8, 5, 0.3
2.7, 2.4, 5.2, 0.3

The delimiter is a comma. The first two columns are assumed to be x, y coordinates.

A PTS file is a NetCDF representation of the data held in an points CSV file. If the data is associated with a set ofN
points, then the data is stored using anN × 2 Numeric array of float variables for the points and anN × 1 Numeric
array for each attribute.

6.1.6 ArcView Formats

Files of the three formats ASC, PRJ and ERS are all associated with data from ArcView.

An ASC file is an ASCII representation of DEM output from ArcView. It contains a header with the following format:

ncols 753
nrows 766
xllcorner 314036.58727982
yllcorner 6224951.2960092
cellsize 100
NODATA_value -9999

The remainder of the file contains the elevation data for each grid point in the grid defined by the above information.

A PRJ file is an ArcView file used in conjunction with an ASC file to represent metadata for a DEM.

6.1.7 DEM Format

A DEM file in ANUGA v1.0 is a NetCDF representation of regular DEM data.

6.1.8 Other Formats

6.1.9 Basic File Conversions

sww2dem(basenamein, basenameout = None, quantity = None, timestep = None, reduction = None, cellsize = 10,
numberof decimalplaces = None, NODATAvalue = -9999, eastingmin = None, eastingmax = None,
northing min = None, northingmax = None, expandsearch = False, verbose = False, origin = None,
datum = ’WGS84’, format = ’ers’)

Module: shallow_water.data_manager

Takes data from an SWW filebasename_in and converts it to DEM format (ASC or ERS) of a desired grid
sizecellsize in metres. The user can select how many the decimal places the output data can be written to
usingnumber_of_decimal_places , with the default being 3. The easting and northing values are used if

6.1. File Formats 65

the user wished to determine the output within a specified rectangular area. Thereduction input refers to a
function to reduce the quantities over all time step of the SWW file, example, maximum.

dem2pts (basenamein, basenameout=None, eastingmin=None, eastingmax=None, northingmin=None, nor-
thing max=None, usecache=False, verbose=False)

Module: shallow_water.data_manager

Takes DEM data (a NetCDF file representation of data from a regular Digital Elevation Model) and converts it
to PTS format.

urs2sts (basenamein, basenameout=None, weights=None, verbose=False, origin=None,meanstage=0.0, zs-
cale=1.0, orderingfilename=None)

Module: shallow_water.data_manager

Takes urs data in (timeseries data in mux2 format) and converts it to STS format. The optional filename
ordering_filename specifies the permutation of indices of points to select along with their longitudes and
latitudes. This permutation will also be stored in the STS file. If absent, all points are taken and the permutation
will be trivial, i.e. 0, 1, . . . , N − 1, whereN is the total number of points stored.

csv2building_polygons (file name, floorheight=3)
Module: shallow_water.data_manager

Convert CSV files of the form:

easting,northing,id,floors
422664.22,870785.46,2,0
422672.48,870780.14,2,0
422668.17,870772.62,2,0
422660.35,870777.17,2,0
422664.22,870785.46,2,0
422661.30,871215.06,3,1
422667.50,871215.70,3,1
422668.30,871204.86,3,1
422662.21,871204.33,3,1
422661.30,871215.06,3,1

to a dictionary of polygons with id as key. The associated number of floors are converted to m above MSL and
returned as a separate dictionary also keyed by id.

Optional parameter floorheight is the height of each building story.

These can e.g. be converted to a Polygonfunction for use with addquantity as shown on page 49.

66 Chapter 6. ANUGA v1.0 System Architecture

CHAPTER

SEVEN

ANUGA V1.0 mathematical background

7.1 Introduction

This chapter outlines the mathematics underpinningANUGA v1.0 .

7.2 Model

The shallow water wave equations are a system of differential conservation equations which describe the flow of a thin
layer of fluid over terrain. The form of the equations are:

∂U
∂t

+
∂E
∂x

+
∂G
∂y

= S

whereU =
[

h uh vh
]T

is the vector of conserved quantities; water depthh, x-momentumuh andy-momentum
vh. Other quantities entering the system are bed elevationz and stage (absolute water level)w, where the relation
w = z + h holds true at all times. The fluxes in thex andy directions,E andG are given by

E =

 uh
u2h + gh2/2
uvh

 andG =

 vh
vuh
v2h + gh2/2


and the source term (which includes gravity and friction) is given by

S =

 0
−gh(zx + Sfx)
−gh(zy + Sfy)


whereSf is the bed friction. The friction term is modelled using Manning’s resistance law

Sfx =
uη2

√
u2 + v2

h4/3
andSfy =

vη2
√

u2 + v2

h4/3

in which η is the Manning resistance coefficient. The model does not currently include consideration of kinematic
viscosity or dispersion.

As demonstrated in our papers, [ZR1999, nielsen2005] these equations and their implementation inANUGA v1.0
provide a reliable model of general flows associated with inundation such as dam breaks and tsunamis.

7.3 Finite Volume Method

67

Figure 7.1: Triangular mesh used in our finite volume method. Conserved quantitiesh, uh andvh are associated with
the centroid of each triangular cell.

We use a finite-volume method for solving the shallow water wave equations [ZR1999]. The study area is represented
by a mesh of triangular cells as in Figure 7.1 in which the conserved quantities of water depthh, and horizontal
momentum(uh, vh), in each volume are to be determined. The size of the triangles may be varied within the mesh to
allow greater resolution in regions of particular interest.

The equations constituting the finite-volume method are obtained by integrating the differential conservation equations
over each triangular cell of the mesh. Introducing some notation we usei to refer to theith triangular cellTi, andN (i)
to the set of indices referring to the cells neighbouring theith cell. ThenAi is the area of theith triangular cell andlij
is the length of the edge between theith andjth cells.

By applying the divergence theorem we obtain for each volume an equation which describes the rate of change of the
average of the conserved quantities within each cell, in terms of the fluxes across the edges of the cells and the effect
of the source terms. In particular, rate equations associated with each cell have the form

dUi

dt
+

1
Ai

∑
j∈N (i)

Hij lij = Si

where

• Ui the vector of conserved quantities averaged over theith cell,

• Si is the source term associated with theith cell, and

• Hij is the outward normal flux of material across theij th edge.

The fluxHij is evaluated using a numerical flux functionH(·, ·; ·) which is consistent with the shallow water flux in
the sense that for all conservation vectorsU and normal vectorsn

H(U,U; n) = E(U)n1 + G(U)n2.

Then
Hij = H(Ui(mij),Uj(mij);nij)

wheremij is the midpoint of theij th edge andnij is the outward pointing normal, with respect to theith cell, on the
ij th edge. The functionUi(x) for x ∈ Ti is obtained from the vectorUk of conserved average values for theith and
neighbouring cells.

68 Chapter 7. ANUGA v1.0 mathematical background

Figure 7.2: From the values of the conserved quantities at the centroid of the cell and its neighbouring cells, a discon-
tinuous piecewise linear reconstruction of the conserved quantities is obtained.

We use a second order reconstruction to produce a piece-wise linear function construction of the conserved quantities
for all x ∈ Ti for each cell (see Figure 7.2. This function is allowed to be discontinuous across the edges of the cells,
but the slope of this function is limited to avoid artificially introduced oscillations.

Godunov’s method (see [Toro1999]) involves calculating the numerical flux functionH(·, ·; ·) by exactly solving the
corresponding one dimensional Riemann problem normal to the edge. We use the central-upwind scheme of [1] to
calculate an approximation of the flux across each edge.

In the computations presented in this paper we use an explicit Euler time stepping method with variable timestepping
adapted to the observed CFL condition:

∆t = min
k,i=[0,1,2]

min
(

rk

vk,i
,
rnk,i

vk,i

)
(7.1)

whererk is the radius of thek’th triangle andvk,i is the maximal velocity across edge joining trianglek and it’s i’th
neighbour, trianglenk,i, as calculated by the numerical flux function using the central upwind scheme of [1]. The
symbolrnk,i

denotes the radius of thei’th neighbour of trianglek. The radii are calculated as radii of the inscribed
circles of each triangle.

7.4 Flux limiting

The shallow water equations are solved numerically using a finite volume method on unstructured triangular grid. The
upwind central scheme due to Kurganov and Petrova is used as an approximate Riemann solver for the computation
of inviscid flux functions. This makes it possible to handle discontinuous solutions.

To alleviate the problems associated with numerical instabilities due to small water depths near a wet/dry boundary
we employ a new flux limiter that ensures that unphysical fluxes are never encounted.

Let u andv be the velocity components in thex andy direction,w the absolute water level (stage) andz the bed
elevation. The latter are assumed to be relative to the same height datum. The conserved quantities tracked by
ANUGA are momentum in thex-direction (µ = uh), momentum in they-direction (ν = vh) and depth (h = w − z).

The flux calculation requires access to the velocity vector(u, v) where each component is obtained asu = µ/h and
v = ν/h respectively. In the presence of very small water depths, these calculations become numerically unreliable
and will typically cause unphysical speeds.

7.4. Flux limiting 69

We have employed a flux limiter which replaces the calculations above with the limited approximations.

û =
µ

h + h0/h
, v̂ =

ν

h + h0/h
, (7.2)

whereh0 is a regularisation parameter that controls the minimal magnitude of the denominator. Taking the limits we
have forû

lim
h→0

û = lim
h→0

µ

h + h0/h
= 0

and
lim

h→∞
û = lim

h→∞

µ

h + h0/h
=

µ

h
= u

with similar results for̂v.

The maximal value of̂u is attained whenh + h0/h is minimal or (by differentiating the denominator)

1− h0/h2 = 0

or
h0 = h2

ANUGA has a global parameterH0 that controls the minimal depth which is considered in the various equations. This
parameter is typically set to10−3. Setting

h0 = H2
0

provides a reasonable balance between accurracy and stability. In fact, settingh = H0 will scale the predicted speed
by a factor of0.5: [

µ

h + h0/h

]
h=H0

=
µ

2H0

In general, for multiples of the minimal depthNH0 one obtains[
µ

h + h0/h

]
h=NH0

=
µ

H0(1 + 1/N2)

which converges quadratically to the true value with the multiple N.

7.5 Slope limiting

A multidimensional slope-limiting technique is employed to achieve second-order spatial accuracy and to prevent
spurious oscillations. This is using the MinMod limiter and is documented elsewhere.

However close to the bed, the limiter must ensure that no negative depths occur. On the other hand, in deep water, the
bed topography should be ignored for the purpose of the limiter.

Let w, z, h be the stage, bed elevation and depth at the centroid and letwi, zi, hi be the stage, bed elevation and depth
at vertexi. Define the minimal depth across all vertices ashmin as

hmin = min
i

hi

Let w̃i be the stage obtained from a gradient limiter limiting on stage only. The corresponding depth is then defined as

h̃i = w̃i − zi

We would use this limiter in deep water which we will define (somewhat boldly) as

hmin ≥ ε

70 Chapter 7. ANUGA v1.0 mathematical background

Similarly, let w̄i be the stage obtained from a gradient limiter limiting on depth respecting the bed slope. The corre-
sponding depth is defined as

h̄i = w̄i − zi

We introduce the concept of a balanced stagewi which is obtained as the linear combination

wi = αw̃i + (1− α)w̄i

or
wi = zi + αh̃i + (1− α)h̄i

whereα ∈ [0, 1].

Sincew̃i is obtained in ’deep’ water where the bedslope is ignored we have immediately that

α = 1 for hmin ≥ ε

If hmin < ε we want to use the ’shallow’ limiter just enough that no negative depths occur. Formally, we will require
that

αh̃i + (1− α)h̄i > ε,∀i

or
α(h̃i − h̄i) > ε− h̄i,∀i (7.3)

There are two cases:

1. h̄i ≤ h̃i: The deep water (limited using stage) vertex is at least as far away from the bed than the shallow water
(limited using depth). In this case we won’t need any contribution fromh̄i and can accept anyα.

E.g.α = 1 reduces Equation 7.3 to
h̃i > ε

whereasα = 0 yields
h̄i > ε

all well and good.

2. h̄i > h̃i: In this case the the deep water vertex is closer to the bed than the shallow water vertex or even below
the bed. In this case we need to find anα that will ensure a positive depth. Rearranging Equation 7.3 and solving
for α one obtains the bound

α <
ε− h̄i

h̃i − h̄i

,∀i

Ensuring Equation 7.3 holds true for all vertices one arrives at the definition

α = min
i

h̄i − ε

h̄i − h̃i

which will guarantee that no vertex ’cuts’ through the bed. Finally, shouldh̄i < ε and thereforeα < 0, we suggest
settingα = 0 and similarly cappingα at 1 just in case.

7.5. Slope limiting 71

72

CHAPTER

EIGHT

Basic ANUGA v1.0 Assumptions

8.1 Time

Physical model time cannot be earlier than 1 Jan 1970 00:00:00. If one wished to recreate scenarios prior to that date
it must be done using some relative time (e.g. 0).

The ANUGA domain has an attributestarttime which is used in cases where the simulation should be started
later than the beginning of some input data such as those obtained from boundaries or forcing functions (hydrographs,
file boundary etc)

Thefile_boundary may adjust domain.startime in case the input data does not itself start until a later time.

8.2 Spatial data

8.2.1 Projection

All spatial data relates to the WGS84 datum (or GDA94) and assumes a projection into UTM with false easting of
500000 and false northing of 1000000 on the southern hemisphere (0 on the northern hemisphere). All locations must
consequently be specified in Cartesian coordinates (eastings, northings) or (x,y) where the unit is metres. Alterna-
tive projections can be assumed, but ANUGA does have the concept of a UTM zone that must be the same for all
coordinates in the model.

8.2.2 Internal coordinates

It is important to realise that ANUGA for numerical precision uses coordinates that are relative to the lower left node of
the rectangle containing the mesh (xmin, ymin). This origin is referred to internally as xllcorner, yllcorner following
the ESRI ascii grid notation. The sww file format also includes xllcorner, yllcorner and any coordinate in the file
should be adjusted by adding this origin. See Section 6.1.3.

Throughout the ANUGA interface functions have optional boolean argumentsabsolute which control whether
spatial data received is using the internal representation (absolute=False) or the user coordinate set (absolute=True).
See e.g.get_vertex_coordinates on 47.

DEMs, meshes and boundary conditions can have different origins. However, the internal representation in ANUGA
will use the origin of the mesh.

73

8.2.3 Polygons

When generating a mesh it is assumed that polygons do not cross. Having polygons tht cross can cause the mesh
generation to fail or bad meshes being produced.

74 Chapter 8. Basic ANUGA v1.0 Assumptions

APPENDIX

A

Supporting Tools

This section describes a number of supporting tools, supplied withANUGA v1.0 , that offer a variety of types of
functionality and enhance the basic capabilities ofANUGA v1.0 .

A.1 caching

Thecache function is used to provide supervised caching of function results. A Python function call of the form

result = func(arg1,...,argn)

can be replaced by

from caching import cache
result = cache(func,(arg1,...,argn))

which returns the same output but reuses cached results if the function has been computed previously in the same
context.result and the arguments can be simple types, tuples, list, dictionaries or objects, but not unhashable types
such as functions or open file objects. The functionfunc may be a member function of an object or a module.

This type of caching is particularly useful for computationally intensive functions with few frequently used combina-
tions of input arguments. Note that if the inputs or output are very large caching may not save time because disc access
may dominate the execution time.

If the function definition changes after a result has been cached, this will be detected by examining the functions
bytecode (co_code, co_consts, func_defaults, co_argcount) and the function will be recom-
puted. However, caching will not detect changes in modules used byfunc . In this case cache must be cleared
manually.

Options are set by means of the functionset_option(key, value) , wherekey is a key associated with a
Python dictionaryoptions . This dictionary stores settings such as the name of the directory used, the maximum
number of cached files allowed, and so on.

Thecache function allows the user also to specify a list of dependent files. If any of these have been changed, the
function is recomputed and the results stored again.

75

USAGE:

result = cache(func, args, kwargs, dependencies, cachedir, verbose,
compression, evaluate, test, return_filename)

A.2 ANUGA viewer - animate

The output generated byANUGA v1.0 may be viewed by means of the visualisation toolanimate , which takes the
SWWfile output byANUGA v1.0 and creates a visual representation of the data. Examples may be seen in Figures 4.1
and 4.2. To view anSWWfile with animate in the Windows environment, you can simply drag the icon representing
the file over an icon on the desktop for theanimate executable file (or a shortcut to it), or set up a file association
to make files with the extension.sww open withanimate . Alternatively, you can operateanimate from the
command line, in both Windows and Linux environments.

On successful operation, you will see an interactive moving-picture display. You can use keys and the mouse to slow
down, speed up or stop the display, change the viewing position or carry out a number of other simple operations.
Help is also displayed when you press theh key.

The main keys operating the interactive screen are:

w toggle wireframe
space bar start/stop
up/down arrows increase/decrease speed
left/right arrows direction in time(when running)

step through simulation(when stopped)
left mouse button rotate
middle mouse button pan
right mouse button zoom

The following table describes how to operate animate from the command line:

Usage:animate [options] swwfile ...
Options:

--display <type> MONITOR | POWERWALL | REALITY_CENTER |
HEAD_MOUNTED_DISPLAY

--rgba Request a RGBA colour buffer visual
--stencil Request a stencil buffer visual
--stereo Use default stereo mode which isANAGLYPHICif not

overridden by environmental variable
--stereo <mode> ANAGLYPHIC | QUAD_BUFFER | HORIZONTAL_SPLIT |

VERTICAL_SPLIT | LEFT_EYE | RIGHT_EYE |
ON | OFF

-alphamax <float 0-1> Maximum transparency clamp value
-alphamin <float 0-1> Transparency value athmin

-cullangle <float angle 0-90> Cull triangles steeper than this value
-help Display this information
-hmax <float> Height above which transparency is set toalphamax

-hmin <float> Height below which transparency is set to zero

-lightpos <float>,<float>,<float> x, y, z of bedslope directional light (z is up, default is overhead)

76 Appendix A. Supporting Tools

-loop Repeated (looped) playback of.swm files

-movie <dirname> Save numbered images to named directory and quit
-nosky Omit background sky
-scale <float> Vertical scale factor
-texture <file> Image to use for bedslope topography
-tps <rate> Timesteps per second
-version Revision number and creation (not compile) date

A.3 utilities/polygons

classPolygon_function (regions, default=0.0, georeference=None)
Module: utilities.polygon

Creates a callable object that returns one of a specified list of values when evaluated at a pointx, y , depending
on which polygon, from a specified list of polygons, the point belongs to. The parameterregions is a list of
pairs(P, v) , where eachP is a polygon and eachv is either a constant value or a function of coordinatesx
andy , specifying the return value for a point insideP. The optional parameterdefault may be used to specify
a value (or a function) for a point not lying inside any of the specified polygons. When a point lies in more than
one polygon, the return value is taken to be the value for whichever of these polygon appears later in the list.
The optional parameter georeference refers to the status of points that are passed into the function. Typically
they will be relative to some origin. In ANUGA, a typical call will take the form:

set_quantity(’elevation’,
Polygon_function([(P1, v1), (P2, v2)],

default=v3,
geo_reference=domain.geo_reference))

read_polygon (filename)
Module: utilities.polygon

Reads the specified file and returns a polygon. Each line of the file must contain exactly two numbers, separated
by a comma, which are interpreted as coordinates of one vertex of the polygon.

populate_polygon (polygon, numberof points, seed = None, exclude = None)
Module: utilities.polygon

Populates the interior of the specified polygon with the specified number of points, selected by means of a
uniform distribution function.

point_in_polygon (polygon, delta=1e-8)
Module: utilities.polygon

Returns a point inside the specified polygon and close to the edge. The distance between the returned point and
the nearest point of the polygon is less than

√
2 times the second argumentdelta , which is taken as10−8 by

default.

inside_polygon (points, polygon, closed = True, verbose = False)
Module: utilities.polygon

Used to test whether the members of a list of points are inside the specified polygon. Returns a Numeric array
comprising the indices of the points in the list that lie inside the polygon. (If none of the points are inside,
returnszeros((0,), ’l’) .) Points on the edges of the polygon are regarded as inside ifclosed is set to
True or omitted; otherwise they are regarded as outside.

outside_polygon (points, polygon, closed = True, verbose = False)
Module: utilities.polygon

Exactly like inside_polygon , but with the words ‘inside’ and ‘outside’ interchanged.

A.3. utilities/polygons 77

is_inside_polygon (point, polygon, closed=True, verbose=False)
Module: utilities.polygon

ReturnsTrue if point is insidepolygon or False otherwise. Points on the edges of the polygon are
regarded as inside ifclosed is set toTrue or omitted; otherwise they are regarded as outside.

is_outside_polygon (point, polygon, closed=True, verbose=False)
Module: utilities.polygon

Exactly like is_outside_polygon , but with the words ‘inside’ and ‘outside’ interchanged.

point_on_line (x, y, x0, y0, x1, y1)
Module: utilities.polygon

ReturnsTrue or False , depending on whether the point with coordinatesx, y is on the line passing through
the points with coordinatesx0, y0 andx1, y1 (extended if necessary at either end).

separate_points_by_polygon (points, polygon, closed = True, verbose = False)
separate_points_by_polygon Module: utilities.polygon

polygon_area (polygon)
Module: utilities.polygon

Returns area of arbitrary polygon (reference http://mathworld.wolfram.com/PolygonArea.html)

plot_polygons (polygons, style, figname, verbose = False)
Module: utilities.polygon

Plots each polygon contained in input polygon list, e.g.polygons = [poly1, poly2, poly3] where
poly1 = [[x11,y11],[x12,y12],[x13,y13]] etc. Each polygon can be closed for plotting pur-
poses by assigning the style type to each polygon in the list, e.g.style = [’line’,’line’,’line’] .
The default will be a line type whenstyle = None . The subsequent plot will be saved tofigname or
defaulted totest_image.png . The function returns a list containing the minimum and maximum ofx and
y , i.e. [x_min, x_max, y_min, y_max] .

A.4 coordinate transforms

A.5 geospatial data

This describes a class that represents arbitrary point data in UTM coordinates along with named attribute values.

classGeospatial_data (data points = None, attributes = None, georeference = None, defaultattribute name =
None, filename = None)

Module: geospatial_data

This class is used to store a set of data points and associated attributes, allowing these to be manipulated by
methods defined for the class.

The data points are specified either by reading them from a NetCDF or CSV file, identified through the parameter
file_name , or by providing theirx - andy -coordinates in metres, either as a sequence of 2-tuples of floats
or as anM × 2 Numeric array of floats, whereM is the number of points. Coordinates are interpreted relative
to the origin specified by the objectgeo_reference , which contains data indicating the UTM zone, easting
and northing. Ifgeo_reference is not specified, a default is used.

Attributes are specified through the parameterattributes , set either to a list or array of lengthM or to a
dictionary whose keys are the attribute names and whose values are lists or arrays of lengthM . One of the
attributes may be specified as the default attribute, by assigning its name todefault_attribute_name . If
no value is specified, the default attribute is taken to be the first one.

Note that the Geospatialdata object currently reads entire datasets into memory i.e. no memomry blocking takes
place. For this we refer to the setquantity method which will read .pts and .csv files intoANUGA v1.0 using
memory blocking allowing large files to be used.

78 Appendix A. Supporting Tools

import_points_file (delimiter = None, verbose = False)

export_points_file (ofile, absolute=False)

get_data_points (absolute = True, aslat long = False)
If as_lat_long isTrue the point information returned will be in Latitudes and Longitudes.

set_attributes (attributes)

get_attributes (attribute name = None)

get_all_attributes ()

set_default_attribute_name (default attribute name)

set_geo_reference (geo reference)

add ()

clip ()
Clip geospatial data by a polygon

Inputs arepolygon which is either a list of points, an Nx2 array or a Geospatial data object and
closed (optional) which determines whether points on boundary should be regarded as belonging to the poly-
gon (closed=True) or not (closed=False). Default isclosed=True .

Returns new Geospatial data object representing points inside specified polygon.

clip_outside ()
Clip geospatial data by a polygon

Inputs arepolygon which is either a list of points, an Nx2 array or a Geospatial data object and
closed (optional) which determines whether points on boundary should be regarded as belonging to the poly-
gon (closed=True) or not (closed=False). Default isclosed=True .

Returns new Geospatial data object representing pointsoutside specified polygon.

split (factor=0.5, seednum=None, verbose=False)
Returns two geospatialdata object, first is the size of the ’factor’ smaller the original and the second is the
remainder. The two new object are disjoin set of each other.

Points of the two new geospatialdata object are selected RANDOMLY.

Input - the (factor) which to split the object, if 0.1 then 10together object will be returned

Output - two geospatialdata objects that are disjoint sets of the original

find_optimal_smoothing_parameter (data file, alphalist=None, meshfile=None, boundarypoly=None,
meshresolution=100000, northboundary=None, south-
boundary=None, eastboundary=None, westboundary=None,
plot name=’all alphas’, split factor=0.1, seednum=None,
cache=False, verbose=False)

Removes a small random sample of points from ’datafile’. Creates models from resulting points in ’datafile’
with different alpha values from ’alphalist’ and cross validates the predicted value to the previously removed
point data. Returns the alpha value which has the smallest covariance.

datafile: must not contain points outside the boundaries defined and it either a pts, txt or csv file.

alphalist: the alpha values to test in a single list

meshfile: name of the created mesh file or if passed in will read it. NOTE, if there is a mesh file meshresolution,
north boundary, south... etc will be ignored.

meshresolution: the maximum area size for a triangle

north boundary... westboundary: the value of the boundary

plot name: the name for the plot contain the results

seednum: the seed to the random number generator

A.5. geospatial data 79

USAGE: convariancevalue, alpha = findoptimal smoothingparameter(datafile=fileName, alphalist=[0.0001,
0.01, 1], meshfile=None, meshresolution=3, northboundary=5, southboundary=-5, eastboundary=5, west-
boundary=-5, plotname=’allalphas’, seednum=100000, verbose=False)

OUTPUT: returns the minumum normalised covalance calculate AND the alpha that created it. PLUS writes a
plot of the results

NOTE: code will not work if the datafile extent is greater than the boundarypolygon or any of the boundaries,
eg northboundary...westboundary

A.6 Graphical Mesh Generator GUI

The programgraphical_mesh_generator.py in the pmesh module allows the user to set up the mesh of the
problem interactively. It can be used to build the outline of a mesh or to visualise a mesh automatically generated.

Graphical Mesh Generator will let the user select various modes. The current allowable modes are vertex, segment,
hole or region. The mode describes what sort of object is added or selected in response to mouse clicks. When
changing modes any prior selected objects become deselected.

In general the left mouse button will add an object and the right mouse button will select an object. A selected object
can de deleted by pressing the the middle mouse button (scroll bar).

A.7 alpha shape

Alpha shapesare used to generate close-fitting boundaries around sets of points. The alpha shape algorithm produces
a shape that approximates to the ‘shape formed by the points’—or the shape that would be seen by viewing the points
from a coarse enough resolution. For the simplest types of point sets, the alpha shape reduces to the more precise
notion of the convex hull. However, for many sets of points the convex hull does not provide a close fit and the alpha
shape usually fits more closely to the original point set, offering a better approximation to the shape being sought.

In ANUGA v1.0 , an alpha shape is used to generate a polygonal boundary around a set of points before mesh
generation. The algorithm uses a parameterα that can be adjusted to make the resultant shape resemble the shape
suggested by intuition more closely. An alpha shape can serve as an initial boundary approximation that the user can
adjust as needed.

The following paragraphs describe the class used to model an alpha shape and some of the important methods and
attributes associated with instances of this class.

classAlpha_Shape (points, alpha = None)
Module: alpha_shape

To instantiate this class the user supplies the points from which the alpha shape is to be created (in the form of a
list of 2-tuples[[x1, y1],[x2, y2] . . .] , assigned to the parameterpoints) and, optionally, a value for
the parameteralpha . The alpha shape is then computed and the user can then retrieve details of the boundary
through the attributes defined for the class.

alpha_shape_via_files (point file, boundaryfile, alpha= None)
Module: alpha_shape

This function reads points from the specified point filepoint_file , computes the associated alpha shape
(either using the specified value foralpha or, if no value is specified, automatically setting it to an optimal
value) and outputs the boundary to a file namedboundary_file . This output file lists the coordinatesx, y
of each point in the boundary, using one line per point.

set_boundary_type (self,rawboundary=True, removeholes=False, smoothindents=False, expand-
pinch=False, boundarypoints fraction=0.2)

Module: alpha_shape , Class:Alpha_Shape

80 Appendix A. Supporting Tools

This function sets flags that govern the operation of the algorithm that computes the boundary, as follows:

raw_boundary = True returns raw boundary, i.e. the regular edges of the alpha shape.
remove_holes = True removes small holes (‘small’ is defined byboundary_points_fraction)
smooth_indents = True removes sharp triangular indents in boundary
expand_pinch = True tests for pinch-off and corrects—preventing a boundary vertex from having more
than two edges.

get_boundary ()
Module: alpha_shape , Class:Alpha_Shape

Returns a list of tuples representing the boundary of the alpha shape. Each tuple represents a segment in the
boundary by providing the indices of its two endpoints.

write_boundary (file name)
Module: alpha_shape , Class:Alpha_Shape

Writes the list of 2-tuples returned byget_boundary to the filefile_name , using one line per tuple.

A.8 Numerical Tools

The following table describes some useful numerical functions that may be found in the module
utilities.numerical_tools :

A.8. Numerical Tools 81

angle(v1, v2=None) Angle between two-dimensional vectorsv1 andv2 , or
betweenv1 and thex-axis if v2 is None. Value is in
range0 to 2π.

normal_vector(v) Normal vector tov .
mean(x) Mean value of a vectorx .
cov(x, y=None) Covariance of vectorsx and y . If y is None, returns

cov(x, x) .
err(x, y=0, n=2, relative=True) Relative error of‖x−y‖ to ‖y‖ (2-norm if n = 2 or Max

norm if n = None). If denominator evaluates to zero or if
y is omitted or ifrelative = False , absolute error
is returned.

norm(x) 2-norm ofx .
corr(x, y=None) Correlation ofx andy . If y is None returns autocorrela-

tion of x .
ensure_numeric(A, typecode = None) Returns a Numeric array for any sequenceA. If A is al-

ready a Numeric array it will be returned unaltered. Oth-
erwise, an attempt is made to convert it to a Numeric
array. (Needed becausearray(A) can cause memory
overflow.)

histogram(a, bins, relative=False) Standard histogram. Ifrelative is True , values will
be normalised against the total and thus represent fre-
quencies rather than counts.

create_bins(data, number_of_bins =
None)

Safely create bins for use with histogram. Ifdata con-
tains only one point or is constant, one bin will be cre-
ated. Ifnumber_of_bins is omitted, 10 bins will be
created.

A.9 Finding the Optimal Alpha
Value

The function ???? more to come very soon

82 Appendix A. Supporting Tools

APPENDIX

B

Modules available in ANUGA v1.0

B.1 abstract_2d_finite_volumes.general_mesh

B.2 abstract_2d_finite_volumes.neighbour_mesh

B.3 abstract_2d_finite_volumes.domain

Generic module for 2D triangular domains for finite-volume computations of conservation laws

B.4 abstract_2d_finite_volumes.quantity

Class Quantity - Implements values at each triangular element

To create:

Quantity(domain, vertex_values)

domain: Associated domain structure. Required.

vertex_values: N x 3 array of values at each vertex for each element.
Default None

If vertex_values are None Create array of zeros compatible with domain.
Otherwise check that it is compatible with dimenions of domain.
Otherwise raise an exception

B.5 shallow_water

2D triangular domains for finite-volume computations of the shallow water wave equation. This module contains a
specialisation of class Domain from module domain.py consisting of methods specific to the Shallow Water Wave
Equation

83

84

APPENDIX

C

ANUGA Full-scale Validations

C.1 Overview

There are some long-running validations that are not included in the small-scale validations that run when you exe-
cute thevalidate_all.py script in theanuga_validation/automated_validation_test directory.
These validations are not run automatically since they can take a large amount of time and require an internet connec-
tion and user input.

C.2 Patong Beach

The Patong Beach validation is run from theautomated_validation_tests/patong_beach_-
validation directory. Just execute thevalidate_patong.py script in that directory. This will run a Patong
Beach simulation and compare the generated SWW file with a known good copy of that file.

The script attempts to refresh the validation data files from master copies held on the Sourceforge project site. If you
don’t have an internet connection you may still run the validation, as long as you have the required files.

You may download the validation data files by hand and then run the validation. Just go to the ANUGA Sourceforge
project download page athttp://sourceforge.net/project/showfiles.php?group_id=172848
and select thevalidation_data package,patong-1.0 release. You need thedata.tgz file and one or more
of thepatong.sww. {BASIC|TRIAL|FINAL }.tgz files.

The BASIC validation is the quickest and the FINAL validation is the slowest. Thevalidate.py script will use
whatever files you have, BASIC first and FINAL last.

85

86

APPENDIX

D

Frequently Asked Questions

The Frequently Asked Questions have been move to the online FAQ at:

https://datamining.anu.edu.au/anuga/wiki/FrequentlyAskedQuestions

87

88

APPENDIX

E

Glossary

Term Definition Page
ANUGA v1.0 Name of software (joint development between ANU and GA) i
bathymetry offshore elevation
conserved quantity conserved (stage, x and y momentum)
Digital Elevation Model (DEM) DEMs are digital files consisting of points of elevations, sampled sys-

tematically at equally spaced intervals.
Dirichlet boundary A boundary condition imposed on a differential equation that specifies

the values the solution is to take on the boundary of the domain.
12

edge A triangular cell within the computational mesh can be depicted as a set
of vertices joined by lines (the edges).

elevation refers to bathymetry and topography
evolution integration of the shallow water wave equations over time
finite volume method The method evaluates the terms in the shallow water wave equation

as fluxes at the surfaces of each finite volume. Because the flux en-
tering a given volume is identical to that leaving the adjacent volume,
these methods are conservative. Another advantage of the finite volume
method is that it is easily formulated to allow for unstructured meshes.
The method is used in many computational fluid dynamics packages.

forcing term
flux the amount of flow through the volume per unit time
grid Evenly spaced mesh
latitude The angular distance on a mericlear north and south of the equator, ex-

pressed in degrees and minutes.
longitude The angular distance east or west, between the meridian of a particular

place on Earth and that of the Prime Meridian (located in Greenwich,
England) expressed in degrees or time.

Manning friction coefficient
mesh Triangulation of domain
mesh file A TSH or MSH file 27
NetCDF
node A point at which edges meet
northing A rectangular (x,y) coordinate measurement of distance north from a

north-south reference line, usually a meridian used as the axis of ori-
gin within a map zone or projection. Northing is a UTM (Universal
Transverse Mercator) coordinate.

points file A PTS or CSV file

89

polygon A sequence of points in the plane.ANUGA v1.0 represents a polygon
either as a list consisting of Python tuples or lists of length 2 or as an
N × 2 Numeric array, whereN is the number of points.
The unit square, for example, would be represented either as
[[0,0], [1,0], [1,1], [0,1]] or asarray([0,0],
[1,0], [1,1], [0,1]) .
NOTE: For details refer to the moduleutilities/polygon.py .

resolution The maximal area of a triangular cell in a mesh
reflective boundary Models a solid wall. Returns same conserved quantities as those present

in the neighbouring volume but reflected. Specific to the shallow water
equation as it works with the momentum quantities assumed to be the
second and third conserved quantities.

11

stage
animate visualisation tool used withANUGA v1.0 76
time boundary Returns values for the conserved quantities as a function of time. The

user must specify the domain to get access to the model time.
12

topography onshore elevation
transmissive boundary 12
vertex A point at which edges meet.
xmomentum conserved quantity (note, two-dimensional SWW equations say onlyx

andy and NOTz)
ymomentum conserved quantity

90 Appendix E. Glossary

INDEX

domain , 83

general_mesh , 83

neighbour_mesh , 83

quantity , 83

shallow_water , 83

utilities.polygon , 77

91

92

INDEX

[(module), 42
ANUGA v1.0 , i
ANUGA v1.0 , 89

add() (Geospatialdata method), 79
add_hole() (Mesh method), 44
add_hole_from_polygon() (Mesh method), 44
add_points_and_segments() (Mesh method),

44
add_quantity() (method), 49
add_region() (Mesh method), 44
add_region_from_polygon() (Mesh method),

45
add_vertices() (Mesh method), 45
Alpha_Shape (class in), 80
alpha_shape_via_files() (in module), 80
animate, 90
ANUGA

credits,ii
licence,ii

auto_segment() (Mesh method), 45

bathymetry, 89
boundary conditions, 11, 32, 50
boundary_statistics() (in module), 56

clip() (Geospatialdata method), 79
clip_outside() (Geospatialdata method), 79
conserved quantity, 89
create_mesh_from_regions() (in module),

42
csv2building_polygons() (in module), 66
Culvert_flow() (in module), 54

dem2pts() (in module), 66
Digital Elevation Model (DEM), 89
Dirichlet boundary, 89
Dirichlet_boundary (class in), 51
Dirichlet_discharge_boundary (class in),

52
Domain (class in), 45
domain (module),83

domain.create_quantity_from_-
expression() (in module), 60

edge, 89
elevation, 89
evolution, 13, 55, 89
evolve() (method), 55
export_mesh_file() (Mesh method), 45
export_points_file() (Geospatialdata

method), 79

Field_boundary (class in), 51
File_boundary (class in), 51
file_function() (in module), 49
find_optimal_smoothing_parameter()

(Geospatialdata method), 79
finite volume method, 89
flux, 89
forcing term, 89
Forcing terms, 52

General_forcing() (in module), 52
general_mesh (module),83
generate_mesh() (Mesh method), 45
Geospatial_data (class in), 78
get_all_attributes() (Geospatialdata

method), 79
get_attributes() (Geospatialdata method), 79
get_boundary() (Alpha Shape method), 81
get_boundary_tags() (method), 50
get_centroid_coordinates() (Domain

method), 47
get_data_points() (Geospatialdata method),

79
get_datadir() (Domain method), 46
get_disconnected_triangles() (Domain

method), 47
get_flow_through_cross_section() (in

module), 59
get_integral() (in module), 58
get_maximum_inundation_elevation() (in

module), 58, 59

93

get_maximum_inundation_location() (in
module), 58, 59

get_maximum_location() (in module), 58
get_maximum_value() (in module), 58
get_name() (Domain method), 46
get_nodes() (Domain method), 47
get_quantity() (in module), 56
get_triangles() (Domain method), 47
get_values() (in module), 57
get_vertex_coordinates() (Domain

method), 47
get_wet_elements() (in module), 58
grid, 89

import_points_file() (Geospatialdata
method), 79

import_ungenerate_file() (Mesh method),
45

Inflow() (in module), 53
Initial Conditions, 48
Initialising the Domain, 45
inside_polygon() (in module utilities.polygon),

77
is_inside_polygon() (in module utili-

ties.polygon), 78
is_outside_polygon() (in module utili-

ties.polygon), 78

latitude, 89
longitude, 89

Manning friction coefficient, 89
Mesh

generation, 42
Mesh (class in), 44
mesh, 89
mesh file, 27, 89
mesh, establishing, 9, 17, 26

neighbour_mesh (module),83
NetCDF, 89
node, 89
northing, 89

outside_polygon() (in module utili-
ties.polygon), 77

plot_polygons() (in module utilities.polygon),
78

point_in_polygon() (in module utili-
ties.polygon), 77

point_on_line() (in module utilities.polygon),
78

points file, 89
polygon, 90

polygon_area() (in module utilities.polygon), 78
Polygon_function (class in utilities.polygon), 77
populate_polygon() (in module utili-

ties.polygon), 77

quantity (module),83
quantity_statistics() (in module), 56

Rainfall() (in module), 53
read_polygon() (in module utilities.polygon), 77
reflective boundary, 90
Reflective_boundary (class in), 50
resolution, 90

separate_points_by_polygon() (in module
utilities.polygon), 78

separate_points_by_polygon , 78
set_attributes() (Geospatialdata method), 79
set_boundary() (method), 50
set_boundary_type() (Alpha Shape method),

80
set_datadir() (Domain method), 46
set_default_attribute_name() (Geospa-

tial data method), 79
set_default_order() (Domain method), 46
set_geo_reference() (Geospatialdata

method), 79
set_maximum_allowed_speed() (Domain

method), 46
set_minimum_allowed_height() (Domain

method), 46
set_minimum_storable_height() (Domain

method), 46
set_name() (Domain method), 45
set_quantities_to_be_monitored() (in

module), 56
set_quantity() (method), 48
set_store_vertices_uniquely() (Domain

method), 46
set_time() (Domain method), 46
set_values() (in module), 57
set_region() (in module), 49
shallow_water (module),83
slump_tsunami() (in module), 49
split() (Geospatialdata method), 79
stage, i, 90
statistics() (in module), 56
sww2dem() (in module), 65
sww2timeseries() (in module), 59

time boundary, 90
Time_boundary (class in), 51
timestepping_statistics() (in module), 56
topography, 90
transmissive boundary, 90

94 Index

Transmissive_boundary (class in), 51
Transmissive_momentum_set_stage_-

boundary (class in), 51
Transmissive_stage_zero_momentum_-

boundary (class in), 52

urs2sts() (in module), 66
utilities.polygon (module), 77
utilities.polygon (standard module),77

vertex, 90

write_boundary() (Alpha Shape method), 81

xmomentum, 90

ymomentum, 90

Index 95

96

BIBLIOGRAPHY

[nielsen2005]Hydrodynamic modelling of coastal inundation. Nielsen, O., S. Roberts, D. Gray, A. McPherson and
A. Hitchman. In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on Modelling and
Simulation. Modelling and Simulation Society of Australia and New Zealand, December 2005, pp. 518-523.
ISBN: 0-9758400-2-9.
http://www.mssanz.org.au/modsim05/papers/nielsen.pdf

[grid250] Australian Bathymetry and Topography Grid, June 2005. Webster, M.A. and Petkovic, P. Geoscience Aus-
tralia Record 2005/12. ISBN: 1-920871-46-2.
http://www.ga.gov.au/meta/ANZCW0703008022.html

[ZR1999] Catastrophic Collapse of Water Supply Reservoirs in Urban Areas. C. Zoppou and S. Roberts.ASCE J.
Hydraulic Engineering, 125(7):686–695, 1999.

[Toro1999] Riemann problems and the waf method for solving the two-dimensional shallow water equations. E. F.
Toro. Philosophical Transactions of the Royal Society, Series A, 338:43–68, 1992.

[1] Semidiscrete central-upwind schemes for hyperbolic conservation laws and hamilton-jacobi equations.
A. Kurganov, S. Noelle, and G. Petrova.SIAM Journal of Scientific Computing, 23(3):707–740, 2001.

99

97

