1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | #TEST |
---|
4 | |
---|
5 | #import time, os |
---|
6 | |
---|
7 | |
---|
8 | import sys |
---|
9 | import os |
---|
10 | import unittest |
---|
11 | from math import sqrt |
---|
12 | import tempfile |
---|
13 | |
---|
14 | from Scientific.IO.NetCDF import NetCDFFile |
---|
15 | from Numeric import allclose, array, transpose, zeros, Float |
---|
16 | |
---|
17 | |
---|
18 | # ANUGA code imports |
---|
19 | from interpolate import * |
---|
20 | from coordinate_transforms.geo_reference import Geo_reference |
---|
21 | from shallow_water import Domain, Transmissive_boundary #, mean |
---|
22 | from anuga.pyvolution.util import mean |
---|
23 | from anuga.pyvolution.data_manager import get_dataobject |
---|
24 | |
---|
25 | def distance(x, y): |
---|
26 | return sqrt( sum( (array(x)-array(y))**2 )) |
---|
27 | |
---|
28 | def linear_function(point): |
---|
29 | point = array(point) |
---|
30 | return point[:,0]+point[:,1] |
---|
31 | |
---|
32 | |
---|
33 | class Test_Interpolate(unittest.TestCase): |
---|
34 | |
---|
35 | def setUp(self): |
---|
36 | |
---|
37 | import time |
---|
38 | from mesh_factory import rectangular |
---|
39 | |
---|
40 | |
---|
41 | #Create basic mesh |
---|
42 | points, vertices, boundary = rectangular(2, 2) |
---|
43 | |
---|
44 | #Create shallow water domain |
---|
45 | domain = Domain(points, vertices, boundary) |
---|
46 | domain.default_order=2 |
---|
47 | domain.beta_h = 0 |
---|
48 | |
---|
49 | |
---|
50 | #Set some field values |
---|
51 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
52 | domain.set_quantity('friction', 0.03) |
---|
53 | |
---|
54 | |
---|
55 | ###################### |
---|
56 | # Boundary conditions |
---|
57 | B = Transmissive_boundary(domain) |
---|
58 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
59 | |
---|
60 | |
---|
61 | ###################### |
---|
62 | #Initial condition - with jumps |
---|
63 | |
---|
64 | bed = domain.quantities['elevation'].vertex_values |
---|
65 | stage = zeros(bed.shape, Float) |
---|
66 | |
---|
67 | h = 0.3 |
---|
68 | for i in range(stage.shape[0]): |
---|
69 | if i % 2 == 0: |
---|
70 | stage[i,:] = bed[i,:] + h |
---|
71 | else: |
---|
72 | stage[i,:] = bed[i,:] |
---|
73 | |
---|
74 | domain.set_quantity('stage', stage) |
---|
75 | |
---|
76 | domain.distribute_to_vertices_and_edges() |
---|
77 | |
---|
78 | |
---|
79 | self.domain = domain |
---|
80 | |
---|
81 | C = domain.get_vertex_coordinates() |
---|
82 | self.X = C[:,0:6:2].copy() |
---|
83 | self.Y = C[:,1:6:2].copy() |
---|
84 | |
---|
85 | self.F = bed |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | def tearDown(self): |
---|
90 | pass |
---|
91 | |
---|
92 | def test_datapoint_at_centroid(self): |
---|
93 | a = [0.0, 0.0] |
---|
94 | b = [0.0, 2.0] |
---|
95 | c = [2.0,0.0] |
---|
96 | points = [a, b, c] |
---|
97 | vertices = [ [1,0,2] ] #bac |
---|
98 | |
---|
99 | data = [ [2.0/3, 2.0/3] ] #Use centroid as one data point |
---|
100 | |
---|
101 | interp = Interpolate(points, vertices) |
---|
102 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
103 | [[1./3, 1./3, 1./3]]) |
---|
104 | |
---|
105 | |
---|
106 | def test_quad_tree(self): |
---|
107 | p0 = [-10.0, -10.0] |
---|
108 | p1 = [20.0, -10.0] |
---|
109 | p2 = [-10.0, 20.0] |
---|
110 | p3 = [10.0, 50.0] |
---|
111 | p4 = [30.0, 30.0] |
---|
112 | p5 = [50.0, 10.0] |
---|
113 | p6 = [40.0, 60.0] |
---|
114 | p7 = [60.0, 40.0] |
---|
115 | p8 = [-66.0, 20.0] |
---|
116 | p9 = [10.0, -66.0] |
---|
117 | |
---|
118 | points = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9] |
---|
119 | triangles = [ [0, 1, 2], |
---|
120 | [3, 2, 4], |
---|
121 | [4, 2, 1], |
---|
122 | [4, 1, 5], |
---|
123 | [3, 4, 6], |
---|
124 | [6, 4, 7], |
---|
125 | [7, 4, 5], |
---|
126 | [8, 0, 2], |
---|
127 | [0, 9, 1]] |
---|
128 | |
---|
129 | data = [ [4,4] ] |
---|
130 | interp = Interpolate(points, triangles, |
---|
131 | max_vertices_per_cell = 4) |
---|
132 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
133 | answer = [ [ 0.06666667, 0.46666667, 0.46666667, 0., |
---|
134 | 0., 0. , 0., 0., 0., 0.]] |
---|
135 | |
---|
136 | |
---|
137 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
138 | answer) |
---|
139 | #interp.set_point_coordinates([[-30, -30]]) #point outside of mesh |
---|
140 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
141 | data = [[-30, -30]] |
---|
142 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
143 | 0., 0. , 0., 0., 0., 0.]] |
---|
144 | |
---|
145 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
146 | answer) |
---|
147 | |
---|
148 | |
---|
149 | #point outside of quad tree root cell |
---|
150 | #interp.set_point_coordinates([[-70, -70]]) |
---|
151 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
152 | data = [[-70, -70]] |
---|
153 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
154 | 0., 0. , 0., 0., 0., 0.]] |
---|
155 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
156 | answer) |
---|
157 | |
---|
158 | def test_datapoints_at_vertices(self): |
---|
159 | """Test that data points coinciding with vertices yield a diagonal matrix |
---|
160 | """ |
---|
161 | |
---|
162 | a = [0.0, 0.0] |
---|
163 | b = [0.0, 2.0] |
---|
164 | c = [2.0,0.0] |
---|
165 | points = [a, b, c] |
---|
166 | vertices = [ [1,0,2] ] #bac |
---|
167 | |
---|
168 | data = points #Use data at vertices |
---|
169 | |
---|
170 | interp = Interpolate(points, vertices) |
---|
171 | answer = [[1., 0., 0.], |
---|
172 | [0., 1., 0.], |
---|
173 | [0., 0., 1.]] |
---|
174 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
175 | answer) |
---|
176 | |
---|
177 | |
---|
178 | def test_datapoints_on_edge_midpoints(self): |
---|
179 | """Try datapoints midway on edges - |
---|
180 | each point should affect two matrix entries equally |
---|
181 | """ |
---|
182 | |
---|
183 | a = [0.0, 0.0] |
---|
184 | b = [0.0, 2.0] |
---|
185 | c = [2.0,0.0] |
---|
186 | points = [a, b, c] |
---|
187 | vertices = [ [1,0,2] ] #bac |
---|
188 | |
---|
189 | data = [ [0., 1.], [1., 0.], [1., 1.] ] |
---|
190 | answer = [[0.5, 0.5, 0.0], #Affects vertex 1 and 0 |
---|
191 | [0.5, 0.0, 0.5], #Affects vertex 0 and 2 |
---|
192 | [0.0, 0.5, 0.5]] |
---|
193 | interp = Interpolate(points, vertices, data) |
---|
194 | |
---|
195 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
196 | answer) |
---|
197 | |
---|
198 | def test_datapoints_on_edges(self): |
---|
199 | """Try datapoints on edges - |
---|
200 | each point should affect two matrix entries in proportion |
---|
201 | """ |
---|
202 | |
---|
203 | a = [0.0, 0.0] |
---|
204 | b = [0.0, 2.0] |
---|
205 | c = [2.0,0.0] |
---|
206 | points = [a, b, c] |
---|
207 | vertices = [ [1,0,2] ] #bac |
---|
208 | |
---|
209 | data = [ [0., 1.5], [1.5, 0.], [1.5, 0.5] ] |
---|
210 | answer = [[0.25, 0.75, 0.0], #Affects vertex 1 and 0 |
---|
211 | [0.25, 0.0, 0.75], #Affects vertex 0 and 2 |
---|
212 | [0.0, 0.25, 0.75]] |
---|
213 | |
---|
214 | interp = Interpolate(points, vertices, data) |
---|
215 | |
---|
216 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
217 | answer) |
---|
218 | |
---|
219 | |
---|
220 | def test_arbitrary_datapoints(self): |
---|
221 | """Try arbitrary datapoints |
---|
222 | """ |
---|
223 | |
---|
224 | from Numeric import sum |
---|
225 | |
---|
226 | a = [0.0, 0.0] |
---|
227 | b = [0.0, 2.0] |
---|
228 | c = [2.0,0.0] |
---|
229 | points = [a, b, c] |
---|
230 | vertices = [ [1,0,2] ] #bac |
---|
231 | |
---|
232 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44] ] |
---|
233 | |
---|
234 | interp = Interpolate(points, vertices, data) |
---|
235 | #print "interp.get_A()", interp.get_A() |
---|
236 | results = interp._build_interpolation_matrix_A(data).todense() |
---|
237 | assert allclose(sum(results, axis=1), 1.0) |
---|
238 | |
---|
239 | #FIXME - have to change this test to check default info |
---|
240 | def NO_test_arbitrary_datapoints_some_outside(self): |
---|
241 | """Try arbitrary datapoints one outside the triangle. |
---|
242 | That one should be ignored |
---|
243 | """ |
---|
244 | |
---|
245 | from Numeric import sum |
---|
246 | |
---|
247 | a = [0.0, 0.0] |
---|
248 | b = [0.0, 2.0] |
---|
249 | c = [2.0,0.0] |
---|
250 | points = [a, b, c] |
---|
251 | vertices = [ [1,0,2] ] #bac |
---|
252 | |
---|
253 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44], [5.0, 7.0]] |
---|
254 | |
---|
255 | |
---|
256 | interp = Interpolate(points, vertices, data, precrop = True) |
---|
257 | |
---|
258 | results = interp._build_interpolation_matrix_A(data).todense() |
---|
259 | assert allclose(sum(results, axis=1), 1.0) |
---|
260 | |
---|
261 | interp = Interpolate(points, vertices, data, precrop = False) |
---|
262 | results = interp._build_interpolation_matrix_A(data).todense() |
---|
263 | assert allclose(sum(results, axis=1), [1,1,1,0]) |
---|
264 | |
---|
265 | |
---|
266 | |
---|
267 | # this causes a memory error in scipy.sparse |
---|
268 | def test_more_triangles(self): |
---|
269 | |
---|
270 | a = [-1.0, 0.0] |
---|
271 | b = [3.0, 4.0] |
---|
272 | c = [4.0,1.0] |
---|
273 | d = [-3.0, 2.0] #3 |
---|
274 | e = [-1.0,-2.0] |
---|
275 | f = [1.0, -2.0] #5 |
---|
276 | |
---|
277 | points = [a, b, c, d,e,f] |
---|
278 | triangles = [[0,1,3],[1,0,2],[0,4,5], [0,5,2]] #abd bac aef afc |
---|
279 | |
---|
280 | #Data points |
---|
281 | data = [ [-3., 2.0], [-2, 1], [0.0, 1], [0, 3], [2, 3], [-1.0/3,-4./3] ] |
---|
282 | interp = Interpolate(points, triangles) |
---|
283 | |
---|
284 | answer = [[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], #Affects point d |
---|
285 | [0.5, 0.0, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
286 | [0.75, 0.25, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
287 | [0.0, 0.5, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
288 | [0.25, 0.75, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
289 | [1./3, 0.0, 0.0, 0.0, 1./3, 1./3]] #Affects points a, e and f |
---|
290 | |
---|
291 | |
---|
292 | A = interp._build_interpolation_matrix_A(data).todense() |
---|
293 | for i in range(A.shape[0]): |
---|
294 | for j in range(A.shape[1]): |
---|
295 | if not allclose(A[i,j], answer[i][j]): |
---|
296 | print i,j,':',A[i,j], answer[i][j] |
---|
297 | |
---|
298 | |
---|
299 | #results = interp._build_interpolation_matrix_A(data).todense() |
---|
300 | |
---|
301 | assert allclose(A, answer) |
---|
302 | |
---|
303 | |
---|
304 | def test_interpolate_attributes_to_points(self): |
---|
305 | v0 = [0.0, 0.0] |
---|
306 | v1 = [0.0, 5.0] |
---|
307 | v2 = [5.0, 0.0] |
---|
308 | |
---|
309 | vertices = [v0, v1, v2] |
---|
310 | triangles = [ [1,0,2] ] #bac |
---|
311 | |
---|
312 | d0 = [1.0, 1.0] |
---|
313 | d1 = [1.0, 2.0] |
---|
314 | d2 = [3.0, 1.0] |
---|
315 | point_coords = [ d0, d1, d2] |
---|
316 | |
---|
317 | interp = Interpolate(vertices, triangles, point_coords) |
---|
318 | f = linear_function(vertices) |
---|
319 | z = interp.interpolate(f, point_coords) |
---|
320 | answer = linear_function(point_coords) |
---|
321 | |
---|
322 | |
---|
323 | assert allclose(z, answer) |
---|
324 | |
---|
325 | |
---|
326 | |
---|
327 | def test_interpolate_attributes_to_pointsII(self): |
---|
328 | a = [-1.0, 0.0] |
---|
329 | b = [3.0, 4.0] |
---|
330 | c = [4.0, 1.0] |
---|
331 | d = [-3.0, 2.0] #3 |
---|
332 | e = [-1.0, -2.0] |
---|
333 | f = [1.0, -2.0] #5 |
---|
334 | |
---|
335 | vertices = [a, b, c, d,e,f] |
---|
336 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
337 | |
---|
338 | |
---|
339 | point_coords = [[-2.0, 2.0], |
---|
340 | [-1.0, 1.0], |
---|
341 | [0.0, 2.0], |
---|
342 | [1.0, 1.0], |
---|
343 | [2.0, 1.0], |
---|
344 | [0.0, 0.0], |
---|
345 | [1.0, 0.0], |
---|
346 | [0.0, -1.0], |
---|
347 | [-0.2, -0.5], |
---|
348 | [-0.9, -1.5], |
---|
349 | [0.5, -1.9], |
---|
350 | [3.0, 1.0]] |
---|
351 | |
---|
352 | interp = Interpolate(vertices, triangles) |
---|
353 | f = linear_function(vertices) |
---|
354 | z = interp.interpolate(f, point_coords) |
---|
355 | answer = linear_function(point_coords) |
---|
356 | #print "z",z |
---|
357 | #print "answer",answer |
---|
358 | assert allclose(z, answer) |
---|
359 | |
---|
360 | def test_interpolate_attributes_to_pointsIII(self): |
---|
361 | """Test linear interpolation of known values at vertices to |
---|
362 | new points inside a triangle |
---|
363 | """ |
---|
364 | a = [0.0, 0.0] |
---|
365 | b = [0.0, 5.0] |
---|
366 | c = [5.0, 0.0] |
---|
367 | d = [5.0, 5.0] |
---|
368 | |
---|
369 | vertices = [a, b, c, d] |
---|
370 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
371 | |
---|
372 | #Points within triangle 1 |
---|
373 | d0 = [1.0, 1.0] |
---|
374 | d1 = [1.0, 2.0] |
---|
375 | d2 = [3.0, 1.0] |
---|
376 | |
---|
377 | #Point within triangle 2 |
---|
378 | d3 = [4.0, 3.0] |
---|
379 | |
---|
380 | #Points on common edge |
---|
381 | d4 = [2.5, 2.5] |
---|
382 | d5 = [4.0, 1.0] |
---|
383 | |
---|
384 | #Point on common vertex |
---|
385 | d6 = [0., 5.] |
---|
386 | |
---|
387 | point_coords = [d0, d1, d2, d3, d4, d5, d6] |
---|
388 | |
---|
389 | interp = Interpolate(vertices, triangles) |
---|
390 | |
---|
391 | #Known values at vertices |
---|
392 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
393 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
394 | [5., 10., 5., -10.], # (0,5) |
---|
395 | [5., 5., 10.0, 0.], # (5,0) |
---|
396 | [10., 15., 15., -5.]] # (5,5) |
---|
397 | |
---|
398 | z = interp.interpolate(f, point_coords) |
---|
399 | answer = [ [2., 3., 3., -5.], # (1,1) |
---|
400 | [3., 5., 4., -6.], # (1,2) |
---|
401 | [4., 5., 7., -3.], # (3,1) |
---|
402 | [7., 10., 11., -4.], # (4,3) |
---|
403 | [5., 7.5, 7.5, -5.], # (2.5, 2.5) |
---|
404 | [5., 6., 9., -2.], # (4,1) |
---|
405 | [5., 10., 5., -10.]] # (0,5) |
---|
406 | |
---|
407 | #print "***********" |
---|
408 | #print "z",z |
---|
409 | #print "answer",answer |
---|
410 | #print "***********" |
---|
411 | |
---|
412 | #Should an error message be returned if points are outside |
---|
413 | # of the mesh? Not currently. |
---|
414 | |
---|
415 | assert allclose(z, answer) |
---|
416 | |
---|
417 | |
---|
418 | def test_interpolate_point_outside_of_mesh(self): |
---|
419 | """Test linear interpolation of known values at vertices to |
---|
420 | new points inside a triangle |
---|
421 | """ |
---|
422 | a = [0.0, 0.0] |
---|
423 | b = [0.0, 5.0] |
---|
424 | c = [5.0, 0.0] |
---|
425 | d = [5.0, 5.0] |
---|
426 | |
---|
427 | vertices = [a, b, c, d] |
---|
428 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
429 | |
---|
430 | #Far away point |
---|
431 | d7 = [-1., -1.] |
---|
432 | |
---|
433 | point_coords = [ d7] |
---|
434 | interp = Interpolate(vertices, triangles) |
---|
435 | |
---|
436 | #Known values at vertices |
---|
437 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
438 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
439 | [5., 10., 5., -10.], # (0,5) |
---|
440 | [5., 5., 10.0, 0.], # (5,0) |
---|
441 | [10., 15., 15., -5.]] # (5,5) |
---|
442 | |
---|
443 | z = interp.interpolate(f, point_coords) |
---|
444 | answer = [ [0., 0., 0., 0.]] # (-1,-1) |
---|
445 | |
---|
446 | #print "***********" |
---|
447 | #print "z",z |
---|
448 | #print "answer",answer |
---|
449 | #print "***********" |
---|
450 | |
---|
451 | #Should an error message be returned if points are outside |
---|
452 | # of the mesh? Not currently. |
---|
453 | |
---|
454 | assert allclose(z, answer) |
---|
455 | |
---|
456 | def test_interpolate_attributes_to_pointsIV(self): |
---|
457 | a = [-1.0, 0.0] |
---|
458 | b = [3.0, 4.0] |
---|
459 | c = [4.0, 1.0] |
---|
460 | d = [-3.0, 2.0] #3 |
---|
461 | e = [-1.0, -2.0] |
---|
462 | f = [1.0, -2.0] #5 |
---|
463 | |
---|
464 | vertices = [a, b, c, d,e,f] |
---|
465 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
466 | |
---|
467 | |
---|
468 | point_coords = [[-2.0, 2.0], |
---|
469 | [-1.0, 1.0], |
---|
470 | [0.0, 2.0], |
---|
471 | [1.0, 1.0], |
---|
472 | [2.0, 1.0], |
---|
473 | [0.0, 0.0], |
---|
474 | [1.0, 0.0], |
---|
475 | [0.0, -1.0], |
---|
476 | [-0.2, -0.5], |
---|
477 | [-0.9, -1.5], |
---|
478 | [0.5, -1.9], |
---|
479 | [3.0, 1.0]] |
---|
480 | |
---|
481 | interp = Interpolate(vertices, triangles) |
---|
482 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
483 | f = transpose(f) |
---|
484 | #print "f",f |
---|
485 | z = interp.interpolate(f, point_coords) |
---|
486 | answer = [linear_function(point_coords), |
---|
487 | 2*linear_function(point_coords) ] |
---|
488 | answer = transpose(answer) |
---|
489 | #print "z",z |
---|
490 | #print "answer",answer |
---|
491 | assert allclose(z, answer) |
---|
492 | |
---|
493 | |
---|
494 | def test_interpolate_blocking(self): |
---|
495 | a = [-1.0, 0.0] |
---|
496 | b = [3.0, 4.0] |
---|
497 | c = [4.0, 1.0] |
---|
498 | d = [-3.0, 2.0] #3 |
---|
499 | e = [-1.0, -2.0] |
---|
500 | f = [1.0, -2.0] #5 |
---|
501 | |
---|
502 | vertices = [a, b, c, d,e,f] |
---|
503 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
504 | |
---|
505 | |
---|
506 | point_coords = [[-2.0, 2.0], |
---|
507 | [-1.0, 1.0], |
---|
508 | [0.0, 2.0], |
---|
509 | [1.0, 1.0], |
---|
510 | [2.0, 1.0], |
---|
511 | [0.0, 0.0], |
---|
512 | [1.0, 0.0], |
---|
513 | [0.0, -1.0], |
---|
514 | [-0.2, -0.5], |
---|
515 | [-0.9, -1.5], |
---|
516 | [0.5, -1.9], |
---|
517 | [3.0, 1.0]] |
---|
518 | |
---|
519 | interp = Interpolate(vertices, triangles) |
---|
520 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
521 | f = transpose(f) |
---|
522 | #print "f",f |
---|
523 | for blocking_max in range(len(point_coords)+2): |
---|
524 | #if True: |
---|
525 | # blocking_max = 5 |
---|
526 | z = interp.interpolate(f, point_coords, |
---|
527 | start_blocking_len=blocking_max) |
---|
528 | answer = [linear_function(point_coords), |
---|
529 | 2*linear_function(point_coords) ] |
---|
530 | answer = transpose(answer) |
---|
531 | #print "z",z |
---|
532 | #print "answer",answer |
---|
533 | assert allclose(z, answer) |
---|
534 | |
---|
535 | def test_interpolate_reuse(self): |
---|
536 | a = [-1.0, 0.0] |
---|
537 | b = [3.0, 4.0] |
---|
538 | c = [4.0, 1.0] |
---|
539 | d = [-3.0, 2.0] #3 |
---|
540 | e = [-1.0, -2.0] |
---|
541 | f = [1.0, -2.0] #5 |
---|
542 | |
---|
543 | vertices = [a, b, c, d,e,f] |
---|
544 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
545 | |
---|
546 | |
---|
547 | point_coords = [[-2.0, 2.0], |
---|
548 | [-1.0, 1.0], |
---|
549 | [0.0, 2.0], |
---|
550 | [1.0, 1.0], |
---|
551 | [2.0, 1.0], |
---|
552 | [0.0, 0.0], |
---|
553 | [1.0, 0.0], |
---|
554 | [0.0, -1.0], |
---|
555 | [-0.2, -0.5], |
---|
556 | [-0.9, -1.5], |
---|
557 | [0.5, -1.9], |
---|
558 | [3.0, 1.0]] |
---|
559 | |
---|
560 | interp = Interpolate(vertices, triangles) |
---|
561 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
562 | f = transpose(f) |
---|
563 | z = interp.interpolate(f, point_coords, |
---|
564 | start_blocking_len=20) |
---|
565 | answer = [linear_function(point_coords), |
---|
566 | 2*linear_function(point_coords) ] |
---|
567 | answer = transpose(answer) |
---|
568 | #print "z",z |
---|
569 | #print "answer",answer |
---|
570 | assert allclose(z, answer) |
---|
571 | assert allclose(interp._A_can_be_reused, True) |
---|
572 | |
---|
573 | z = interp.interpolate(f) |
---|
574 | assert allclose(z, answer) |
---|
575 | |
---|
576 | # This causes blocking to occur. |
---|
577 | z = interp.interpolate(f, start_blocking_len=10) |
---|
578 | assert allclose(z, answer) |
---|
579 | assert allclose(interp._A_can_be_reused, False) |
---|
580 | |
---|
581 | #A is recalculated |
---|
582 | z = interp.interpolate(f) |
---|
583 | assert allclose(z, answer) |
---|
584 | assert allclose(interp._A_can_be_reused, True) |
---|
585 | |
---|
586 | interp = Interpolate(vertices, triangles) |
---|
587 | #Must raise an exception, no points specified |
---|
588 | try: |
---|
589 | z = interp.interpolate(f) |
---|
590 | except: |
---|
591 | pass |
---|
592 | |
---|
593 | |
---|
594 | |
---|
595 | def test_interpolation_interface_time_only(self): |
---|
596 | """Test spatio-temporal interpolation |
---|
597 | Test that spatio temporal function performs the correct |
---|
598 | interpolations in both time and space |
---|
599 | """ |
---|
600 | |
---|
601 | |
---|
602 | #Three timesteps |
---|
603 | time = [1.0, 5.0, 6.0] |
---|
604 | |
---|
605 | |
---|
606 | #One quantity |
---|
607 | Q = zeros( (3,6), Float ) |
---|
608 | |
---|
609 | #Linear in time and space |
---|
610 | a = [0.0, 0.0] |
---|
611 | b = [0.0, 2.0] |
---|
612 | c = [2.0, 0.0] |
---|
613 | d = [0.0, 4.0] |
---|
614 | e = [2.0, 2.0] |
---|
615 | f = [4.0, 0.0] |
---|
616 | |
---|
617 | points = [a, b, c, d, e, f] |
---|
618 | |
---|
619 | for i, t in enumerate(time): |
---|
620 | Q[i, :] = t*linear_function(points) |
---|
621 | |
---|
622 | |
---|
623 | #Check basic interpolation of one quantity using averaging |
---|
624 | #(no interpolation points or spatial info) |
---|
625 | from anuga.pyvolution.util import mean |
---|
626 | I = Interpolation_interface(time, [mean(Q[0,:]), |
---|
627 | mean(Q[1,:]), |
---|
628 | mean(Q[2,:])]) |
---|
629 | |
---|
630 | |
---|
631 | |
---|
632 | #Check temporal interpolation |
---|
633 | for i in [0,1,2]: |
---|
634 | assert allclose(I(time[i]), mean(Q[i,:])) |
---|
635 | |
---|
636 | #Midway |
---|
637 | assert allclose(I( (time[0] + time[1])/2 ), |
---|
638 | (I(time[0]) + I(time[1]))/2 ) |
---|
639 | |
---|
640 | assert allclose(I( (time[1] + time[2])/2 ), |
---|
641 | (I(time[1]) + I(time[2]))/2 ) |
---|
642 | |
---|
643 | assert allclose(I( (time[0] + time[2])/2 ), |
---|
644 | (I(time[0]) + I(time[2]))/2 ) |
---|
645 | |
---|
646 | #1/3 |
---|
647 | assert allclose(I( (time[0] + time[2])/3 ), |
---|
648 | (I(time[0]) + I(time[2]))/3 ) |
---|
649 | |
---|
650 | |
---|
651 | #Out of bounds checks |
---|
652 | try: |
---|
653 | I(time[0]-1) |
---|
654 | except: |
---|
655 | pass |
---|
656 | else: |
---|
657 | raise 'Should raise exception' |
---|
658 | |
---|
659 | try: |
---|
660 | I(time[-1]+1) |
---|
661 | except: |
---|
662 | pass |
---|
663 | else: |
---|
664 | raise 'Should raise exception' |
---|
665 | |
---|
666 | |
---|
667 | |
---|
668 | |
---|
669 | def test_interpolation_interface_spatial_only(self): |
---|
670 | """Test spatio-temporal interpolation with constant time |
---|
671 | """ |
---|
672 | |
---|
673 | #Three timesteps |
---|
674 | time = [1.0, 5.0, 6.0] |
---|
675 | |
---|
676 | |
---|
677 | #Setup mesh used to represent fitted function |
---|
678 | a = [0.0, 0.0] |
---|
679 | b = [0.0, 2.0] |
---|
680 | c = [2.0, 0.0] |
---|
681 | d = [0.0, 4.0] |
---|
682 | e = [2.0, 2.0] |
---|
683 | f = [4.0, 0.0] |
---|
684 | |
---|
685 | points = [a, b, c, d, e, f] |
---|
686 | #bac, bce, ecf, dbe |
---|
687 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
688 | |
---|
689 | |
---|
690 | #New datapoints where interpolated values are sought |
---|
691 | interpolation_points = [[ 0.0, 0.0], |
---|
692 | [ 0.5, 0.5], |
---|
693 | [ 0.7, 0.7], |
---|
694 | [ 1.0, 0.5], |
---|
695 | [ 2.0, 0.4], |
---|
696 | [ 2.8, 1.2]] |
---|
697 | |
---|
698 | |
---|
699 | #One quantity linear in space |
---|
700 | Q = linear_function(points) |
---|
701 | |
---|
702 | |
---|
703 | #Check interpolation of one quantity using interpolaton points |
---|
704 | I = Interpolation_interface(time, Q, |
---|
705 | vertex_coordinates = points, |
---|
706 | triangles = triangles, |
---|
707 | interpolation_points = interpolation_points, |
---|
708 | verbose = False) |
---|
709 | |
---|
710 | |
---|
711 | answer = linear_function(interpolation_points) |
---|
712 | |
---|
713 | t = time[0] |
---|
714 | for j in range(50): #t in [1, 6] |
---|
715 | for id in range(len(interpolation_points)): |
---|
716 | assert allclose(I(t, id), answer[id]) |
---|
717 | |
---|
718 | t += 0.1 |
---|
719 | |
---|
720 | |
---|
721 | try: |
---|
722 | I(1) |
---|
723 | except: |
---|
724 | pass |
---|
725 | else: |
---|
726 | raise 'Should raise exception' |
---|
727 | |
---|
728 | |
---|
729 | |
---|
730 | def test_interpolation_interface(self): |
---|
731 | """Test spatio-temporal interpolation |
---|
732 | Test that spatio temporal function performs the correct |
---|
733 | interpolations in both time and space |
---|
734 | """ |
---|
735 | |
---|
736 | |
---|
737 | #Three timesteps |
---|
738 | time = [1.0, 5.0, 6.0] |
---|
739 | |
---|
740 | |
---|
741 | #Setup mesh used to represent fitted function |
---|
742 | a = [0.0, 0.0] |
---|
743 | b = [0.0, 2.0] |
---|
744 | c = [2.0, 0.0] |
---|
745 | d = [0.0, 4.0] |
---|
746 | e = [2.0, 2.0] |
---|
747 | f = [4.0, 0.0] |
---|
748 | |
---|
749 | points = [a, b, c, d, e, f] |
---|
750 | #bac, bce, ecf, dbe |
---|
751 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
752 | |
---|
753 | |
---|
754 | #New datapoints where interpolated values are sought |
---|
755 | interpolation_points = [[ 0.0, 0.0], |
---|
756 | [ 0.5, 0.5], |
---|
757 | [ 0.7, 0.7], |
---|
758 | [ 1.0, 0.5], |
---|
759 | [ 2.0, 0.4], |
---|
760 | [ 2.8, 1.2]] |
---|
761 | |
---|
762 | |
---|
763 | #One quantity |
---|
764 | Q = zeros( (3,6), Float ) |
---|
765 | |
---|
766 | #Linear in time and space |
---|
767 | for i, t in enumerate(time): |
---|
768 | Q[i, :] = t*linear_function(points) |
---|
769 | |
---|
770 | |
---|
771 | #Check interpolation of one quantity using interpolaton points) |
---|
772 | I = Interpolation_interface(time, Q, |
---|
773 | vertex_coordinates = points, |
---|
774 | triangles = triangles, |
---|
775 | interpolation_points = interpolation_points, |
---|
776 | verbose = False) |
---|
777 | |
---|
778 | |
---|
779 | answer = linear_function(interpolation_points) |
---|
780 | |
---|
781 | t = time[0] |
---|
782 | for j in range(50): #t in [1, 6] |
---|
783 | for id in range(len(interpolation_points)): |
---|
784 | assert allclose(I(t, id), t*answer[id]) |
---|
785 | |
---|
786 | t += 0.1 |
---|
787 | |
---|
788 | try: |
---|
789 | I(1) |
---|
790 | except: |
---|
791 | pass |
---|
792 | else: |
---|
793 | raise 'Should raise exception' |
---|
794 | |
---|
795 | |
---|
796 | def BADtest_interpolate_sww(self): |
---|
797 | """Not a unit test, rather a system test for interpolate_sww |
---|
798 | This function is obsolete |
---|
799 | """ |
---|
800 | |
---|
801 | self.domain.filename = 'datatest' + str(time.time()) |
---|
802 | self.domain.format = 'sww' |
---|
803 | self.domain.smooth = True |
---|
804 | self.domain.reduction = mean |
---|
805 | |
---|
806 | sww = get_dataobject(self.domain) |
---|
807 | sww.store_connectivity() |
---|
808 | sww.store_timestep('stage') |
---|
809 | self.domain.time = 2. |
---|
810 | sww.store_timestep('stage') |
---|
811 | |
---|
812 | #print "self.domain.filename",self.domain.filename |
---|
813 | interp = interpolate_sww(sww.filename, [0.0, 2.0], |
---|
814 | [[0,1],[0.5,0.5]], |
---|
815 | ['stage']) |
---|
816 | #assert allclose(interp,[0.0,2.0]) |
---|
817 | |
---|
818 | #Cleanup |
---|
819 | os.remove(sww.filename) |
---|
820 | |
---|
821 | #------------------------------------------------------------- |
---|
822 | if __name__ == "__main__": |
---|
823 | suite = unittest.makeSuite(Test_Interpolate,'test') |
---|
824 | runner = unittest.TextTestRunner(verbosity=1) |
---|
825 | runner.run(suite) |
---|
826 | |
---|
827 | |
---|
828 | |
---|
829 | |
---|
830 | |
---|