1 | """Classes implementing general 2D triangular mesh with neighbour structure. |
---|
2 | |
---|
3 | This structure is purely geometrical. Anything relating to quantities |
---|
4 | or timestepping is implemented in subclass domain.py. |
---|
5 | |
---|
6 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
7 | Geoscience Australia, 2004 |
---|
8 | """ |
---|
9 | |
---|
10 | from general_mesh import General_mesh |
---|
11 | from anuga.caching import cache |
---|
12 | from math import pi, sqrt |
---|
13 | |
---|
14 | import numpy as num |
---|
15 | |
---|
16 | |
---|
17 | class Mesh(General_mesh): |
---|
18 | """Collection of triangular elements (purely geometric) |
---|
19 | |
---|
20 | A triangular element is defined in terms of three vertex ids, |
---|
21 | ordered counter clock-wise, |
---|
22 | each corresponding to a given coordinate set. |
---|
23 | Vertices from different elements can point to the same |
---|
24 | coordinate set. |
---|
25 | |
---|
26 | Coordinate sets are implemented as an N x 2 numeric array containing |
---|
27 | x and y coordinates. |
---|
28 | |
---|
29 | |
---|
30 | To instantiate: |
---|
31 | Mesh(coordinates, triangles) |
---|
32 | |
---|
33 | where |
---|
34 | |
---|
35 | coordinates is either a list of 2-tuples or an Mx2 numeric array of |
---|
36 | floats representing all x, y coordinates in the mesh. |
---|
37 | |
---|
38 | triangles is either a list of 3-tuples or an Nx3 numeric array of |
---|
39 | integers representing indices of all vertices in the mesh. |
---|
40 | Each vertex is identified by its index i in [0, M-1]. |
---|
41 | |
---|
42 | |
---|
43 | Example: |
---|
44 | a = [0.0, 0.0] |
---|
45 | b = [0.0, 2.0] |
---|
46 | c = [2.0,0.0] |
---|
47 | e = [2.0, 2.0] |
---|
48 | |
---|
49 | points = [a, b, c, e] |
---|
50 | triangles = [ [1,0,2], [1,2,3] ] #bac, bce |
---|
51 | mesh = Mesh(points, triangles) |
---|
52 | |
---|
53 | #creates two triangles: bac and bce |
---|
54 | |
---|
55 | |
---|
56 | Mesh takes the optional third argument boundary which is a |
---|
57 | dictionary mapping from (element_id, edge_id) to boundary tag. |
---|
58 | The default value is None which will assign the default_boundary_tag |
---|
59 | as specified in config.py to all boundary edges. |
---|
60 | """ |
---|
61 | |
---|
62 | #FIXME: Maybe rename coordinates to points (as in a poly file) |
---|
63 | #But keep 'vertex_coordinates' |
---|
64 | |
---|
65 | #FIXME: Put in check for angles less than a set minimum |
---|
66 | |
---|
67 | |
---|
68 | def __init__(self, coordinates, triangles, |
---|
69 | boundary=None, |
---|
70 | tagged_elements=None, |
---|
71 | geo_reference=None, |
---|
72 | number_of_full_nodes=None, |
---|
73 | number_of_full_triangles=None, |
---|
74 | use_inscribed_circle=False, |
---|
75 | verbose=False): |
---|
76 | """ |
---|
77 | Build triangles from x,y coordinates (sequence of 2-tuples or |
---|
78 | Mx2 numeric array of floats) and triangles (sequence of 3-tuples |
---|
79 | or Nx3 numeric array of non-negative integers). |
---|
80 | """ |
---|
81 | |
---|
82 | |
---|
83 | |
---|
84 | |
---|
85 | General_mesh.__init__(self, coordinates, triangles, |
---|
86 | number_of_full_nodes=\ |
---|
87 | number_of_full_nodes, |
---|
88 | number_of_full_triangles=\ |
---|
89 | number_of_full_triangles, |
---|
90 | geo_reference=geo_reference, |
---|
91 | verbose=verbose) |
---|
92 | |
---|
93 | if verbose: print 'Initialising mesh' |
---|
94 | |
---|
95 | N = len(self) #Number_of_triangles |
---|
96 | |
---|
97 | self.use_inscribed_circle = use_inscribed_circle |
---|
98 | |
---|
99 | #Allocate space for geometric quantities |
---|
100 | self.centroid_coordinates = num.zeros((N, 2), num.float) |
---|
101 | |
---|
102 | self.radii = num.zeros(N, num.float) |
---|
103 | |
---|
104 | self.neighbours = num.zeros((N, 3), num.int) |
---|
105 | self.neighbour_edges = num.zeros((N, 3), num.int) |
---|
106 | self.number_of_boundaries = num.zeros(N, num.int) |
---|
107 | self.surrogate_neighbours = num.zeros((N, 3), num.int) |
---|
108 | |
---|
109 | #Get x,y coordinates for all triangles and store |
---|
110 | V = self.vertex_coordinates # Relative coordinates |
---|
111 | |
---|
112 | #Initialise each triangle |
---|
113 | if verbose: print 'Mesh: Computing centroids and radii' |
---|
114 | for i in range(N): |
---|
115 | if verbose and i % ((N+10)/10) == 0: print '(%d/%d)' %(i, N) |
---|
116 | |
---|
117 | x0, y0 = V[3*i, :] |
---|
118 | x1, y1 = V[3*i+1, :] |
---|
119 | x2, y2 = V[3*i+2, :] |
---|
120 | |
---|
121 | #x0 = V[i, 0]; y0 = V[i, 1] |
---|
122 | #x1 = V[i, 2]; y1 = V[i, 3] |
---|
123 | #x2 = V[i, 4]; y2 = V[i, 5] |
---|
124 | |
---|
125 | #Compute centroid |
---|
126 | centroid = num.array([(x0 + x1 + x2)/3, (y0 + y1 + y2)/3], num.float) |
---|
127 | self.centroid_coordinates[i] = centroid |
---|
128 | |
---|
129 | |
---|
130 | if self.use_inscribed_circle == False: |
---|
131 | #OLD code. Computed radii may exceed that of an |
---|
132 | #inscribed circle |
---|
133 | |
---|
134 | #Midpoints |
---|
135 | m0 = num.array([(x1 + x2)/2, (y1 + y2)/2], num.float) |
---|
136 | m1 = num.array([(x0 + x2)/2, (y0 + y2)/2], num.float) |
---|
137 | m2 = num.array([(x1 + x0)/2, (y1 + y0)/2], num.float) |
---|
138 | |
---|
139 | #The radius is the distance from the centroid of |
---|
140 | #a triangle to the midpoint of the side of the triangle |
---|
141 | #closest to the centroid |
---|
142 | d0 = num.sqrt(num.sum( (centroid-m0)**2 )) |
---|
143 | d1 = num.sqrt(num.sum( (centroid-m1)**2 )) |
---|
144 | d2 = num.sqrt(num.sum( (centroid-m2)**2 )) |
---|
145 | |
---|
146 | self.radii[i] = min(d0, d1, d2) |
---|
147 | |
---|
148 | else: |
---|
149 | #NEW code added by Peter Row. True radius |
---|
150 | #of inscribed circle is computed |
---|
151 | |
---|
152 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
153 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
154 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
155 | |
---|
156 | self.radii[i]=2.0*self.areas[i]/(a+b+c) |
---|
157 | |
---|
158 | |
---|
159 | #Initialise Neighbours (-1 means that it is a boundary neighbour) |
---|
160 | self.neighbours[i, :] = [-1, -1, -1] |
---|
161 | |
---|
162 | #Initialise edge ids of neighbours |
---|
163 | #In case of boundaries this slot is not used |
---|
164 | self.neighbour_edges[i, :] = [-1, -1, -1] |
---|
165 | |
---|
166 | |
---|
167 | #Build neighbour structure |
---|
168 | if verbose: print 'Mesh: Building neigbour structure' |
---|
169 | self.build_neighbour_structure() |
---|
170 | |
---|
171 | #Build surrogate neighbour structure |
---|
172 | if verbose: print 'Mesh: Building surrogate neigbour structure' |
---|
173 | self.build_surrogate_neighbour_structure() |
---|
174 | |
---|
175 | #Build boundary dictionary mapping (id, edge) to symbolic tags |
---|
176 | if verbose: print 'Mesh: Building boundary dictionary' |
---|
177 | self.build_boundary_dictionary(boundary) |
---|
178 | |
---|
179 | #Build tagged element dictionary mapping (tag) to array of elements |
---|
180 | if verbose: print 'Mesh: Building tagged elements dictionary' |
---|
181 | self.build_tagged_elements_dictionary(tagged_elements) |
---|
182 | |
---|
183 | # Build a list of vertices that are not connected to any triangles |
---|
184 | self.lone_vertices = [] |
---|
185 | #Check that all vertices have been registered |
---|
186 | for node, count in enumerate(self.number_of_triangles_per_node): |
---|
187 | #msg = 'Node %d does not belong to an element.' %node |
---|
188 | #assert count > 0, msg |
---|
189 | if count == 0: |
---|
190 | self.lone_vertices.append(node) |
---|
191 | |
---|
192 | #Update boundary indices FIXME: OBSOLETE |
---|
193 | #self.build_boundary_structure() |
---|
194 | |
---|
195 | #FIXME check integrity? |
---|
196 | if verbose: print 'Mesh: Done' |
---|
197 | |
---|
198 | def __repr__(self): |
---|
199 | return General_mesh.__repr__(self) + ', %d boundary segments'\ |
---|
200 | %(len(self.boundary)) |
---|
201 | |
---|
202 | |
---|
203 | def set_to_inscribed_circle(self,safety_factor = 1): |
---|
204 | #FIXME phase out eventually |
---|
205 | N = self.number_of_triangles |
---|
206 | V = self.vertex_coordinates |
---|
207 | |
---|
208 | #initialising min and max ratio |
---|
209 | i=0 |
---|
210 | old_rad = self.radii[i] |
---|
211 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
212 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
213 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
214 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
215 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
216 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
217 | ratio = old_rad/self.radii[i] |
---|
218 | max_ratio = ratio |
---|
219 | min_ratio = ratio |
---|
220 | |
---|
221 | for i in range(N): |
---|
222 | old_rad = self.radii[i] |
---|
223 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
224 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
225 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
226 | a = num.sqrt((x0-x1)**2+(y0-y1)**2) |
---|
227 | b = num.sqrt((x1-x2)**2+(y1-y2)**2) |
---|
228 | c = num.sqrt((x2-x0)**2+(y2-y0)**2) |
---|
229 | self.radii[i]=self.areas[i]/(2*(a+b+c))*safety_factor |
---|
230 | ratio = old_rad/self.radii[i] |
---|
231 | if ratio >= max_ratio: max_ratio = ratio |
---|
232 | if ratio <= min_ratio: min_ratio = ratio |
---|
233 | return max_ratio,min_ratio |
---|
234 | |
---|
235 | |
---|
236 | |
---|
237 | def build_neighbour_structure(self): |
---|
238 | """Update all registered triangles to point to their neighbours. |
---|
239 | |
---|
240 | Also, keep a tally of the number of boundaries for each triangle |
---|
241 | |
---|
242 | Postconditions: |
---|
243 | neighbours and neighbour_edges is populated |
---|
244 | number_of_boundaries integer array is defined. |
---|
245 | """ |
---|
246 | |
---|
247 | #Step 1: |
---|
248 | #Build dictionary mapping from segments (2-tuple of points) |
---|
249 | #to left hand side edge (facing neighbouring triangle) |
---|
250 | |
---|
251 | N = len(self) #Number_of_triangles |
---|
252 | neighbourdict = {} |
---|
253 | for i in range(N): |
---|
254 | |
---|
255 | #Register all segments as keys mapping to current triangle |
---|
256 | #and segment id |
---|
257 | a = self.triangles[i, 0] |
---|
258 | b = self.triangles[i, 1] |
---|
259 | c = self.triangles[i, 2] |
---|
260 | if neighbourdict.has_key((a,b)): |
---|
261 | msg = "Edge 2 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[a,b][1],neighbourdict[a,b][0]) |
---|
262 | raise Exception, msg |
---|
263 | if neighbourdict.has_key((b,c)): |
---|
264 | msg = "Edge 0 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[b,c][1],neighbourdict[b,c][0]) |
---|
265 | raise msg |
---|
266 | if neighbourdict.has_key((c,a)): |
---|
267 | msg = "Edge 1 of triangle %d is duplicating edge %d of triangle %d.\n" %(i,neighbourdict[c,a][1],neighbourdict[c,a][0]) |
---|
268 | raise msg |
---|
269 | |
---|
270 | neighbourdict[a,b] = (i, 2) #(id, edge) |
---|
271 | neighbourdict[b,c] = (i, 0) #(id, edge) |
---|
272 | neighbourdict[c,a] = (i, 1) #(id, edge) |
---|
273 | |
---|
274 | |
---|
275 | #Step 2: |
---|
276 | #Go through triangles again, but this time |
---|
277 | #reverse direction of segments and lookup neighbours. |
---|
278 | for i in range(N): |
---|
279 | a = self.triangles[i, 0] |
---|
280 | b = self.triangles[i, 1] |
---|
281 | c = self.triangles[i, 2] |
---|
282 | |
---|
283 | self.number_of_boundaries[i] = 3 |
---|
284 | if neighbourdict.has_key((b,a)): |
---|
285 | self.neighbours[i, 2] = neighbourdict[b,a][0] |
---|
286 | self.neighbour_edges[i, 2] = neighbourdict[b,a][1] |
---|
287 | self.number_of_boundaries[i] -= 1 |
---|
288 | |
---|
289 | if neighbourdict.has_key((c,b)): |
---|
290 | self.neighbours[i, 0] = neighbourdict[c,b][0] |
---|
291 | self.neighbour_edges[i, 0] = neighbourdict[c,b][1] |
---|
292 | self.number_of_boundaries[i] -= 1 |
---|
293 | |
---|
294 | if neighbourdict.has_key((a,c)): |
---|
295 | self.neighbours[i, 1] = neighbourdict[a,c][0] |
---|
296 | self.neighbour_edges[i, 1] = neighbourdict[a,c][1] |
---|
297 | self.number_of_boundaries[i] -= 1 |
---|
298 | |
---|
299 | |
---|
300 | def build_surrogate_neighbour_structure(self): |
---|
301 | """Build structure where each triangle edge points to its neighbours |
---|
302 | if they exist. Otherwise point to the triangle itself. |
---|
303 | |
---|
304 | The surrogate neighbour structure is useful for computing gradients |
---|
305 | based on centroid values of neighbours. |
---|
306 | |
---|
307 | Precondition: Neighbour structure is defined |
---|
308 | Postcondition: |
---|
309 | Surrogate neighbour structure is defined: |
---|
310 | surrogate_neighbours: i0, i1, i2 where all i_k >= 0 point to |
---|
311 | triangles. |
---|
312 | |
---|
313 | """ |
---|
314 | |
---|
315 | N = len(self) #Number of triangles |
---|
316 | for i in range(N): |
---|
317 | #Find all neighbouring volumes that are not boundaries |
---|
318 | for k in range(3): |
---|
319 | if self.neighbours[i, k] < 0: |
---|
320 | self.surrogate_neighbours[i, k] = i #Point this triangle |
---|
321 | else: |
---|
322 | self.surrogate_neighbours[i, k] = self.neighbours[i, k] |
---|
323 | |
---|
324 | |
---|
325 | |
---|
326 | def build_boundary_dictionary(self, boundary = None): |
---|
327 | """Build or check the dictionary of boundary tags. |
---|
328 | self.boundary is a dictionary of tags, |
---|
329 | keyed by volume id and edge: |
---|
330 | { (id, edge): tag, ... } |
---|
331 | |
---|
332 | Postconditions: |
---|
333 | self.boundary is defined. |
---|
334 | """ |
---|
335 | |
---|
336 | from anuga.config import default_boundary_tag |
---|
337 | |
---|
338 | if boundary is None: |
---|
339 | boundary = {} |
---|
340 | for vol_id in range(len(self)): |
---|
341 | for edge_id in range(0, 3): |
---|
342 | if self.neighbours[vol_id, edge_id] < 0: |
---|
343 | boundary[(vol_id, edge_id)] = default_boundary_tag |
---|
344 | else: |
---|
345 | #Check that all keys in given boundary exist |
---|
346 | for vol_id, edge_id in boundary.keys(): |
---|
347 | msg = 'Segment (%d, %d) does not exist' %(vol_id, edge_id) |
---|
348 | a, b = self.neighbours.shape |
---|
349 | assert vol_id < a and edge_id < b, msg |
---|
350 | |
---|
351 | #FIXME: This assert violates internal boundaries (delete it) |
---|
352 | #msg = 'Segment (%d, %d) is not a boundary' %(vol_id, edge_id) |
---|
353 | #assert self.neighbours[vol_id, edge_id] < 0, msg |
---|
354 | |
---|
355 | #Check that all boundary segments are assigned a tag |
---|
356 | for vol_id in range(len(self)): |
---|
357 | for edge_id in range(0, 3): |
---|
358 | if self.neighbours[vol_id, edge_id] < 0: |
---|
359 | if not boundary.has_key( (vol_id, edge_id) ): |
---|
360 | msg = 'WARNING: Given boundary does not contain ' |
---|
361 | msg += 'tags for edge (%d, %d). '\ |
---|
362 | %(vol_id, edge_id) |
---|
363 | msg += 'Assigning default tag (%s).'\ |
---|
364 | %default_boundary_tag |
---|
365 | |
---|
366 | #FIXME: Print only as per verbosity |
---|
367 | #print msg |
---|
368 | |
---|
369 | #FIXME: Make this situation an error in the future |
---|
370 | #and make another function which will |
---|
371 | #enable default boundary-tags where |
---|
372 | #tags a not specified |
---|
373 | boundary[ (vol_id, edge_id) ] =\ |
---|
374 | default_boundary_tag |
---|
375 | |
---|
376 | |
---|
377 | |
---|
378 | self.boundary = boundary |
---|
379 | |
---|
380 | |
---|
381 | def build_tagged_elements_dictionary(self, tagged_elements = None): |
---|
382 | """Build the dictionary of element tags. |
---|
383 | self.tagged_elements is a dictionary of element arrays, |
---|
384 | keyed by tag: |
---|
385 | { (tag): [e1, e2, e3..] } |
---|
386 | |
---|
387 | Postconditions: |
---|
388 | self.element_tag is defined |
---|
389 | """ |
---|
390 | |
---|
391 | if tagged_elements is None: |
---|
392 | tagged_elements = {} |
---|
393 | else: |
---|
394 | #Check that all keys in given boundary exist |
---|
395 | for tag in tagged_elements.keys(): |
---|
396 | tagged_elements[tag] = num.array(tagged_elements[tag], num.int) |
---|
397 | |
---|
398 | msg = 'Not all elements exist. ' |
---|
399 | assert max(tagged_elements[tag]) < len(self), msg |
---|
400 | #print "tagged_elements", tagged_elements |
---|
401 | self.tagged_elements = tagged_elements |
---|
402 | |
---|
403 | def get_tagged_elements(self): |
---|
404 | return self.tagged_elements |
---|
405 | |
---|
406 | def build_boundary_structure(self): |
---|
407 | """Traverse boundary and |
---|
408 | enumerate neighbour indices from -1 and |
---|
409 | counting down. |
---|
410 | |
---|
411 | Precondition: |
---|
412 | self.boundary is defined. |
---|
413 | Post condition: |
---|
414 | neighbour array has unique negative indices for boundary |
---|
415 | boundary_segments array imposes an ordering on segments |
---|
416 | (not otherwise available from the dictionary) |
---|
417 | |
---|
418 | Note: If a segment is listed in the boundary dictionary |
---|
419 | it *will* become a boundary - even if there is a neighbouring triangle. |
---|
420 | This would be the case for internal boundaries |
---|
421 | """ |
---|
422 | |
---|
423 | #FIXME: Now Obsolete - maybe use some comments from here in |
---|
424 | #domain.set_boundary |
---|
425 | |
---|
426 | if self.boundary is None: |
---|
427 | msg = 'Boundary dictionary must be defined before ' |
---|
428 | msg += 'building boundary structure' |
---|
429 | raise msg |
---|
430 | |
---|
431 | |
---|
432 | self.boundary_segments = self.boundary.keys() |
---|
433 | self.boundary_segments.sort() |
---|
434 | |
---|
435 | index = -1 |
---|
436 | for id, edge in self.boundary_segments: |
---|
437 | |
---|
438 | #FIXME: One would detect internal boundaries as follows |
---|
439 | #if self.neighbours[id, edge] > -1: |
---|
440 | # print 'Internal boundary' |
---|
441 | |
---|
442 | self.neighbours[id, edge] = index |
---|
443 | index -= 1 |
---|
444 | |
---|
445 | |
---|
446 | def get_boundary_tags(self): |
---|
447 | """Return list of available boundary tags |
---|
448 | """ |
---|
449 | |
---|
450 | tags = {} |
---|
451 | for v in self.boundary.values(): |
---|
452 | tags[v] = 1 |
---|
453 | |
---|
454 | return tags.keys() |
---|
455 | |
---|
456 | |
---|
457 | def get_boundary_polygon(self, verbose=False): |
---|
458 | """Return bounding polygon for mesh (counter clockwise) |
---|
459 | |
---|
460 | Using the mesh boundary, derive a bounding polygon for this mesh. |
---|
461 | If multiple vertex values are present (vertices stored uniquely), |
---|
462 | the algorithm will select the path that contains the entire mesh. |
---|
463 | |
---|
464 | All points are in absolute UTM coordinates |
---|
465 | """ |
---|
466 | |
---|
467 | from anuga.utilities.numerical_tools import angle, ensure_numeric |
---|
468 | |
---|
469 | |
---|
470 | # Get mesh extent |
---|
471 | xmin, xmax, ymin, ymax = self.get_extent(absolute=True) |
---|
472 | pmin = ensure_numeric([xmin, ymin]) |
---|
473 | pmax = ensure_numeric([xmax, ymax]) |
---|
474 | |
---|
475 | |
---|
476 | # Assemble dictionary of boundary segments and choose starting point |
---|
477 | segments = {} |
---|
478 | inverse_segments = {} |
---|
479 | p0 = None |
---|
480 | mindist = num.sqrt(num.sum((pmax-pmin)**2)) # Start value across entire mesh |
---|
481 | for i, edge_id in self.boundary.keys(): |
---|
482 | # Find vertex ids for boundary segment |
---|
483 | if edge_id == 0: a = 1; b = 2 |
---|
484 | if edge_id == 1: a = 2; b = 0 |
---|
485 | if edge_id == 2: a = 0; b = 1 |
---|
486 | |
---|
487 | A = self.get_vertex_coordinate(i, a, absolute=True) # Start |
---|
488 | B = self.get_vertex_coordinate(i, b, absolute=True) # End |
---|
489 | |
---|
490 | |
---|
491 | # Take the point closest to pmin as starting point |
---|
492 | # Note: Could be arbitrary, but nice to have |
---|
493 | # a unique way of selecting |
---|
494 | dist_A = num.sqrt(num.sum((A-pmin)**2)) |
---|
495 | dist_B = num.sqrt(num.sum((B-pmin)**2)) |
---|
496 | |
---|
497 | # Find lower leftmost point |
---|
498 | if dist_A < mindist: |
---|
499 | mindist = dist_A |
---|
500 | p0 = A |
---|
501 | if dist_B < mindist: |
---|
502 | mindist = dist_B |
---|
503 | p0 = B |
---|
504 | |
---|
505 | |
---|
506 | # Sanity check |
---|
507 | if p0 is None: |
---|
508 | msg = 'Impossible: p0 is None!?' |
---|
509 | raise Exception, msg |
---|
510 | |
---|
511 | # Register potential paths from A to B |
---|
512 | if not segments.has_key(tuple(A)): |
---|
513 | segments[tuple(A)] = [] # Empty list for candidate points |
---|
514 | |
---|
515 | segments[tuple(A)].append(B) |
---|
516 | |
---|
517 | |
---|
518 | # Start with smallest point and follow boundary (counter clock wise) |
---|
519 | polygon = [list(p0)]# Storage for final boundary polygon |
---|
520 | point_registry = {} # Keep track of storage to avoid multiple runs |
---|
521 | # around boundary. This will only be the case if |
---|
522 | # there are more than one candidate. |
---|
523 | # FIXME (Ole): Perhaps we can do away with polygon |
---|
524 | # and use only point_registry to save space. |
---|
525 | |
---|
526 | point_registry[tuple(p0)] = 0 |
---|
527 | |
---|
528 | while len(point_registry) < len(self.boundary): |
---|
529 | |
---|
530 | candidate_list = segments[tuple(p0)] |
---|
531 | if len(candidate_list) > 1: |
---|
532 | # Multiple points detected (this will be the case for meshes |
---|
533 | # with duplicate points as those used for discontinuous |
---|
534 | # triangles with vertices stored uniquely). |
---|
535 | # Take the candidate that is furthest to the clockwise |
---|
536 | # direction, as that will follow the boundary. |
---|
537 | # |
---|
538 | # This will also be the case for pathological triangles |
---|
539 | # that have no neighbours. |
---|
540 | |
---|
541 | if verbose: |
---|
542 | print 'Point %s has multiple candidates: %s'\ |
---|
543 | %(str(p0), candidate_list) |
---|
544 | |
---|
545 | # Check that previous are not in candidate list |
---|
546 | #for p in candidate_list: |
---|
547 | # assert not allclose(p0, p) |
---|
548 | |
---|
549 | # Choose vector against which all angles will be measured |
---|
550 | if len(polygon) > 1: |
---|
551 | v_prev = p0 - polygon[-2] # Vector that leads to p0 |
---|
552 | # from previous point |
---|
553 | else: |
---|
554 | # FIXME (Ole): What do we do if the first point has |
---|
555 | # multiple candidates? |
---|
556 | # Being the lower left corner, perhaps we can use the |
---|
557 | # vector [1, 0], but I really don't know if this is |
---|
558 | # completely watertight. |
---|
559 | v_prev = [1.0, 0.0] |
---|
560 | |
---|
561 | |
---|
562 | # Choose candidate with minimum angle |
---|
563 | minimum_angle = 2*pi |
---|
564 | for pc in candidate_list: |
---|
565 | |
---|
566 | vc = pc-p0 # Candidate vector (from p0 to candidate pt) |
---|
567 | |
---|
568 | # Angle between each candidate and the previous vector |
---|
569 | # in [-pi, pi] |
---|
570 | ac = angle(vc, v_prev) |
---|
571 | if ac > pi: |
---|
572 | # Give preference to angles on the right hand side |
---|
573 | # of v_prev |
---|
574 | # print 'pc = %s, changing angle from %f to %f'\ |
---|
575 | # %(pc, ac*180/pi, (ac-2*pi)*180/pi) |
---|
576 | ac = ac-2*pi |
---|
577 | |
---|
578 | # Take the minimal angle corresponding to the |
---|
579 | # rightmost vector |
---|
580 | if ac < minimum_angle: |
---|
581 | minimum_angle = ac |
---|
582 | p1 = pc # Best candidate |
---|
583 | |
---|
584 | |
---|
585 | if verbose is True: |
---|
586 | print ' Best candidate %s, angle %f'\ |
---|
587 | %(p1, minimum_angle*180/pi) |
---|
588 | |
---|
589 | else: |
---|
590 | p1 = candidate_list[0] |
---|
591 | |
---|
592 | |
---|
593 | if point_registry.has_key(tuple(p1)): |
---|
594 | # We have reached a point already visited. |
---|
595 | |
---|
596 | if num.allclose(p1, polygon[0]): |
---|
597 | # If it is the initial point, the polygon is complete. |
---|
598 | |
---|
599 | if verbose is True: |
---|
600 | print ' Stop criterion fulfilled at point %s' %p1 |
---|
601 | print polygon |
---|
602 | |
---|
603 | # We have completed the boundary polygon - yeehaa |
---|
604 | break |
---|
605 | else: |
---|
606 | # The point already visited is not the initial point |
---|
607 | # This would be a pathological triangle, but the |
---|
608 | # algorithm must be able to deal with this |
---|
609 | pass |
---|
610 | |
---|
611 | else: |
---|
612 | # We are still finding new points on the boundary |
---|
613 | point_registry[tuple(p1)] = len(point_registry) |
---|
614 | |
---|
615 | polygon.append(list(p1)) # De-numeric each point :-) |
---|
616 | p0 = p1 |
---|
617 | |
---|
618 | |
---|
619 | return polygon |
---|
620 | |
---|
621 | |
---|
622 | def check_integrity(self): |
---|
623 | """Check that triangles are internally consistent e.g. |
---|
624 | that area corresponds to edgelengths, that vertices |
---|
625 | are arranged in a counter-clockwise order, etc etc |
---|
626 | Neighbour structure will be checked by class Mesh |
---|
627 | """ |
---|
628 | |
---|
629 | from anuga.config import epsilon |
---|
630 | from anuga.utilities.numerical_tools import anglediff |
---|
631 | |
---|
632 | N = len(self) |
---|
633 | |
---|
634 | # Get x,y coordinates for all vertices for all triangles |
---|
635 | V = self.get_vertex_coordinates() |
---|
636 | |
---|
637 | # Check each triangle |
---|
638 | for i in range(N): |
---|
639 | |
---|
640 | x0, y0 = V[3*i, :] |
---|
641 | x1, y1 = V[3*i+1, :] |
---|
642 | x2, y2 = V[3*i+2, :] |
---|
643 | |
---|
644 | # Check that area hasn't been compromised |
---|
645 | area = self.areas[i] |
---|
646 | ref = abs((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
647 | msg = 'Wrong area for vertex coordinates: %f %f %f %f %f %f'\ |
---|
648 | %(x0,y0,x1,y1,x2,y2) |
---|
649 | assert abs((area - ref)/area) < epsilon, msg |
---|
650 | |
---|
651 | # Check that points are arranged in counter clock-wise order |
---|
652 | v0 = [x1-x0, y1-y0] |
---|
653 | v1 = [x2-x1, y2-y1] |
---|
654 | v2 = [x0-x2, y0-y2] |
---|
655 | a0 = anglediff(v1, v0) |
---|
656 | a1 = anglediff(v2, v1) |
---|
657 | a2 = anglediff(v0, v2) |
---|
658 | |
---|
659 | msg = '''Vertices (%s,%s), (%s,%s), (%s,%s) are not arranged |
---|
660 | in counter clockwise order''' %(x0, y0, x1, y1, x2, y2) |
---|
661 | assert a0 < pi and a1 < pi and a2 < pi, msg |
---|
662 | |
---|
663 | # Check that normals are orthogonal to edge vectors |
---|
664 | # Note that normal[k] lies opposite vertex k |
---|
665 | |
---|
666 | normal0 = self.normals[i, 0:2] |
---|
667 | normal1 = self.normals[i, 2:4] |
---|
668 | normal2 = self.normals[i, 4:6] |
---|
669 | |
---|
670 | for u, v in [ (v0, normal2), (v1, normal0), (v2, normal1) ]: |
---|
671 | |
---|
672 | # Normalise |
---|
673 | l_u = num.sqrt(u[0]*u[0] + u[1]*u[1]) |
---|
674 | l_v = num.sqrt(v[0]*v[0] + v[1]*v[1]) |
---|
675 | |
---|
676 | msg = 'Normal vector in triangle %d does not have unit length' %i |
---|
677 | assert num.allclose(l_v, 1), msg |
---|
678 | |
---|
679 | x = (u[0]*v[0] + u[1]*v[1])/l_u # Inner product |
---|
680 | |
---|
681 | msg = 'Normal vector (%f,%f) is not perpendicular to' %tuple(v) |
---|
682 | msg += ' edge (%f,%f) in triangle %d.' %(tuple(u) + (i,)) |
---|
683 | msg += ' Inner product is %e.' %x |
---|
684 | assert x < epsilon, msg |
---|
685 | |
---|
686 | |
---|
687 | |
---|
688 | |
---|
689 | #Check neighbour structure |
---|
690 | for i in range(N): |
---|
691 | # For each triangle |
---|
692 | |
---|
693 | for k, neighbour_id in enumerate(self.neighbours[i,:]): |
---|
694 | |
---|
695 | #Assert that my neighbour's neighbour is me |
---|
696 | #Boundaries need not fulfill this |
---|
697 | if neighbour_id >= 0: |
---|
698 | edge = self.neighbour_edges[i, k] |
---|
699 | msg = 'Triangle %d has neighbour %d but it does not point back. \n' %(i,neighbour_id) |
---|
700 | msg += 'Only points to (%s)' %(self.neighbours[neighbour_id,:]) |
---|
701 | assert self.neighbours[neighbour_id, edge] == i ,msg |
---|
702 | |
---|
703 | |
---|
704 | |
---|
705 | #Check that all boundaries have |
---|
706 | # unique, consecutive, negative indices |
---|
707 | |
---|
708 | #L = len(self.boundary) |
---|
709 | #for i in range(L): |
---|
710 | # id, edge = self.boundary_segments[i] |
---|
711 | # assert self.neighbours[id, edge] == -i-1 |
---|
712 | |
---|
713 | |
---|
714 | #NOTE: This assert doesn't hold true if there are internal boundaries |
---|
715 | #FIXME: Look into this further. |
---|
716 | #FIXME (Ole): In pyvolution mark 3 this is OK again |
---|
717 | #NOTE: No longer works because neighbour structure is modified by |
---|
718 | # domain set_boundary. |
---|
719 | #for id, edge in self.boundary: |
---|
720 | # assert self.neighbours[id,edge] < 0 |
---|
721 | # |
---|
722 | #NOTE (Ole): I reckon this was resolved late 2004? |
---|
723 | # |
---|
724 | #See domain.set_boundary |
---|
725 | |
---|
726 | |
---|
727 | |
---|
728 | #Check integrity of inverted triangle structure |
---|
729 | |
---|
730 | V = self.vertex_value_indices[:] #Take a copy |
---|
731 | V = num.sort(V) |
---|
732 | assert num.allclose(V, range(3*N)) |
---|
733 | |
---|
734 | assert num.sum(self.number_of_triangles_per_node) ==\ |
---|
735 | len(self.vertex_value_indices) |
---|
736 | |
---|
737 | # Check number of triangles per node |
---|
738 | count = [0]*self.number_of_nodes |
---|
739 | for triangle in self.triangles: |
---|
740 | for i in triangle: |
---|
741 | count[i] += 1 |
---|
742 | |
---|
743 | assert num.allclose(count, self.number_of_triangles_per_node) |
---|
744 | |
---|
745 | |
---|
746 | # Check integrity of vertex_value_indices |
---|
747 | current_node = 0 |
---|
748 | k = 0 # Track triangles touching on node |
---|
749 | for index in self.vertex_value_indices: |
---|
750 | |
---|
751 | if self.number_of_triangles_per_node[current_node] == 0: |
---|
752 | # Node is lone - i.e. not part of the mesh |
---|
753 | continue |
---|
754 | |
---|
755 | k += 1 |
---|
756 | |
---|
757 | volume_id = index / 3 |
---|
758 | vertex_id = index % 3 |
---|
759 | |
---|
760 | msg = 'Triangle %d, vertex %d points to %d. Should have been %d'\ |
---|
761 | %(volume_id, vertex_id, self.triangles[volume_id, vertex_id], current_node) |
---|
762 | assert self.triangles[volume_id, vertex_id] == current_node, msg |
---|
763 | |
---|
764 | if self.number_of_triangles_per_node[current_node] == k: |
---|
765 | # Move on to next node |
---|
766 | k = 0 |
---|
767 | current_node += 1 |
---|
768 | |
---|
769 | |
---|
770 | def get_lone_vertices(self): |
---|
771 | """Return a list of vertices that are not connected to any triangles. |
---|
772 | |
---|
773 | """ |
---|
774 | return self.lone_vertices |
---|
775 | |
---|
776 | def get_centroid_coordinates(self, absolute=False): |
---|
777 | """Return all centroid coordinates. |
---|
778 | Return all centroid coordinates for all triangles as an Nx2 array |
---|
779 | (ordered as x0, y0 for each triangle) |
---|
780 | |
---|
781 | Boolean keyword argument absolute determines whether coordinates |
---|
782 | are to be made absolute by taking georeference into account |
---|
783 | Default is False as many parts of ANUGA expects relative coordinates. |
---|
784 | """ |
---|
785 | |
---|
786 | V = self.centroid_coordinates |
---|
787 | if absolute is True: |
---|
788 | if not self.geo_reference.is_absolute(): |
---|
789 | V = self.geo_reference.get_absolute(V) |
---|
790 | |
---|
791 | return V |
---|
792 | |
---|
793 | |
---|
794 | def get_radii(self): |
---|
795 | """Return all radii. |
---|
796 | Return radius of inscribed cirle for all triangles |
---|
797 | """ |
---|
798 | return self.radii |
---|
799 | |
---|
800 | |
---|
801 | |
---|
802 | def statistics(self): |
---|
803 | """Output statistics about mesh |
---|
804 | """ |
---|
805 | |
---|
806 | from anuga.utilities.numerical_tools import histogram, create_bins |
---|
807 | |
---|
808 | vertex_coordinates = self.vertex_coordinates # Relative coordinates |
---|
809 | areas = self.areas |
---|
810 | x = vertex_coordinates[:,0] |
---|
811 | y = vertex_coordinates[:,1] |
---|
812 | |
---|
813 | |
---|
814 | #Setup 10 bins for area histogram |
---|
815 | bins = create_bins(areas, 10) |
---|
816 | #m = max(areas) |
---|
817 | #bins = arange(0., m, m/10) |
---|
818 | hist = histogram(areas, bins) |
---|
819 | |
---|
820 | str = '------------------------------------------------\n' |
---|
821 | str += 'Mesh statistics:\n' |
---|
822 | str += ' Number of triangles = %d\n' %len(self) |
---|
823 | str += ' Extent [m]:\n' |
---|
824 | str += ' x in [%f, %f]\n' %(min(x), max(x)) |
---|
825 | str += ' y in [%f, %f]\n' %(min(y), max(y)) |
---|
826 | str += ' Areas [m^2]:\n' |
---|
827 | str += ' A in [%f, %f]\n' %(min(areas), max(areas)) |
---|
828 | str += ' number of distinct areas: %d\n' %(len(areas)) |
---|
829 | str += ' Histogram:\n' |
---|
830 | |
---|
831 | hi = bins[0] |
---|
832 | for i, count in enumerate(hist): |
---|
833 | lo = hi |
---|
834 | if i+1 < len(bins): |
---|
835 | #Open upper interval |
---|
836 | hi = bins[i+1] |
---|
837 | str += ' [%f, %f[: %d\n' %(lo, hi, count) |
---|
838 | else: |
---|
839 | #Closed upper interval |
---|
840 | hi = max(areas) |
---|
841 | str += ' [%f, %f]: %d\n' %(lo, hi, count) |
---|
842 | |
---|
843 | N = len(areas) |
---|
844 | if N > 10: |
---|
845 | str += ' Percentiles (10%):\n' |
---|
846 | areas = areas.tolist() |
---|
847 | areas.sort() |
---|
848 | |
---|
849 | k = 0 |
---|
850 | lower = min(areas) |
---|
851 | for i, a in enumerate(areas): |
---|
852 | if i % (N/10) == 0 and i != 0: #For every 10% of the sorted areas |
---|
853 | str += ' %d triangles in [%f, %f]\n' %(i-k, lower, a) |
---|
854 | lower = a |
---|
855 | k = i |
---|
856 | |
---|
857 | str += ' %d triangles in [%f, %f]\n'\ |
---|
858 | %(N-k, lower, max(areas)) |
---|
859 | |
---|
860 | |
---|
861 | str += ' Boundary:\n' |
---|
862 | str += ' Number of boundary segments == %d\n' %(len(self.boundary)) |
---|
863 | str += ' Boundary tags == %s\n' %self.get_boundary_tags() |
---|
864 | str += '------------------------------------------------\n' |
---|
865 | |
---|
866 | |
---|
867 | return str |
---|
868 | |
---|
869 | |
---|
870 | def get_triangle_containing_point(self, point): |
---|
871 | """Return triangle id for triangle containing specifiend point (x,y) |
---|
872 | |
---|
873 | If point isn't within mesh, raise exception |
---|
874 | |
---|
875 | """ |
---|
876 | |
---|
877 | # FIXME(Ole): This function is currently brute force |
---|
878 | # because I needed it for diagnostics. |
---|
879 | # We should make it fast - probably based on the |
---|
880 | # quad tree structure. |
---|
881 | from anuga.utilities.polygon import is_outside_polygon,\ |
---|
882 | is_inside_polygon |
---|
883 | |
---|
884 | polygon = self.get_boundary_polygon() |
---|
885 | #print polygon, point |
---|
886 | |
---|
887 | if is_outside_polygon(point, polygon): |
---|
888 | msg = 'Point %s is outside mesh' %str(point) |
---|
889 | raise Exception, msg |
---|
890 | |
---|
891 | |
---|
892 | V = self.get_vertex_coordinates(absolute=True) |
---|
893 | |
---|
894 | # FIXME: Horrible brute force |
---|
895 | for i, triangle in enumerate(self.triangles): |
---|
896 | poly = V[3*i:3*i+3] |
---|
897 | #print i, poly |
---|
898 | |
---|
899 | if is_inside_polygon(point, poly, closed=True): |
---|
900 | return i |
---|
901 | |
---|
902 | return |
---|
903 | |
---|
904 | |
---|
905 | |
---|
906 | def get_intersecting_segments(self, polyline, |
---|
907 | use_cache=False, |
---|
908 | verbose=False): |
---|
909 | """Find edges intersected by polyline |
---|
910 | |
---|
911 | Input: |
---|
912 | polyline - list of points forming a segmented line |
---|
913 | use_cache |
---|
914 | verbose |
---|
915 | |
---|
916 | Output: |
---|
917 | list of instances of class Triangle_intersection |
---|
918 | |
---|
919 | The polyline may break inside any triangle causing multiple |
---|
920 | segments per triangle - consequently the same triangle may |
---|
921 | appear in several entries. |
---|
922 | |
---|
923 | If a polyline segment coincides with a triangle edge, |
---|
924 | the the entire shared segment will be used. |
---|
925 | Onle one of the triangles thus intersected will be used and that |
---|
926 | is the first one encountered. |
---|
927 | |
---|
928 | Intersections with single vertices are ignored. |
---|
929 | |
---|
930 | Resulting segments are unsorted |
---|
931 | """ |
---|
932 | |
---|
933 | V = self.get_vertex_coordinates() |
---|
934 | N = len(self) |
---|
935 | |
---|
936 | # Adjust polyline to mesh spatial origin |
---|
937 | polyline = self.geo_reference.get_relative(polyline) |
---|
938 | |
---|
939 | if use_cache is True: |
---|
940 | segments = cache(get_intersecting_segments, |
---|
941 | (V, N, polyline), |
---|
942 | {'verbose': verbose}, |
---|
943 | verbose=verbose) |
---|
944 | else: |
---|
945 | segments = get_intersecting_segments(V, N, polyline, |
---|
946 | verbose=verbose) |
---|
947 | |
---|
948 | |
---|
949 | return segments |
---|
950 | |
---|
951 | |
---|
952 | |
---|
953 | def get_triangle_neighbours(self, tri_id): |
---|
954 | """ Given a triangle id, Return an array of the |
---|
955 | 3 neighbour triangle id's. |
---|
956 | |
---|
957 | Negative returned triangle id's represent a boundary as a neighbour. |
---|
958 | |
---|
959 | If the given triangle id is bad, return an empty list. |
---|
960 | """ |
---|
961 | |
---|
962 | try: |
---|
963 | return self.neighbours[tri_id,:] |
---|
964 | except IndexError: |
---|
965 | return [] |
---|
966 | |
---|
967 | |
---|
968 | def get_interpolation_object(self): |
---|
969 | """Get object I that will allow linear interpolation using this mesh |
---|
970 | |
---|
971 | This is a time consuming process but it needs only to be |
---|
972 | once for the mesh. |
---|
973 | |
---|
974 | Interpolation can then be done using |
---|
975 | |
---|
976 | result = I.interpolate_block(vertex_values, interpolation_points) |
---|
977 | |
---|
978 | where vertex values have been obtained from a quantity using |
---|
979 | vertex_values, triangles = self.get_vertex_values() |
---|
980 | """ |
---|
981 | |
---|
982 | if hasattr(self, 'interpolation_object'): |
---|
983 | I = self.interpolation_object |
---|
984 | else: |
---|
985 | from anuga.fit_interpolate.interpolate import Interpolate |
---|
986 | |
---|
987 | # Get discontinuous mesh - this will match internal |
---|
988 | # representation of vertex values |
---|
989 | triangles = self.get_disconnected_triangles() |
---|
990 | vertex_coordinates = self.get_vertex_coordinates() |
---|
991 | |
---|
992 | I = Interpolate(vertex_coordinates, triangles) |
---|
993 | self.interpolation_object = I |
---|
994 | |
---|
995 | return I |
---|
996 | |
---|
997 | |
---|
998 | class Triangle_intersection: |
---|
999 | """Store information about line segments intersecting a triangle |
---|
1000 | |
---|
1001 | Attributes are |
---|
1002 | |
---|
1003 | segment: Line segment intersecting triangle [[x0,y0], [x1, y1]] |
---|
1004 | normal: [a,b] right hand normal to segment |
---|
1005 | length: Length of intersecting segment |
---|
1006 | triangle_id: id (in mesh) of triangle being intersected |
---|
1007 | |
---|
1008 | """ |
---|
1009 | |
---|
1010 | |
---|
1011 | def __init__(self, |
---|
1012 | segment=None, |
---|
1013 | normal=None, |
---|
1014 | length=None, |
---|
1015 | triangle_id=None): |
---|
1016 | self.segment = segment |
---|
1017 | self.normal = normal |
---|
1018 | self.length = length |
---|
1019 | self.triangle_id = triangle_id |
---|
1020 | |
---|
1021 | |
---|
1022 | def __repr__(self): |
---|
1023 | s = 'Triangle_intersection(' |
---|
1024 | s += 'segment=%s, normal=%s, length=%s, triangle_id=%s)'\ |
---|
1025 | %(self.segment, |
---|
1026 | self.normal, |
---|
1027 | self.length, |
---|
1028 | self.triangle_id) |
---|
1029 | |
---|
1030 | return s |
---|
1031 | |
---|
1032 | |
---|
1033 | |
---|
1034 | def _get_intersecting_segments(V, N, line, |
---|
1035 | verbose=False): |
---|
1036 | """Find edges intersected by line |
---|
1037 | |
---|
1038 | Input: |
---|
1039 | V: Vertex coordinates as obtained by mesh.get_vertex_coordinates() |
---|
1040 | N: Number of triangles in mesh |
---|
1041 | line - list of two points forming a segmented line |
---|
1042 | verbose |
---|
1043 | Output: |
---|
1044 | list of instances of class Triangle_intersection |
---|
1045 | |
---|
1046 | This method is used by the public method |
---|
1047 | get_intersecting_segments(self, polyline) which also contains |
---|
1048 | more documentation. |
---|
1049 | """ |
---|
1050 | |
---|
1051 | from anuga.utilities.polygon import intersection |
---|
1052 | from anuga.utilities.polygon import is_inside_polygon |
---|
1053 | |
---|
1054 | msg = 'Line segment must contain exactly two points' |
---|
1055 | assert len(line) == 2, msg |
---|
1056 | |
---|
1057 | # Origin of intersecting line to be used for |
---|
1058 | # establishing direction |
---|
1059 | xi0 = line[0][0] |
---|
1060 | eta0 = line[0][1] |
---|
1061 | |
---|
1062 | |
---|
1063 | # Check intersection with edge segments for all triangles |
---|
1064 | # FIXME (Ole): This should be implemented in C |
---|
1065 | triangle_intersections={} # Keep track of segments already done |
---|
1066 | for i in range(N): |
---|
1067 | # Get nodes and edge segments for each triangle |
---|
1068 | x0, y0 = V[3*i, :] |
---|
1069 | x1, y1 = V[3*i+1, :] |
---|
1070 | x2, y2 = V[3*i+2, :] |
---|
1071 | |
---|
1072 | |
---|
1073 | edge_segments = [[[x0,y0], [x1, y1]], |
---|
1074 | [[x1,y1], [x2, y2]], |
---|
1075 | [[x2,y2], [x0, y0]]] |
---|
1076 | |
---|
1077 | # Find segments that are intersected by line |
---|
1078 | |
---|
1079 | intersections = {} # Use dictionary to record points only once |
---|
1080 | for edge in edge_segments: |
---|
1081 | |
---|
1082 | status, value = intersection(line, edge) |
---|
1083 | #if value is not None: print 'Triangle %d, Got' %i, status, value |
---|
1084 | |
---|
1085 | if status == 1: |
---|
1086 | # Normal intersection of one edge or vertex |
---|
1087 | intersections[tuple(value)] = i |
---|
1088 | |
---|
1089 | # Exclude singular intersections with vertices |
---|
1090 | #if not(allclose(value, edge[0]) or\ |
---|
1091 | # allclose(value, edge[1])): |
---|
1092 | # intersections.append(value) |
---|
1093 | |
---|
1094 | if status == 2: |
---|
1095 | # Edge is sharing a segment with line |
---|
1096 | |
---|
1097 | # This is usually covered by the two |
---|
1098 | # vertices that would have been picked up |
---|
1099 | # under status == 1. |
---|
1100 | # However, if coinciding line stops partway |
---|
1101 | # along this edge, it will be recorded here. |
---|
1102 | intersections[tuple(value[0,:])] = i |
---|
1103 | intersections[tuple(value[1,:])] = i |
---|
1104 | |
---|
1105 | |
---|
1106 | if len(intersections) == 1: |
---|
1107 | # Check if either line end point lies fully within this triangle |
---|
1108 | # If this is the case accept that as one end of the intersecting |
---|
1109 | # segment |
---|
1110 | |
---|
1111 | poly = V[3*i:3*i+3] |
---|
1112 | if is_inside_polygon(line[1], poly, closed=False): |
---|
1113 | intersections[tuple(line[1])] = i |
---|
1114 | elif is_inside_polygon(line[0], poly, closed=False): |
---|
1115 | intersections[tuple(line[0])] = i |
---|
1116 | else: |
---|
1117 | # Ignore situations where one vertex is touch, for instance |
---|
1118 | continue |
---|
1119 | |
---|
1120 | |
---|
1121 | msg = 'There can be only two or no intersections' |
---|
1122 | assert len(intersections) in [0,2], msg |
---|
1123 | |
---|
1124 | |
---|
1125 | if len(intersections) == 2: |
---|
1126 | |
---|
1127 | # Calculate attributes for this segment |
---|
1128 | |
---|
1129 | |
---|
1130 | # End points of intersecting segment |
---|
1131 | points = intersections.keys() |
---|
1132 | x0, y0 = points[0] |
---|
1133 | x1, y1 = points[1] |
---|
1134 | |
---|
1135 | |
---|
1136 | # Determine which end point is closer to the origin of the line |
---|
1137 | # This is necessary for determining the direction of |
---|
1138 | # the line and the normals |
---|
1139 | |
---|
1140 | # Distances from line origin to the two intersections |
---|
1141 | z0 = num.array([x0 - xi0, y0 - eta0], num.float) |
---|
1142 | z1 = num.array([x1 - xi0, y1 - eta0], num.float) |
---|
1143 | d0 = num.sqrt(num.sum(z0**2)) |
---|
1144 | d1 = num.sqrt(num.sum(z1**2)) |
---|
1145 | |
---|
1146 | if d1 < d0: |
---|
1147 | # Swap |
---|
1148 | xi, eta = x0, y0 |
---|
1149 | x0, y0 = x1, y1 |
---|
1150 | x1, y1 = xi, eta |
---|
1151 | |
---|
1152 | # (x0,y0) is now the origin of the intersecting segment |
---|
1153 | |
---|
1154 | |
---|
1155 | # Normal direction: |
---|
1156 | # Right hand side relative to line direction |
---|
1157 | vector = num.array([x1 - x0, y1 - y0], num.float) # Segment vector |
---|
1158 | length = num.sqrt(num.sum(vector**2)) # Segment length |
---|
1159 | normal = num.array([vector[1], -vector[0]], num.float)/length |
---|
1160 | |
---|
1161 | |
---|
1162 | segment = ((x0,y0), (x1, y1)) |
---|
1163 | T = Triangle_intersection(segment=segment, |
---|
1164 | normal=normal, |
---|
1165 | length=length, |
---|
1166 | triangle_id=i) |
---|
1167 | |
---|
1168 | |
---|
1169 | # Add segment unless it was done earlier |
---|
1170 | if not triangle_intersections.has_key(segment): |
---|
1171 | triangle_intersections[segment] = T |
---|
1172 | |
---|
1173 | |
---|
1174 | # Return segments as a list |
---|
1175 | return triangle_intersections.values() |
---|
1176 | |
---|
1177 | |
---|
1178 | def get_intersecting_segments(V, N, polyline, |
---|
1179 | verbose=False): |
---|
1180 | """Internal function to find edges intersected by Polyline |
---|
1181 | |
---|
1182 | Input: |
---|
1183 | V: Vertex coordinates as obtained by mesh.get_vertex_coordinates() |
---|
1184 | N: Number of triangles in mesh |
---|
1185 | polyline - list of points forming a segmented line |
---|
1186 | verbose |
---|
1187 | Output: |
---|
1188 | list of instances of class Triangle_intersection |
---|
1189 | |
---|
1190 | This method is used by the public method |
---|
1191 | get_intersecting_segments(self, polyline) which also contains |
---|
1192 | more documentation. |
---|
1193 | """ |
---|
1194 | |
---|
1195 | msg = 'Polyline must contain at least two points' |
---|
1196 | assert len(polyline) >= 2, msg |
---|
1197 | |
---|
1198 | |
---|
1199 | # For all segments in polyline |
---|
1200 | triangle_intersections = [] |
---|
1201 | for i, point0 in enumerate(polyline[:-1]): |
---|
1202 | |
---|
1203 | point1 = polyline[i+1] |
---|
1204 | if verbose: |
---|
1205 | print 'Extracting mesh intersections from line:', |
---|
1206 | print '(%.2f, %.2f) - (%.2f, %.2f)' %(point0[0], point0[1], |
---|
1207 | point1[0], point1[1]) |
---|
1208 | |
---|
1209 | line = [point0, point1] |
---|
1210 | triangle_intersections += _get_intersecting_segments(V, N, line, |
---|
1211 | verbose=verbose) |
---|
1212 | |
---|
1213 | |
---|
1214 | msg = 'No segments found' |
---|
1215 | assert len(triangle_intersections) > 0, msg |
---|
1216 | |
---|
1217 | |
---|
1218 | return triangle_intersections |
---|
1219 | |
---|
1220 | |
---|
1221 | |
---|
1222 | |
---|
1223 | |
---|
1224 | def segment_midpoints(segments): |
---|
1225 | """Calculate midpoints of all segments |
---|
1226 | |
---|
1227 | Inputs: |
---|
1228 | segments: List of instances of class Segment |
---|
1229 | |
---|
1230 | Ouputs: |
---|
1231 | midpoints: List of points |
---|
1232 | """ |
---|
1233 | |
---|
1234 | midpoints = [] |
---|
1235 | msg = 'Elements of input list to segment_midpoints must be of class Triangle_intersection' |
---|
1236 | for segment in segments: |
---|
1237 | assert isinstance(segment, Triangle_intersection), msg |
---|
1238 | |
---|
1239 | midpoint = num.sum(num.array(segment.segment, num.float))/2 |
---|
1240 | midpoints.append(midpoint) |
---|
1241 | |
---|
1242 | return midpoints |
---|
1243 | |
---|
1244 | |
---|
1245 | |
---|