source: branches/numpy/anuga/abstract_2d_finite_volumes/quantity.py @ 6689

Last change on this file since 6689 was 6689, checked in by rwilson, 15 years ago

Back-merge from Numeric trunk to numpy branch.

File size: 58.5 KB
Line 
1"""Class Quantity - Implements values at each triangular element
2
3To create:
4
5   Quantity(domain, vertex_values)
6
7   domain: Associated domain structure. Required.
8
9   vertex_values: N x 3 array of values at each vertex for each element.
10                  Default None
11
12   If vertex_values are None Create array of zeros compatible with domain.
13   Otherwise check that it is compatible with dimenions of domain.
14   Otherwise raise an exception
15"""
16
17from anuga.utilities.numerical_tools import ensure_numeric, is_scalar
18from anuga.utilities.polygon import inside_polygon
19from anuga.geospatial_data.geospatial_data import Geospatial_data
20from anuga.fit_interpolate.fit import fit_to_mesh
21from anuga.config import points_file_block_line_size as default_block_line_size
22from anuga.config import epsilon
23from anuga.caching import cache
24
25import anuga.utilities.numerical_tools as aunt
26
27import numpy as num
28
29
30##
31# @brief Implement values at each triangular element.
32class Quantity:
33
34    ##
35    # @brief Construct values art each triangular element.
36    # @param domain ??
37    # @param vertex_values ??
38    def __init__(self, domain, vertex_values=None):
39        from anuga.abstract_2d_finite_volumes.domain import Domain
40
41        msg = ('First argument in Quantity.__init__() must be of class Domain '
42               '(or a subclass thereof). I got %s.' % str(domain.__class__))
43        assert isinstance(domain, Domain), msg
44
45        if vertex_values is None:
46            N = len(domain)             # number_of_elements
47            self.vertex_values = num.zeros((N, 3), num.float)
48        else:
49            self.vertex_values = num.array(vertex_values, num.float)
50
51            N, V = self.vertex_values.shape
52            assert V == 3, 'Three vertex values per element must be specified'
53
54            msg = 'Number of vertex values (%d) must be consistent with' % N
55            msg += 'number of elements in specified domain (%d).' % len(domain)
56            assert N == len(domain), msg
57
58        self.domain = domain
59
60        # Allocate space for other quantities
61        self.centroid_values = num.zeros(N, num.float)
62        self.edge_values = num.zeros((N, 3), num.float)
63
64        # Allocate space for Gradient
65        self.x_gradient = num.zeros(N, num.float)
66        self.y_gradient = num.zeros(N, num.float)
67
68        # Allocate space for Limiter Phi
69        self.phi = num.zeros(N, num.float)
70
71        # Intialise centroid and edge_values
72        self.interpolate()
73
74        # Allocate space for boundary values
75        L = len(domain.boundary)
76        self.boundary_values = num.zeros(L, num.float)
77
78        # Allocate space for updates of conserved quantities by
79        # flux calculations and forcing functions
80
81        # Allocate space for update fields
82        self.explicit_update = num.zeros(N, num.float )
83        self.semi_implicit_update = num.zeros(N, num.float )
84        self.centroid_backup_values = num.zeros(N, num.float)
85
86        self.set_beta(1.0)
87
88    ############################################################################
89    # Methods for operator overloading
90    ############################################################################
91
92    def __len__(self):
93        return self.centroid_values.shape[0]
94
95    def __neg__(self):
96        """Negate all values in this quantity giving meaning to the
97        expression -Q where Q is an instance of class Quantity
98        """
99
100        Q = Quantity(self.domain)
101        Q.set_values(-self.vertex_values)
102        return Q
103
104    def __add__(self, other):
105        """Add to self anything that could populate a quantity
106
107        E.g other can be a constant, an array, a function, another quantity
108        (except for a filename or points, attributes (for now))
109        - see set_values for details
110        """
111
112        Q = Quantity(self.domain)
113        Q.set_values(other)
114
115        result = Quantity(self.domain)
116        result.set_values(self.vertex_values + Q.vertex_values)
117        return result
118
119    def __radd__(self, other):
120        """Handle cases like 7+Q, where Q is an instance of class Quantity
121        """
122
123        return self + other
124
125    def __sub__(self, other):
126        return self + -other            # Invoke self.__neg__()
127
128    def __mul__(self, other):
129        """Multiply self with anything that could populate a quantity
130
131        E.g other can be a constant, an array, a function, another quantity
132        (except for a filename or points, attributes (for now))
133        - see set_values for details
134        """
135
136        if isinstance(other, Quantity):
137            Q = other
138        else:
139            Q = Quantity(self.domain)
140            Q.set_values(other)
141
142        result = Quantity(self.domain)
143
144        # The product of vertex_values, edge_values and centroid_values
145        # are calculated and assigned directly without using
146        # set_values (which calls interpolate). Otherwise
147        # edge and centroid values wouldn't be products from q1 and q2
148        result.vertex_values = self.vertex_values * Q.vertex_values
149        result.edge_values = self.edge_values * Q.edge_values
150        result.centroid_values = self.centroid_values * Q.centroid_values
151
152        return result
153
154    def __rmul__(self, other):
155        """Handle cases like 3*Q, where Q is an instance of class Quantity
156        """
157
158        return self * other
159
160    def __div__(self, other):
161        """Divide self with anything that could populate a quantity
162
163        E.g other can be a constant, an array, a function, another quantity
164        (except for a filename or points, attributes (for now))
165        - see set_values for details
166
167        Zero division is dealt with by adding an epsilon to the divisore
168        FIXME (Ole): Replace this with native INF once we migrate to NumPy
169        """
170
171        if isinstance(other, Quantity):
172            Q = other
173        else:
174            Q = Quantity(self.domain)
175            Q.set_values(other)
176
177        result = Quantity(self.domain)
178
179        # The quotient of vertex_values, edge_values and centroid_values
180        # are calculated and assigned directly without using
181        # set_values (which calls interpolate). Otherwise
182        # edge and centroid values wouldn't be quotient of q1 and q2
183        result.vertex_values = self.vertex_values/(Q.vertex_values + epsilon)
184        result.edge_values = self.edge_values/(Q.edge_values + epsilon)
185        result.centroid_values = self.centroid_values/(Q.centroid_values + epsilon)
186
187        return result
188
189    def __rdiv__(self, other):
190        """Handle cases like 3/Q, where Q is an instance of class Quantity
191        """
192
193        return self / other
194
195    def __pow__(self, other):
196        """Raise quantity to (numerical) power
197
198        As with __mul__ vertex values are processed entry by entry
199        while centroid and edge values are re-interpolated.
200
201        Example using __pow__:
202          Q = (Q1**2 + Q2**2)**0.5
203        """
204
205        if isinstance(other, Quantity):
206            Q = other
207        else:
208            Q = Quantity(self.domain)
209            Q.set_values(other)
210
211        result = Quantity(self.domain)
212
213        # The power of vertex_values, edge_values and centroid_values
214        # are calculated and assigned directly without using
215        # set_values (which calls interpolate). Otherwise
216        # edge and centroid values wouldn't be correct
217        result.vertex_values = self.vertex_values ** other
218        result.edge_values = self.edge_values ** other
219        result.centroid_values = self.centroid_values ** other
220
221        return result
222
223    ############################################################################
224    # Setters/Getters
225    ############################################################################
226
227    ##
228    # @brief Set default beta value for limiting.
229    # @param beta ??
230    def set_beta(self, beta):
231        """Set default beta value for limiting """
232
233        if beta < 0.0:
234            print 'WARNING: setting beta < 0.0'
235        if beta > 2.0:
236            print 'WARNING: setting beta > 2.0'
237
238        self.beta = beta
239
240    ##
241    # @brief Get the current beta value.
242    # @return The current beta value.
243    def get_beta(self):
244        """Get default beta value for limiting"""
245
246        return self.beta
247
248    ##
249    # @brief Compute interpolated values at edges and centroid.
250    # @note vertex_values must be set before calling this.
251    def interpolate(self):
252        """Compute interpolated values at edges and centroid
253        Pre-condition: vertex_values have been set
254        """
255
256        # FIXME (Ole): Maybe this function
257        # should move to the C-interface?
258        # However, it isn't called by validate_all.py, so it
259        # may not be that important to optimise it?
260
261        N = self.vertex_values.shape[0]
262        for i in range(N):
263            v0 = self.vertex_values[i, 0]
264            v1 = self.vertex_values[i, 1]
265            v2 = self.vertex_values[i, 2]
266
267            self.centroid_values[i] = (v0 + v1 + v2)/3
268
269        self.interpolate_from_vertices_to_edges()
270
271    ##
272    # @brief ??
273    def interpolate_from_vertices_to_edges(self):
274        # Call correct module function (either from this module or C-extension)
275        interpolate_from_vertices_to_edges(self)
276
277    ##
278    # @brief ??
279    def interpolate_from_edges_to_vertices(self):
280        # Call correct module function (either from this module or C-extension)
281        interpolate_from_edges_to_vertices(self)
282
283    #---------------------------------------------
284    # Public interface for setting quantity values
285    #---------------------------------------------
286
287    ##
288    # @brief Set values for quantity based on different sources.
289    # @param numeric A num array, list or constant value.
290    # @param quantity Another Quantity.
291    # @param function Any callable object that takes two 1d arrays.
292    # @param geospatial_data Arbitrary instance of class Geospatial_data
293    # @param filename Path to a points file.
294    # @param attribute_name If specified any array using that name will be used.
295    # @param alpha Smoothing parameter to be used with fit_interpolate.fit.
296    # @param location Where to store values (vertices, edges, centroids).
297    # @param polygon Restrict update to locations that fall inside polygon.
298    # @param indices Restrict update to locations specified by this.
299    # @param smooth If True, smooth vertex values.
300    # @param verbose True if this method is to be verbose.
301    # @param use_cache If True cache results for fit_interpolate.fit.
302    # @note Exactly one of 'numeric', 'quantity', 'function', 'filename'
303    #       must be present.
304    def set_values(self, numeric=None,         # List, numeric array or constant
305                         quantity=None,        # Another quantity
306                         function=None,        # Callable object: f(x,y)
307                         geospatial_data=None, # Arbitrary dataset
308                         filename=None,
309                         attribute_name=None,  # Input from file
310                         alpha=None,
311                         location='vertices',
312                         polygon=None,
313                         indices=None,
314                         smooth=False,
315                         verbose=False,
316                         use_cache=False):
317        """Set values for quantity based on different sources.
318
319        numeric:
320          Compatible list, numeric array (see below) or constant.
321          If callable it will treated as a function (see below)
322          If instance of another Quantity it will be treated as such.
323          If geo_spatial object it will be treated as such
324
325        quantity:
326          Another quantity (compatible quantity, e.g. obtained as a
327          linear combination of quantities)
328
329        function:
330          Any callable object that takes two 1d arrays x and y
331          each of length N and returns an array also of length N.
332          The function will be evaluated at points determined by
333          location and indices in the underlying mesh.
334
335        geospatial_data:
336          Arbitrary geo spatial dataset in the form of the class
337          Geospatial_data. Mesh points are populated using
338          fit_interpolate.fit fitting
339
340        filename:
341          Name of a points file containing data points and attributes for
342          use with fit_interpolate.fit.
343
344        attribute_name:
345          If specified, any array matching that name
346          will be used. from file or geospatial_data.
347          Otherwise a default will be used.
348
349        alpha:
350          Smoothing parameter to be used with fit_interpolate.fit.
351          See module fit_interpolate.fit for further details about alpha.
352          Alpha will only be used with points, values or filename.
353          Otherwise it will be ignored.
354
355
356        location: Where values are to be stored.
357                  Permissible options are: vertices, edges, centroids
358                  Default is 'vertices'
359
360                  In case of location == 'centroids' the dimension values must
361                  be a list of a numerical array of length N,
362                  N being the number of elements.
363                  Otherwise it must be of dimension Nx3
364
365
366                  The values will be stored in elements following their
367                  internal ordering.
368
369                  If location is 'unique vertices' indices refers the set
370                  of node ids that the operation applies to.
371                  If location is not 'unique vertices' indices refers the
372                  set of triangle ids that the operation applies to.
373
374
375                  If selected location is vertices, values for
376                  centroid and edges will be assigned interpolated
377                  values.  In any other case, only values for the
378                  specified locations will be assigned and the others
379                  will be left undefined.
380
381
382        polygon: Restrict update of quantity to locations that fall
383                 inside polygon. Polygon works by selecting indices
384                 and calling set_values recursively.
385                 Polygon mode has only been implemented for
386                 constant values so far.
387
388        indices: Restrict update of quantity to locations that are
389                 identified by indices (e.g. node ids if location
390                 is 'unique vertices' or triangle ids otherwise).
391
392        verbose: True means that output to stdout is generated
393
394        use_cache: True means that caching of intermediate results is
395                   attempted for fit_interpolate.fit.
396
397
398
399
400        Exactly one of the arguments
401          numeric, quantity, function, filename
402        must be present.
403        """
404
405        from anuga.geospatial_data.geospatial_data import Geospatial_data
406        from types import FloatType, IntType, LongType, ListType, NoneType
407
408        # Treat special case: Polygon situation
409        # Location will be ignored and set to 'centroids'
410        # FIXME (Ole): This needs to be generalised and
411        # perhaps the notion of location and indices simplified
412
413        # FIXME (Ole): Need to compute indices based on polygon
414        # (and location) and use existing code after that.
415
416        # See ticket:275, ticket:250, ticeket:254 for refactoring plan
417
418        if polygon is not None:
419            if indices is not None:
420                msg = 'Only one of polygon and indices can be specified'
421                raise Exception, msg
422
423            msg = 'With polygon selected, set_quantity must provide '
424            msg += 'the keyword numeric and it must (currently) be '
425            msg += 'a constant.'
426            if numeric is None:
427                raise Exception, msg
428            else:
429                # Check that numeric is as constant
430                assert type(numeric) in [FloatType, IntType, LongType], msg
431
432            location = 'centroids'
433
434            points = self.domain.get_centroid_coordinates(absolute=True)
435            indices = inside_polygon(points, polygon)
436
437            self.set_values_from_constant(numeric, location, indices, verbose)
438
439            self.extrapolate_first_order()
440
441            if smooth:
442                self.smooth_vertex_values(use_cache=use_cache,
443                                          verbose=verbose)
444
445            return
446
447        # General input checks
448        L = [numeric, quantity, function, geospatial_data, filename]
449        msg = ('Exactly one of the arguments numeric, quantity, function, '
450               'geospatial_data, or filename must be present.')
451        assert L.count(None) == len(L)-1, msg
452
453        if location == 'edges':
454            msg = 'edges has been deprecated as valid location'
455            raise Exception, msg
456
457        if location not in ['vertices', 'centroids', 'unique vertices']:
458            msg = 'Invalid location: %s' % location
459            raise Exception, msg
460
461        msg = 'Indices must be a list or None'
462        assert (indices is None
463                or isinstance(indices, (list, num.ndarray))), msg
464
465        # Determine which 'set_values_from_...' to use
466        if numeric is not None:
467            if isinstance(numeric, (list, num.ndarray)):
468                self.set_values_from_array(numeric, location, indices,
469                                           use_cache=use_cache, verbose=verbose)
470            elif callable(numeric):
471                self.set_values_from_function(numeric, location, indices,
472                                              use_cache=use_cache,
473                                              verbose=verbose)
474            elif isinstance(numeric, Quantity):
475                self.set_values_from_quantity(numeric, location, indices,
476                                              verbose=verbose)
477            elif isinstance(numeric, Geospatial_data):
478                self.set_values_from_geospatial_data(numeric, alpha, location,
479                                                     indices, verbose=verbose,
480                                                     use_cache=use_cache)
481            else:   # see if it's coercible to a float (float, int or long, etc)
482                try:
483                    numeric = float(numeric)
484                except ValueError:
485                    msg = ("Illegal type for variable 'numeric': %s"
486                           % type(numeric))
487                    raise Exception, msg
488                self.set_values_from_constant(numeric, location,
489                                              indices, verbose)
490        elif quantity is not None:
491            self.set_values_from_quantity(quantity, location, indices, verbose)
492        elif function is not None:
493            msg = 'Argument function must be callable'
494            assert callable(function), msg
495            self.set_values_from_function(function, location, indices,
496                                          use_cache=use_cache, verbose=verbose)
497        elif geospatial_data is not None:
498                self.set_values_from_geospatial_data(geospatial_data, alpha,
499                                                     location, indices,
500                                                     verbose=verbose,
501                                                     use_cache=use_cache)
502        elif filename is not None:
503            if hasattr(self.domain, 'points_file_block_line_size'):
504                max_read_lines = self.domain.points_file_block_line_size
505            else:
506                max_read_lines = default_block_line_size
507            self.set_values_from_file(filename, attribute_name, alpha, location,
508                                      indices, verbose=verbose,
509                                      max_read_lines=max_read_lines,
510                                      use_cache=use_cache)
511        else:
512            raise Exception, "This can't happen :-)"
513
514        # Update all locations in triangles
515        if location == 'vertices' or location == 'unique vertices':
516            # Intialise centroid and edge_values
517            self.interpolate()
518
519        if location == 'centroids':
520            # Extrapolate 1st order - to capture notion of area being specified
521            self.extrapolate_first_order()
522
523    ############################################################################
524    # Specific internal functions for setting values based on type
525    ############################################################################
526
527    ##
528    # @brief Set quantity values from specified constant.
529    # @param X The constant to set quantity values to.
530    # @param location
531    # @param indices
532    # @param verbose
533    def set_values_from_constant(self, X, location, indices, verbose):
534        """Set quantity values from specified constant X"""
535
536        # FIXME (Ole): Somehow indices refer to centroids
537        # rather than vertices as default. See unit test
538        # test_set_vertex_values_using_general_interface_with_subset(self):
539
540        if location == 'centroids':
541            if indices is None:
542                self.centroid_values[:] = X
543            else:
544                # Brute force
545                for i in indices:
546                    self.centroid_values[i] = X
547        elif location == 'unique vertices':
548            if indices is None:
549                self.edge_values[:] = X  #FIXME (Ole): Shouldn't this be vertex_values?
550            else:
551                # Go through list of unique vertices
552                for unique_vert_id in indices:
553                    triangles = \
554                        self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id)
555
556                    # In case there are unused points
557                    if len(triangles) == 0:
558                        continue
559
560                    # Go through all triangle, vertex pairs
561                    # and set corresponding vertex value
562                    for triangle_id, vertex_id in triangles:
563                        self.vertex_values[triangle_id, vertex_id] = X
564
565                    # Intialise centroid and edge_values
566                    self.interpolate()
567        else:
568            if indices is None:
569                self.vertex_values[:] = X
570            else:
571                # Brute force
572                for i_vertex in indices:
573                    self.vertex_values[i_vertex] = X
574
575    ##
576    # @brief Set values for a quantity.
577    # @param values Array of values.
578    # @param location Where values are to be stored.
579    # @param indices Limit update to these indices.
580    # @param use_cache ??
581    # @param verbose True if this method is to be verbose.
582    def set_values_from_array(self, values,
583                                    location='vertices',
584                                    indices=None,
585                                    use_cache=False,
586                                    verbose=False):
587        """Set values for quantity
588
589        values: numeric array
590        location: Where values are to be stored.
591        Permissible options are: vertices, centroid, unique vertices
592        Default is 'vertices'
593
594        indices - if this action is carried out on a subset of
595        elements or unique vertices
596        The element/unique vertex indices are specified here.
597
598        In case of location == 'centroid' the dimension values must
599        be a list of a numerical array of length N, N being the number
600        of elements.
601
602        Otherwise it must be of dimension Nx3
603
604        The values will be stored in elements following their
605        internal ordering.
606
607        If selected location is vertices, values for centroid and edges
608        will be assigned interpolated values.
609        In any other case, only values for the specified locations
610        will be assigned and the others will be left undefined.
611        """
612
613        values = num.array(values, num.float)
614
615        if indices is not None:
616            indices = num.array(indices, num.int)
617            msg = ('Number of values must match number of indices: You '
618                   'specified %d values and %d indices'
619                   % (values.shape[0], indices.shape[0]))
620            assert values.shape[0] == indices.shape[0], msg
621
622        N = self.centroid_values.shape[0]
623
624        if location == 'centroids':
625            assert len(values.shape) == 1, 'Values array must be 1d'
626
627            if indices is None:
628                msg = 'Number of values must match number of elements'
629                assert values.shape[0] == N, msg
630
631                self.centroid_values = values
632            else:
633                msg = 'Number of values must match number of indices'
634                assert values.shape[0] == indices.shape[0], msg
635
636                # Brute force
637                for i in range(len(indices)):
638                    self.centroid_values[indices[i]] = values[i]
639        elif location == 'unique vertices':
640            assert (len(values.shape) == 1 or num.allclose(values.shape[1:], 1),
641                    'Values array must be 1d')
642
643            self.set_vertex_values(values.flatten(), indices=indices,
644                                   use_cache=use_cache, verbose=verbose)
645        else:
646            # Location vertices
647            if len(values.shape) == 1:
648                # This is the common case arising from fitted
649                # values (e.g. from pts file).
650                self.set_vertex_values(values, indices=indices,
651                                       use_cache=use_cache, verbose=verbose)
652            elif len(values.shape) == 2:
653                # Vertex values are given as a triplet for each triangle
654                msg = 'Array must be N x 3'
655                assert values.shape[1] == 3, msg
656
657                if indices is None:
658                    self.vertex_values = values
659                else:
660                    for element_index, value in map(None, indices, values):
661                        self.vertex_values[element_index] = value
662            else:
663                msg = 'Values array must be 1d or 2d'
664                raise Exception, msg
665
666    ##
667    # @brief Set quantity values from a specified quantity instance.
668    # @param q The quantity instance to take values from.
669    # @param location IGNORED, 'vertices' ALWAYS USED!
670    # @param indices ??
671    # @param verbose True if this method is to be verbose.
672    def set_values_from_quantity(self, q, location, indices, verbose):
673        """Set quantity values from specified quantity instance q
674
675        Location is ignored - vertices will always be used here.
676        """
677
678
679        A = q.vertex_values
680
681        msg = 'Quantities are defined on different meshes. '+\
682              'This might be a case for implementing interpolation '+\
683              'between different meshes.'
684        assert num.allclose(A.shape, self.vertex_values.shape), msg
685
686        self.set_values(A, location='vertices',
687                        indices=indices, verbose=verbose)
688
689    ##
690    # @brief Set quantity values from a specified quantity instance.
691    # @param f Callable that takes two 1d array -> 1d array.
692    # @param location Where values are to be stored.
693    # @param indices ??
694    # @param use_cache ??
695    # @param verbose True if this method is to be verbose.
696    def set_values_from_function(self,
697                                 f,
698                                 location='vertices',
699                                 indices=None,
700                                 use_cache=False,
701                                 verbose=False):
702        """Set values for quantity using specified function
703
704        Input
705        f: x, y -> z Function where x, y and z are arrays
706        location: Where values are to be stored.
707                  Permissible options are: vertices, centroid,
708                  unique vertices
709                  Default is "vertices"
710        indices:
711        """
712
713        # FIXME: Should check that function returns something sensible and
714        # raise a meaningful exception if it returns None for example
715
716        # FIXME: Should supply absolute coordinates
717
718        # Compute the function values and call set_values again
719        if location == 'centroids':
720            if indices is None:
721                indices = range(len(self))
722
723            V = num.take(self.domain.get_centroid_coordinates(), indices, axis=0)
724            x = V[:,0]; y = V[:,1]
725            if use_cache is True:
726                res = cache(f, (x, y), verbose=verbose)
727            else:
728                res = f(x, y)
729
730            self.set_values(res, location=location, indices=indices)
731        elif location == 'vertices':
732            # This is the default branch taken by set_quantity
733            M = self.domain.number_of_triangles
734            V = self.domain.get_vertex_coordinates()
735
736            x = V[:,0];
737            y = V[:,1]
738            if use_cache is True:
739                #print 'Caching function'
740                values = cache(f, (x, y), verbose=verbose)               
741            else:
742                if verbose is True:
743                    print 'Evaluating function in set_values'
744                values = f(x, y)
745
746            # FIXME (Ole): This code should replace all the
747            # rest of this function and it would work, except
748            # one unit test in test_region fails.
749            # If that could be resolved this one will be
750            # more robust and simple.
751
752            # This should be removed
753            if is_scalar(values):
754                # Function returned a constant value
755                self.set_values_from_constant(values, location,
756                                              indices, verbose)
757                return
758
759            # This should be removed
760            if indices is None:
761                for j in range(3):
762                    self.vertex_values[:, j] = values[j::3]
763            else:
764                # Brute force
765                for i in indices:
766                    for j in range(3):
767                        self.vertex_values[i, j] = values[3*i + j]
768        else:
769            raise Exception, 'Not implemented: %s' % location
770
771    ##
772    # @brief Set values based on geo referenced geospatial data object.
773    # @param geospatial_data ??
774    # @param alpha ??
775    # @param location ??
776    # @param indices ??
777    # @param verbose ??
778    # @param use_cache ??
779    def set_values_from_geospatial_data(self,
780                                        geospatial_data,
781                                        alpha,
782                                        location,
783                                        indices,
784                                        verbose=False,
785                                        use_cache=False):
786        """Set values based on geo referenced geospatial data object."""
787
788        from anuga.coordinate_transforms.geo_reference import Geo_reference
789
790        points = geospatial_data.get_data_points(absolute=False)
791        values = geospatial_data.get_attributes()
792        data_georef = geospatial_data.get_geo_reference()
793
794        from anuga.coordinate_transforms.geo_reference import Geo_reference
795
796        points = ensure_numeric(points, num.float)
797        values = ensure_numeric(values, num.float)
798
799        if location != 'vertices':
800            msg = ("set_values_from_points is only defined for "
801                   "location='vertices'")
802            raise Exception, msg
803
804        # Take care of georeferencing
805        if data_georef is None:
806            data_georef = Geo_reference()
807
808        mesh_georef = self.domain.geo_reference
809
810        # Call fit_interpolate.fit function
811        args = (points, )
812        kwargs = {'vertex_coordinates': None,
813                  'triangles': None,
814                  'mesh': self.domain.mesh,
815                  'point_attributes': values,
816                  'data_origin': data_georef.get_origin(),
817                  'mesh_origin': mesh_georef.get_origin(),
818                  'alpha': alpha,
819                  'verbose': verbose}
820
821        vertex_attributes = apply(fit_to_mesh, args, kwargs)
822
823        # Call underlying method using array values
824        self.set_values_from_array(vertex_attributes, location, indices,
825                                   use_cache=use_cache, verbose=verbose)
826
827    ##
828    # @brief Set quantity values from arbitray data points.
829    # @param points ??
830    # @param values ??
831    # @param alpha ??
832    # @param location ??
833    # @param indices ??
834    # @param data_georef ??
835    # @param verbose True if this method is to be verbose.
836    # @param use_cache ??
837    def set_values_from_points(self,
838                               points,
839                               values,
840                               alpha,
841                               location,
842                               indices,
843                               data_georef=None,
844                               verbose=False,
845                               use_cache=False):
846        """Set quantity values from arbitray data points using fit_interpolate.fit"""
847
848        raise Exception, 'set_values_from_points is obsolete, use geospatial data object instead'
849
850    ##
851    # @brief Set quantity based on arbitrary points in a points file.
852    # @param filename Path to the points file.
853    # @param attribute_name
854    # @param alpha
855    # @param location
856    # @param indices
857    # @param verbose True if this method is to be verbose.
858    # @param use_cache
859    # @param max_read_lines
860    def set_values_from_file(self,
861                             filename,
862                             attribute_name,
863                             alpha,
864                             location,
865                             indices,
866                             verbose=False,
867                             use_cache=False,
868                             max_read_lines=None):
869        """Set quantity based on arbitrary points in a points file using
870        attribute_name selects name of attribute present in file.
871        If attribute_name is not specified, use first available attribute
872        as defined in geospatial_data.
873        """
874
875        from types import StringType
876
877        msg = 'Filename must be a text string'
878        assert type(filename) == StringType, msg
879
880        if location != 'vertices':
881            msg = "set_values_from_file is only defined for location='vertices'"
882            raise Exception, msg
883
884           
885        if True:
886            # Use mesh as defined by domain
887            # This used to cause problems for caching due to quantities
888            # changing, but it now works using the appropriate Mesh object.
889            # This addressed ticket:242 and was made to work when bug
890            # in ticket:314 was fixed 18 March 2009.
891            vertex_attributes = fit_to_mesh(filename,
892                                            mesh=self.domain.mesh,
893                                            alpha=alpha,
894                                            attribute_name=attribute_name,
895                                            use_cache=use_cache,
896                                            verbose=verbose,
897                                            max_read_lines=max_read_lines)
898        else:
899            # This variant will cause Mesh object to be recreated
900            # in fit_to_mesh thus doubling up on the neighbour structure
901            # FIXME(Ole): This is now obsolete 19 Jan 2009 except for bug
902            # (ticket:314) which was fixed 18 March 2009.
903            nodes = self.domain.get_nodes(absolute=True)
904            triangles = self.domain.get_triangles()
905            vertex_attributes = fit_to_mesh(filename,
906                                            nodes, triangles,
907                                            mesh=None,
908                                            alpha=alpha,
909                                            attribute_name=attribute_name,
910                                            use_cache=use_cache,
911                                            verbose=verbose,
912                                            max_read_lines=max_read_lines)
913
914        # Call underlying method using array values
915        if verbose:
916            print 'Applying fitted data to domain'
917        self.set_values_from_array(vertex_attributes, location,
918                                   indices, use_cache=use_cache,
919                                   verbose=verbose)
920
921    ##
922    # @brief Get index for maximum or minimum value of quantity.
923    # @param mode Either 'max' or 'min'.
924    # @param indices Set of IDs of elements to work on.
925    def get_extremum_index(self, mode=None, indices=None):
926        """Return index for maximum or minimum value of quantity (on centroids)
927
928        Optional arguments:
929            mode is either 'max'(default) or 'min'.
930            indices is the set of element ids that the operation applies to.
931
932        Usage:
933            i = get_extreme_index()
934
935        Notes:
936            We do not seek the extremum at vertices as each vertex can
937            have multiple values - one for each triangle sharing it.
938
939            If there are multiple cells with same maximum value, the
940            first cell encountered in the triangle array is returned.
941        """
942
943        V = self.get_values(location='centroids', indices=indices)
944
945        # Always return absolute indices
946        if mode is None or mode == 'max':
947            i = num.argmax(V)
948        elif mode == 'min':
949            i = num.argmin(V)
950        else:
951            raise ValueError, 'Bad mode value, got: %s' % str(mode)
952
953        if indices is None:
954            return i
955        else:
956            return indices[i]
957
958    ##
959    # @brief Get index for maximum value of quantity.
960    # @param indices Set of IDs of elements to work on.
961    def get_maximum_index(self, indices=None):
962        """See get extreme index for details"""
963
964        return self.get_extremum_index(mode='max', indices=indices)
965
966    ##
967    # @brief Return maximum value of quantity (on centroids).
968    # @param indices Set of IDs of elements to work on.
969    def get_maximum_value(self, indices=None):
970        """Return maximum value of quantity (on centroids)
971
972        Optional argument:
973            indices is the set of element ids that the operation applies to.
974
975        Usage:
976            v = get_maximum_value()
977
978        Note, we do not seek the maximum at vertices as each vertex can
979        have multiple values - one for each triangle sharing it
980        """
981
982        i = self.get_maximum_index(indices)
983        V = self.get_values(location='centroids')      #, indices=indices)
984
985        return V[i]
986
987    ##
988    # @brief Get location of maximum value of quantity (on centroids).
989    # @param indices Set of IDs of elements to work on.
990    def get_maximum_location(self, indices=None):
991        """Return location of maximum value of quantity (on centroids)
992
993        Optional argument:
994            indices is the set of element ids that the operation applies to.
995
996        Usage:
997            x, y = get_maximum_location()
998
999        Notes:
1000            We do not seek the maximum at vertices as each vertex can
1001            have multiple values - one for each triangle sharing it.
1002
1003            If there are multiple cells with same maximum value, the
1004            first cell encountered in the triangle array is returned.
1005        """
1006
1007        i = self.get_maximum_index(indices)
1008        x, y = self.domain.get_centroid_coordinates()[i]
1009
1010        return x, y
1011
1012    ##
1013    # @brief  Get index for minimum value of quantity.
1014    # @param indices Set of IDs of elements to work on.
1015    def get_minimum_index(self, indices=None):
1016        """See get extreme index for details"""
1017
1018        return self.get_extremum_index(mode='min', indices=indices)
1019
1020    ##
1021    # @brief Return minimum value of quantity (on centroids).
1022    # @param indices Set of IDs of elements to work on.
1023    def get_minimum_value(self, indices=None):
1024        """Return minimum value of quantity (on centroids)
1025
1026        Optional argument:
1027            indices is the set of element ids that the operation applies to.
1028
1029        Usage:
1030            v = get_minimum_value()
1031
1032        See get_maximum_value for more details.
1033        """
1034
1035        i = self.get_minimum_index(indices)
1036        V = self.get_values(location='centroids')
1037
1038        return V[i]
1039
1040
1041    ##
1042    # @brief Get location of minimum value of quantity (on centroids).
1043    # @param indices Set of IDs of elements to work on.
1044    def get_minimum_location(self, indices=None):
1045        """Return location of minimum value of quantity (on centroids)
1046
1047        Optional argument:
1048            indices is the set of element ids that the operation applies to.
1049
1050        Usage:
1051            x, y = get_minimum_location()
1052
1053        Notes:
1054            We do not seek the maximum at vertices as each vertex can
1055            have multiple values - one for each triangle sharing it.
1056
1057            If there are multiple cells with same maximum value, the
1058            first cell encountered in the triangle array is returned.
1059        """
1060
1061        i = self.get_minimum_index(indices)
1062        x, y = self.domain.get_centroid_coordinates()[i]
1063
1064        return x, y
1065
1066    ##
1067    # @brief Get values at interpolation points.
1068    # @param interpolation_points List of UTM coords or geospatial data object.
1069    # @param use_cache ??
1070    # @param verbose True if this method is to be verbose.
1071    def get_interpolated_values(self,
1072                                interpolation_points,
1073                                use_cache=False,
1074                                verbose=False):
1075        """Get values at interpolation points
1076
1077        The argument interpolation points must be given as either a
1078        list of absolute UTM coordinates or a geospatial data object.
1079        """
1080
1081        # FIXME (Ole): Points might be converted to coordinates relative to mesh origin
1082        # This could all be refactored using the
1083        # 'change_points_geo_ref' method of Class geo_reference.
1084        # The purpose is to make interpolation points relative
1085        # to the mesh origin.
1086        #
1087        # Speed is also a consideration here.
1088
1089        # Ensure that interpolation points is either a list of
1090        # points, Nx2 array, or geospatial and convert to numeric array
1091        if isinstance(interpolation_points, Geospatial_data):
1092            # Ensure interpolation points are in absolute UTM coordinates
1093            interpolation_points = \
1094                interpolation_points.get_data_points(absolute=True)
1095
1096        # Reconcile interpolation points with georeference of domain
1097        interpolation_points = \
1098            self.domain.geo_reference.get_relative(interpolation_points)
1099        interpolation_points = ensure_numeric(interpolation_points)
1100
1101
1102        # Get internal representation (disconnected) of vertex values
1103        vertex_values, triangles = self.get_vertex_values(xy=False,
1104                                                          smooth=False)
1105
1106        # Get possibly precomputed interpolation object
1107        I = self.domain.get_interpolation_object()
1108
1109        # Call interpolate method with interpolation points
1110        result = I.interpolate_block(vertex_values, interpolation_points,
1111                                     use_cache=use_cache, verbose=verbose)
1112
1113        return result
1114
1115    ##
1116    # @brief Get values as an array.
1117    # @param interpolation_points List of coords to get values at.
1118    # @param location Where to store results.
1119    # @param indices Set of IDs of elements to work on.
1120    # @param use_cache
1121    # @param verbose True if this method is to be verbose.
1122    def get_values(self,
1123                   interpolation_points=None,
1124                   location='vertices',
1125                   indices=None,
1126                   use_cache=False,
1127                   verbose=False):
1128        """Get values for quantity
1129
1130        Extract values for quantity as a numeric array.
1131
1132        Inputs:
1133           interpolation_points: List of x, y coordinates where value is
1134                                 sought (using interpolation). If points
1135                                 are given, values of location and indices
1136                                 are ignored. Assume either absolute UTM
1137                                 coordinates or geospatial data object.
1138
1139           location: Where values are to be stored.
1140                     Permissible options are: vertices, edges, centroids
1141                     and unique vertices. Default is 'vertices'
1142
1143
1144        The returned values will have the leading dimension equal to length of the indices list or
1145        N (all values) if indices is None.
1146
1147        In case of location == 'centroids' the dimension of returned
1148        values will be a list or a numerical array of length N, N being
1149        the number of elements.
1150
1151        In case of location == 'vertices' or 'edges' the dimension of
1152        returned values will be of dimension Nx3
1153
1154        In case of location == 'unique vertices' the average value at
1155        each vertex will be returned and the dimension of returned values
1156        will be a 1d array of length "number of vertices"
1157
1158        Indices is the set of element ids that the operation applies to.
1159
1160        The values will be stored in elements following their
1161        internal ordering.
1162        """
1163
1164        # FIXME (Ole): I reckon we should have the option of passing a
1165        #              polygon into get_values. The question becomes how
1166        #              resulting values should be ordered.
1167
1168        if verbose is True:
1169            print 'Getting values from %s' % location
1170
1171        if interpolation_points is not None:
1172            return self.get_interpolated_values(interpolation_points,
1173                                                use_cache=use_cache,
1174                                                verbose=verbose)
1175
1176        # FIXME (Ole): Consider deprecating 'edges' - but not if it is used
1177        # elsewhere in ANUGA.
1178        # Edges have already been deprecated in set_values, see changeset:5521,
1179        # but *might* be useful in get_values. Any thoughts anyone?
1180
1181        if location not in ['vertices', 'centroids',
1182                            'edges', 'unique vertices']:
1183            msg = 'Invalid location: %s' % location
1184            raise Exception, msg
1185
1186        import types
1187
1188        msg = 'Indices must be a list or None'
1189        assert indices is None or isinstance(indices, (list, num.ndarray)), msg
1190
1191        if location == 'centroids':
1192            if (indices ==  None):
1193                indices = range(len(self))
1194            return num.take(self.centroid_values, indices, axis=0)
1195        elif location == 'edges':
1196            if (indices ==  None):
1197                indices = range(len(self))
1198            return num.take(self.edge_values, indices, axis=0)
1199        elif location == 'unique vertices':
1200            if (indices ==  None):
1201                indices=range(self.domain.get_number_of_nodes())
1202            vert_values = []
1203
1204            # Go through list of unique vertices
1205            for unique_vert_id in indices:
1206                triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id)
1207
1208                # In case there are unused points
1209                if len(triangles) == 0:
1210                    msg = 'Unique vertex not associated with triangles'
1211                    raise Exception, msg
1212
1213                # Go through all triangle, vertex pairs
1214                # Average the values
1215                # FIXME (Ole): Should we merge this with get_vertex_values
1216                sum = 0
1217                for triangle_id, vertex_id in triangles:
1218                    sum += self.vertex_values[triangle_id, vertex_id]
1219                vert_values.append(sum / len(triangles))
1220            return num.array(vert_values, num.float)
1221        else:
1222            if (indices is None):
1223                indices = range(len(self))
1224            return num.take(self.vertex_values, indices, axis=0)
1225
1226    ##
1227    # @brief Set vertex values for all unique vertices based on array.
1228    # @param A Array to set values with.
1229    # @param indices Set of IDs of elements to work on.
1230    # @param use_cache ??
1231    # @param verbose??
1232    def set_vertex_values(self,
1233                          A,
1234                          indices=None,
1235                          use_cache=False,
1236                          verbose=False):
1237        """Set vertex values for all unique vertices based on input array A
1238        which has one entry per unique vertex, i.e. one value for each row in
1239        array self.domain.nodes.
1240
1241        indices is the list of vertex_id's that will be set.
1242
1243        This function is used by set_values_from_array
1244        """
1245
1246        # Check that A can be converted to array and is of appropriate dim
1247        A = ensure_numeric(A, num.float)
1248        assert len(A.shape) == 1
1249
1250        if indices is None:
1251            assert A.shape[0] == self.domain.get_nodes().shape[0]
1252            vertex_list = range(A.shape[0])
1253        else:
1254            assert A.shape[0] == len(indices)
1255            vertex_list = indices
1256
1257        #FIXME(Ole): This function ought to be faster.
1258        # We need to get the triangles_and_vertices list
1259        # from domain in one hit, then cache the computation of the
1260        # Nx3 array of vertex values that can then be assigned using
1261        # set_values_from_array.
1262        #
1263        # Alternatively, some C code would be handy
1264        #
1265        self._set_vertex_values(vertex_list, A)
1266           
1267    ##
1268    # @brief Go through list of unique vertices.
1269    # @param vertex_list ??
1270    # @param A ??
1271    def _set_vertex_values(self, vertex_list, A):
1272        """Go through list of unique vertices
1273        This is the common case e.g. when values
1274        are obtained from a pts file through fitting
1275        """
1276
1277        # Go through list of unique vertices
1278        for i_index, unique_vert_id in enumerate(vertex_list):
1279            triangles = self.domain.get_triangles_and_vertices_per_node(node=unique_vert_id)
1280
1281            # In case there are unused points
1282            if len(triangles) == 0:
1283                continue
1284
1285            # Go through all triangle, vertex pairs
1286            # touching vertex unique_vert_id and set corresponding vertex value
1287            for triangle_id, vertex_id in triangles:
1288                self.vertex_values[triangle_id, vertex_id] = A[i_index]
1289
1290        # Intialise centroid and edge_values
1291        self.interpolate()
1292
1293    ##
1294    # @brief Smooth vertex values.
1295    def smooth_vertex_values(self, use_cache=False, verbose=False):
1296        """Smooths vertex values."""
1297
1298        A, V = self.get_vertex_values(xy=False, smooth=True)
1299        self.set_vertex_values(A, use_cache=use_cache, verbose=verbose)
1300
1301    ############################################################################
1302    # Methods for outputting model results
1303    ############################################################################
1304
1305    ##
1306    # @brief Get vertex values like an OBJ format i.e. one value per node.
1307    # @param xy True if we return X and Y as well as A and V.
1308    # @param smooth True if vertex values are to be smoothed.
1309    # @param precision The type of the result values (default float).
1310    def get_vertex_values(self, xy=True, smooth=None, precision=None):
1311        """Return vertex values like an OBJ format i.e. one value per node.
1312
1313        The vertex values are returned as one sequence in the 1D float array A.
1314        If requested the coordinates will be returned in 1D arrays X and Y.
1315
1316        The connectivity is represented as an integer array, V, of dimension
1317        Mx3, where M is the number of triangles. Each row has three indices
1318        defining the triangle and they correspond to elements in the arrays
1319        X, Y and A.
1320
1321        If smooth is True, vertex values corresponding to one common coordinate
1322        set will be smoothed by taking the average of vertex values for each
1323        node.  In this case vertex coordinates will be de-duplicated
1324        corresponding to the original nodes as obtained from the method
1325        general_mesh.get_nodes()
1326
1327        If no smoothings is required, vertex coordinates and values will be
1328        aggregated as a concatenation of values at vertices 0, vertices 1 and
1329        vertices 2.  This corresponds to the node coordinates obtained from the
1330        method general_mesh.get_vertex_coordinates()
1331
1332        Calling convention
1333        if xy is True:
1334           X, Y, A, V = get_vertex_values
1335        else:
1336           A, V = get_vertex_values
1337        """
1338
1339        if smooth is None:
1340            # Take default from domain
1341            try:
1342                smooth = self.domain.smooth
1343            except:
1344                smooth = False
1345
1346        if precision is None:
1347            precision = num.float
1348
1349        if smooth is True:
1350            # Ensure continuous vertex values by averaging values at each node
1351            V = self.domain.get_triangles()
1352            N = self.domain.number_of_full_nodes # Ignore ghost nodes if any
1353            A = num.zeros(N, num.float)
1354            points = self.domain.get_nodes()
1355
1356            if 1:
1357                # Fast C version
1358                average_vertex_values(ensure_numeric(self.domain.vertex_value_indices),
1359                                      ensure_numeric(self.domain.number_of_triangles_per_node),
1360                                      ensure_numeric(self.vertex_values),
1361                                      A)
1362                A = A.astype(precision)
1363            else:
1364                # Slow Python version
1365                current_node = 0
1366                k = 0 # Track triangles touching on node
1367                total = 0.0
1368                for index in self.domain.vertex_value_indices:
1369                    if current_node == N:
1370                        msg = 'Current node exceeding number of nodes (%d) ' % N
1371                        raise Exception, msg
1372
1373                    k += 1
1374
1375                    volume_id = index / 3
1376                    vertex_id = index % 3
1377
1378                    v = self.vertex_values[volume_id, vertex_id]
1379                    total += v
1380
1381                    if self.domain.number_of_triangles_per_node[current_node] == k:
1382                        A[current_node] = total/k
1383
1384                        # Move on to next node
1385                        total = 0.0
1386                        k = 0
1387                        current_node += 1
1388        else:
1389            # Return disconnected internal vertex values
1390            V = self.domain.get_disconnected_triangles()
1391            points = self.domain.get_vertex_coordinates()
1392            A = self.vertex_values.flatten().astype(precision)
1393
1394        # Return
1395        if xy is True:
1396            X = points[:,0].astype(precision)
1397            Y = points[:,1].astype(precision)
1398
1399            return X, Y, A, V
1400        else:
1401            return A, V
1402
1403    ##
1404    # @brief Extrapolate conserved quantities from centroid.
1405    def extrapolate_first_order(self):
1406        """Extrapolate conserved quantities from centroid to vertices and edges
1407        for each volume using first order scheme.
1408        """
1409
1410        qc = self.centroid_values
1411        qv = self.vertex_values
1412        qe = self.edge_values
1413
1414        for i in range(3):
1415            qv[:,i] = qc
1416            qe[:,i] = qc
1417
1418        self.x_gradient *= 0.0
1419        self.y_gradient *= 0.0
1420
1421    ##
1422    # @brief Compute the integral of quantity across entire domain.
1423    # @return The integral.
1424    def get_integral(self):
1425        """Compute the integral of quantity across entire domain."""
1426
1427        areas = self.domain.get_areas()
1428        integral = 0
1429        for k in range(len(self.domain)):
1430            area = areas[k]
1431            qc = self.centroid_values[k]
1432            integral += qc*area
1433
1434        return integral
1435
1436    ##
1437    # @brief get the gradients.
1438    def get_gradients(self):
1439        """Provide gradients. Use compute_gradients first."""
1440
1441        return self.x_gradient, self.y_gradient
1442
1443    ##
1444    # @brief ??
1445    # @param timestep ??
1446    def update(self, timestep):
1447        # Call correct module function
1448        # (either from this module or C-extension)
1449        return update(self, timestep)
1450
1451    ##
1452    # @brief ??
1453    def compute_gradients(self):
1454        # Call correct module function
1455        # (either from this module or C-extension)
1456        return compute_gradients(self)
1457
1458    ##
1459    # @brief ??
1460    def limit(self):
1461        # Call correct module depending on whether
1462        # basing limit calculations on edges or vertices
1463        limit_old(self)
1464
1465    ##
1466    # @brief ??
1467    def limit_vertices_by_all_neighbours(self):
1468        # Call correct module function
1469        # (either from this module or C-extension)
1470        limit_vertices_by_all_neighbours(self)
1471
1472    ##
1473    # @brief ??
1474    def limit_edges_by_all_neighbours(self):
1475        # Call correct module function
1476        # (either from this module or C-extension)
1477        limit_edges_by_all_neighbours(self)
1478
1479    ##
1480    # @brief ??
1481    def limit_edges_by_neighbour(self):
1482        # Call correct module function
1483        # (either from this module or C-extension)
1484        limit_edges_by_neighbour(self)
1485
1486    ##
1487    # @brief ??
1488    def extrapolate_second_order(self):
1489        # Call correct module function
1490        # (either from this module or C-extension)
1491        compute_gradients(self)
1492        extrapolate_from_gradient(self)
1493
1494    ##
1495    # @brief ??
1496    def extrapolate_second_order_and_limit_by_edge(self):
1497        # Call correct module function
1498        # (either from this module or C-extension)
1499        extrapolate_second_order_and_limit_by_edge(self)
1500
1501    ##
1502    # @brief ??
1503    def extrapolate_second_order_and_limit_by_vertex(self):
1504        # Call correct module function
1505        # (either from this module or C-extension)
1506        extrapolate_second_order_and_limit_by_vertex(self)
1507
1508    ##
1509    # @brief ??
1510    # @param bound ??
1511    def bound_vertices_below_by_constant(self, bound):
1512        # Call correct module function
1513        # (either from this module or C-extension)
1514        bound_vertices_below_by_constant(self, bound)
1515
1516    ##
1517    # @brief ??
1518    # @param quantity ??
1519    def bound_vertices_below_by_quantity(self, quantity):
1520        # Call correct module function
1521        # (either from this module or C-extension)
1522
1523        # check consistency
1524        assert self.domain == quantity.domain
1525        bound_vertices_below_by_quantity(self, quantity)
1526
1527    ##
1528    # @brief ??
1529    def backup_centroid_values(self):
1530        # Call correct module function
1531        # (either from this module or C-extension)
1532        backup_centroid_values(self)
1533
1534    ##
1535    # @brief ??
1536    # @param a ??
1537    # @param b ??
1538    def saxpy_centroid_values(self, a, b):
1539        # Call correct module function
1540        # (either from this module or C-extension)
1541        saxpy_centroid_values(self, a, b)
1542
1543
1544##
1545# @brief OBSOLETE!
1546class Conserved_quantity(Quantity):
1547    """Class conserved quantity being removed, use Quantity."""
1548
1549    def __init__(self, domain, vertex_values=None):
1550        msg = 'ERROR: Use Quantity instead of Conserved_quantity'
1551        raise Exception, msg
1552
1553
1554######
1555# Prepare the C extensions.
1556######
1557
1558from anuga.utilities import compile
1559
1560if compile.can_use_C_extension('quantity_ext.c'):
1561    # Underlying C implementations can be accessed
1562
1563    from quantity_ext import \
1564         average_vertex_values,\
1565         backup_centroid_values,\
1566         saxpy_centroid_values,\
1567         compute_gradients,\
1568         limit_old,\
1569         limit_vertices_by_all_neighbours,\
1570         limit_edges_by_all_neighbours,\
1571         limit_edges_by_neighbour,\
1572         limit_gradient_by_neighbour,\
1573         extrapolate_from_gradient,\
1574         extrapolate_second_order_and_limit_by_edge,\
1575         extrapolate_second_order_and_limit_by_vertex,\
1576         bound_vertices_below_by_constant,\
1577         bound_vertices_below_by_quantity,\
1578         interpolate_from_vertices_to_edges,\
1579         interpolate_from_edges_to_vertices,\
1580         update
1581else:
1582    msg = 'C implementations could not be accessed by %s.\n ' % __file__
1583    msg += 'Make sure compile_all.py has been run as described in '
1584    msg += 'the ANUGA installation guide.'
1585    raise Exception, msg
Note: See TracBrowser for help on using the repository browser.