1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest |
---|
4 | from math import sqrt, pi |
---|
5 | import tempfile |
---|
6 | |
---|
7 | from quantity import * |
---|
8 | from anuga.config import epsilon |
---|
9 | |
---|
10 | from anuga.fit_interpolate.fit import fit_to_mesh |
---|
11 | #from anuga.pyvolution.least_squares import fit_to_mesh |
---|
12 | from anuga.abstract_2d_finite_volumes.domain import Domain |
---|
13 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
14 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
15 | from anuga.utilities.polygon import * |
---|
16 | |
---|
17 | import numpy as num |
---|
18 | |
---|
19 | |
---|
20 | #Aux for fit_interpolate.fit example |
---|
21 | def linear_function(point): |
---|
22 | point = num.array(point) |
---|
23 | return point[:,0]+point[:,1] |
---|
24 | |
---|
25 | |
---|
26 | class Test_Quantity(unittest.TestCase): |
---|
27 | def setUp(self): |
---|
28 | |
---|
29 | a = [0.0, 0.0] |
---|
30 | b = [0.0, 2.0] |
---|
31 | c = [2.0, 0.0] |
---|
32 | d = [0.0, 4.0] |
---|
33 | e = [2.0, 2.0] |
---|
34 | f = [4.0, 0.0] |
---|
35 | |
---|
36 | points = [a, b, c, d, e, f] |
---|
37 | |
---|
38 | #bac, bce, ecf, dbe |
---|
39 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
40 | |
---|
41 | self.mesh1 = Domain(points[:3], [elements[0]]) |
---|
42 | self.mesh1.check_integrity() |
---|
43 | |
---|
44 | #print self.mesh1.__class__ |
---|
45 | #print isinstance(self.mesh1, Domain) |
---|
46 | |
---|
47 | self.mesh4 = Domain(points, elements) |
---|
48 | self.mesh4.check_integrity() |
---|
49 | |
---|
50 | # UTM round Onslow |
---|
51 | a = [240000, 7620000] |
---|
52 | b = [240000, 7680000] |
---|
53 | c = [300000, 7620000] |
---|
54 | |
---|
55 | points = [a, b, c] |
---|
56 | elements = [[0,2,1]] |
---|
57 | |
---|
58 | self.mesh_onslow = Domain(points, elements) |
---|
59 | self.mesh_onslow.check_integrity() |
---|
60 | |
---|
61 | def tearDown(self): |
---|
62 | pass |
---|
63 | #print " Tearing down" |
---|
64 | |
---|
65 | |
---|
66 | def test_creation(self): |
---|
67 | |
---|
68 | quantity = Quantity(self.mesh1, [[1,2,3]]) |
---|
69 | assert num.allclose(quantity.vertex_values, [[1.,2.,3.]]) |
---|
70 | |
---|
71 | try: |
---|
72 | quantity = Quantity() |
---|
73 | except: |
---|
74 | pass |
---|
75 | else: |
---|
76 | raise 'Should have raised empty quantity exception' |
---|
77 | |
---|
78 | |
---|
79 | # FIXME(Ole): Temporarily disabled 18 Jan 2009 |
---|
80 | #try: |
---|
81 | # quantity = Quantity([1,2,3]) |
---|
82 | #except AssertionError: |
---|
83 | # pass |
---|
84 | #except: |
---|
85 | # raise 'Should have raised "mising mesh object" error' |
---|
86 | |
---|
87 | |
---|
88 | def test_creation_zeros(self): |
---|
89 | |
---|
90 | quantity = Quantity(self.mesh1) |
---|
91 | assert num.allclose(quantity.vertex_values, [[0.,0.,0.]]) |
---|
92 | |
---|
93 | |
---|
94 | quantity = Quantity(self.mesh4) |
---|
95 | assert num.allclose(quantity.vertex_values, [[0.,0.,0.], [0.,0.,0.], |
---|
96 | [0.,0.,0.], [0.,0.,0.]]) |
---|
97 | |
---|
98 | |
---|
99 | def test_interpolation(self): |
---|
100 | quantity = Quantity(self.mesh1, [[1,2,3]]) |
---|
101 | assert num.allclose(quantity.centroid_values, [2.0]) #Centroid |
---|
102 | |
---|
103 | assert num.allclose(quantity.edge_values, [[2.5, 2.0, 1.5]]) |
---|
104 | |
---|
105 | |
---|
106 | def test_interpolation2(self): |
---|
107 | quantity = Quantity(self.mesh4, |
---|
108 | [[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
109 | assert num.allclose(quantity.centroid_values, [2., 5., 3., 0.]) #Centroid |
---|
110 | |
---|
111 | |
---|
112 | quantity.extrapolate_second_order() |
---|
113 | |
---|
114 | #print quantity.vertex_values |
---|
115 | assert num.allclose(quantity.vertex_values, [[3.5, -1.0, 3.5], |
---|
116 | [3.+2./3, 6.+2./3, 4.+2./3], |
---|
117 | [4.6, 3.4, 1.], |
---|
118 | [-5.0, 1.0, 4.0]]) |
---|
119 | |
---|
120 | #print quantity.edge_values |
---|
121 | assert num.allclose(quantity.edge_values, [[1.25, 3.5, 1.25], |
---|
122 | [5. + 2/3.0, 4.0 + 1.0/6, 5.0 + 1.0/6], |
---|
123 | [2.2, 2.8, 4.0], |
---|
124 | [2.5, -0.5, -2.0]]) |
---|
125 | |
---|
126 | |
---|
127 | #assert allclose(quantity.edge_values, [[2.5, 2.0, 1.5], |
---|
128 | # [5., 5., 5.], |
---|
129 | # [4.5, 4.5, 0.], |
---|
130 | # [3.0, -1.5, -1.5]]) |
---|
131 | |
---|
132 | def test_get_extrema_1(self): |
---|
133 | quantity = Quantity(self.mesh4, |
---|
134 | [[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
135 | assert num.allclose(quantity.centroid_values, [2., 5., 3., 0.]) #Centroids |
---|
136 | |
---|
137 | v = quantity.get_maximum_value() |
---|
138 | assert v == 5 |
---|
139 | |
---|
140 | v = quantity.get_minimum_value() |
---|
141 | assert v == 0 |
---|
142 | |
---|
143 | i = quantity.get_maximum_index() |
---|
144 | assert i == 1 |
---|
145 | |
---|
146 | i = quantity.get_minimum_index() |
---|
147 | assert i == 3 |
---|
148 | |
---|
149 | x,y = quantity.get_maximum_location() |
---|
150 | xref, yref = 4.0/3, 4.0/3 |
---|
151 | assert x == xref |
---|
152 | assert y == yref |
---|
153 | |
---|
154 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
155 | assert num.allclose(v, 5) |
---|
156 | |
---|
157 | |
---|
158 | x,y = quantity.get_minimum_location() |
---|
159 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
160 | assert num.allclose(v, 0) |
---|
161 | |
---|
162 | |
---|
163 | def test_get_maximum_2(self): |
---|
164 | |
---|
165 | a = [0.0, 0.0] |
---|
166 | b = [0.0, 2.0] |
---|
167 | c = [2.0,0.0] |
---|
168 | d = [0.0, 4.0] |
---|
169 | e = [2.0, 2.0] |
---|
170 | f = [4.0,0.0] |
---|
171 | |
---|
172 | points = [a, b, c, d, e, f] |
---|
173 | #bac, bce, ecf, dbe |
---|
174 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
175 | |
---|
176 | domain = Domain(points, vertices) |
---|
177 | |
---|
178 | quantity = Quantity(domain) |
---|
179 | quantity.set_values(lambda x, y: x+2*y) #2 4 4 6 |
---|
180 | |
---|
181 | v = quantity.get_maximum_value() |
---|
182 | assert v == 6 |
---|
183 | |
---|
184 | v = quantity.get_minimum_value() |
---|
185 | assert v == 2 |
---|
186 | |
---|
187 | i = quantity.get_maximum_index() |
---|
188 | assert i == 3 |
---|
189 | |
---|
190 | i = quantity.get_minimum_index() |
---|
191 | assert i == 0 |
---|
192 | |
---|
193 | x,y = quantity.get_maximum_location() |
---|
194 | xref, yref = 2.0/3, 8.0/3 |
---|
195 | assert x == xref |
---|
196 | assert y == yref |
---|
197 | |
---|
198 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
199 | assert num.allclose(v, 6) |
---|
200 | |
---|
201 | x,y = quantity.get_minimum_location() |
---|
202 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
203 | assert num.allclose(v, 2) |
---|
204 | |
---|
205 | #Multiple locations for maximum - |
---|
206 | #Test that the algorithm picks the first occurrence |
---|
207 | v = quantity.get_maximum_value(indices=[0,1,2]) |
---|
208 | assert num.allclose(v, 4) |
---|
209 | |
---|
210 | i = quantity.get_maximum_index(indices=[0,1,2]) |
---|
211 | assert i == 1 |
---|
212 | |
---|
213 | x,y = quantity.get_maximum_location(indices=[0,1,2]) |
---|
214 | xref, yref = 4.0/3, 4.0/3 |
---|
215 | assert x == xref |
---|
216 | assert y == yref |
---|
217 | |
---|
218 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
219 | assert num.allclose(v, 4) |
---|
220 | |
---|
221 | # More test of indices...... |
---|
222 | v = quantity.get_maximum_value(indices=[2,3]) |
---|
223 | assert num.allclose(v, 6) |
---|
224 | |
---|
225 | i = quantity.get_maximum_index(indices=[2,3]) |
---|
226 | assert i == 3 |
---|
227 | |
---|
228 | x,y = quantity.get_maximum_location(indices=[2,3]) |
---|
229 | xref, yref = 2.0/3, 8.0/3 |
---|
230 | assert x == xref |
---|
231 | assert y == yref |
---|
232 | |
---|
233 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
234 | assert num.allclose(v, 6) |
---|
235 | |
---|
236 | |
---|
237 | |
---|
238 | def test_boundary_allocation(self): |
---|
239 | quantity = Quantity(self.mesh4, |
---|
240 | [[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
241 | |
---|
242 | assert quantity.boundary_values.shape[0] == len(self.mesh4.boundary) |
---|
243 | |
---|
244 | |
---|
245 | def test_set_values(self): |
---|
246 | quantity = Quantity(self.mesh4) |
---|
247 | |
---|
248 | |
---|
249 | quantity.set_values([[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]], |
---|
250 | location = 'vertices') |
---|
251 | assert num.allclose(quantity.vertex_values, |
---|
252 | [[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
253 | assert num.allclose(quantity.centroid_values, [2., 5., 3., 0.]) #Centroid |
---|
254 | assert num.allclose(quantity.edge_values, [[2.5, 2.0, 1.5], |
---|
255 | [5., 5., 5.], |
---|
256 | [4.5, 4.5, 0.], |
---|
257 | [3.0, -1.5, -1.5]]) |
---|
258 | |
---|
259 | |
---|
260 | # Test default |
---|
261 | quantity.set_values([[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
262 | assert num.allclose(quantity.vertex_values, |
---|
263 | [[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]]) |
---|
264 | assert num.allclose(quantity.centroid_values, [2., 5., 3., 0.]) #Centroid |
---|
265 | assert num.allclose(quantity.edge_values, [[2.5, 2.0, 1.5], |
---|
266 | [5., 5., 5.], |
---|
267 | [4.5, 4.5, 0.], |
---|
268 | [3.0, -1.5, -1.5]]) |
---|
269 | |
---|
270 | # Test centroids |
---|
271 | quantity.set_values([1,2,3,4], location = 'centroids') |
---|
272 | assert num.allclose(quantity.centroid_values, [1., 2., 3., 4.]) #Centroid |
---|
273 | |
---|
274 | # Test exceptions |
---|
275 | try: |
---|
276 | quantity.set_values([[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]], |
---|
277 | location = 'bas kamel tuba') |
---|
278 | except: |
---|
279 | pass |
---|
280 | |
---|
281 | |
---|
282 | try: |
---|
283 | quantity.set_values([[1,2,3], [0,0,9]]) |
---|
284 | except AssertionError: |
---|
285 | pass |
---|
286 | except: |
---|
287 | raise 'should have raised Assertionerror' |
---|
288 | |
---|
289 | |
---|
290 | |
---|
291 | def test_set_values_const(self): |
---|
292 | quantity = Quantity(self.mesh4) |
---|
293 | |
---|
294 | quantity.set_values(1.0, location = 'vertices') |
---|
295 | assert num.allclose(quantity.vertex_values, |
---|
296 | [[1,1,1], [1,1,1], [1,1,1], [1, 1, 1]]) |
---|
297 | |
---|
298 | assert num.allclose(quantity.centroid_values, [1, 1, 1, 1]) #Centroid |
---|
299 | assert num.allclose(quantity.edge_values, [[1, 1, 1], |
---|
300 | [1, 1, 1], |
---|
301 | [1, 1, 1], |
---|
302 | [1, 1, 1]]) |
---|
303 | |
---|
304 | |
---|
305 | quantity.set_values(2.0, location = 'centroids') |
---|
306 | assert num.allclose(quantity.centroid_values, [2, 2, 2, 2]) |
---|
307 | |
---|
308 | |
---|
309 | def test_set_values_func(self): |
---|
310 | quantity = Quantity(self.mesh4) |
---|
311 | |
---|
312 | def f(x, y): |
---|
313 | return x+y |
---|
314 | |
---|
315 | quantity.set_values(f, location = 'vertices') |
---|
316 | #print "quantity.vertex_values",quantity.vertex_values |
---|
317 | assert num.allclose(quantity.vertex_values, |
---|
318 | [[2,0,2], [2,2,4], [4,2,4], [4,2,4]]) |
---|
319 | assert num.allclose(quantity.centroid_values, |
---|
320 | [4.0/3, 8.0/3, 10.0/3, 10.0/3]) |
---|
321 | assert num.allclose(quantity.edge_values, |
---|
322 | [[1,2,1], [3,3,2], [3,4,3], [3,4,3]]) |
---|
323 | |
---|
324 | |
---|
325 | quantity.set_values(f, location = 'centroids') |
---|
326 | assert num.allclose(quantity.centroid_values, |
---|
327 | [4.0/3, 8.0/3, 10.0/3, 10.0/3]) |
---|
328 | |
---|
329 | |
---|
330 | def test_integral(self): |
---|
331 | quantity = Quantity(self.mesh4) |
---|
332 | |
---|
333 | # Try constants first |
---|
334 | const = 5 |
---|
335 | quantity.set_values(const, location = 'vertices') |
---|
336 | #print 'Q', quantity.get_integral() |
---|
337 | |
---|
338 | assert num.allclose(quantity.get_integral(), self.mesh4.get_area() * const) |
---|
339 | |
---|
340 | # Try with a linear function |
---|
341 | def f(x, y): |
---|
342 | return x+y |
---|
343 | |
---|
344 | quantity.set_values(f, location = 'vertices') |
---|
345 | |
---|
346 | |
---|
347 | ref_integral = (4.0/3 + 8.0/3 + 10.0/3 + 10.0/3) * 2 |
---|
348 | |
---|
349 | assert num.allclose (quantity.get_integral(), ref_integral) |
---|
350 | |
---|
351 | |
---|
352 | |
---|
353 | def test_set_vertex_values(self): |
---|
354 | quantity = Quantity(self.mesh4) |
---|
355 | quantity.set_vertex_values([0,1,2,3,4,5]) |
---|
356 | |
---|
357 | assert num.allclose(quantity.vertex_values, |
---|
358 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
359 | assert num.allclose(quantity.centroid_values, |
---|
360 | [1., 7./3, 11./3, 8./3]) #Centroid |
---|
361 | assert num.allclose(quantity.edge_values, [[1., 1.5, 0.5], |
---|
362 | [3., 2.5, 1.5], |
---|
363 | [3.5, 4.5, 3.], |
---|
364 | [2.5, 3.5, 2]]) |
---|
365 | |
---|
366 | |
---|
367 | def test_set_vertex_values_subset(self): |
---|
368 | quantity = Quantity(self.mesh4) |
---|
369 | quantity.set_vertex_values([0,1,2,3,4,5]) |
---|
370 | quantity.set_vertex_values([0,20,30,50], indices = [0,2,3,5]) |
---|
371 | |
---|
372 | assert num.allclose(quantity.vertex_values, |
---|
373 | [[1,0,20], [1,20,4], [4,20,50], [30,1,4]]) |
---|
374 | |
---|
375 | |
---|
376 | def test_set_vertex_values_using_general_interface(self): |
---|
377 | quantity = Quantity(self.mesh4) |
---|
378 | |
---|
379 | |
---|
380 | quantity.set_values([0,1,2,3,4,5]) |
---|
381 | |
---|
382 | |
---|
383 | assert num.allclose(quantity.vertex_values, |
---|
384 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
385 | |
---|
386 | #Centroid |
---|
387 | assert num.allclose(quantity.centroid_values, [1., 7./3, 11./3, 8./3]) |
---|
388 | |
---|
389 | assert num.allclose(quantity.edge_values, [[1., 1.5, 0.5], |
---|
390 | [3., 2.5, 1.5], |
---|
391 | [3.5, 4.5, 3.], |
---|
392 | [2.5, 3.5, 2]]) |
---|
393 | |
---|
394 | |
---|
395 | |
---|
396 | def test_set_vertex_values_using_general_interface_with_subset(self): |
---|
397 | """test_set_vertex_values_using_general_interface_with_subset(self): |
---|
398 | |
---|
399 | Test that indices and polygon works (for constants values) |
---|
400 | """ |
---|
401 | |
---|
402 | quantity = Quantity(self.mesh4) |
---|
403 | |
---|
404 | |
---|
405 | quantity.set_values([0,2,3,5], indices=[0,2,3,5]) |
---|
406 | assert num.allclose(quantity.vertex_values, |
---|
407 | [[0,0,2], [0,2,0], [0,2,5], [3,0,0]]) |
---|
408 | |
---|
409 | |
---|
410 | # Constant |
---|
411 | quantity.set_values(0.0) |
---|
412 | quantity.set_values(3.14, indices=[0,2], location='vertices') |
---|
413 | |
---|
414 | # Indices refer to triangle numbers |
---|
415 | assert num.allclose(quantity.vertex_values, |
---|
416 | [[3.14,3.14,3.14], [0,0,0], |
---|
417 | [3.14,3.14,3.14], [0,0,0]]) |
---|
418 | |
---|
419 | |
---|
420 | |
---|
421 | # Now try with polygon (pick points where y>2) |
---|
422 | polygon = [[0,2.1], [4,2.1], [4,7], [0,7]] |
---|
423 | quantity.set_values(0.0) |
---|
424 | quantity.set_values(3.14, polygon=polygon) |
---|
425 | |
---|
426 | assert num.allclose(quantity.vertex_values, |
---|
427 | [[0,0,0], [0,0,0], [0,0,0], |
---|
428 | [3.14,3.14,3.14]]) |
---|
429 | |
---|
430 | |
---|
431 | # Another polygon (pick triangle 1 and 2 (rightmost triangles) |
---|
432 | # using centroids |
---|
433 | polygon = [[2.1, 0.0], [3.5,0.1], [2,2.2], [0.2,2]] |
---|
434 | quantity.set_values(0.0) |
---|
435 | quantity.set_values(3.14, location='centroids', polygon=polygon) |
---|
436 | assert num.allclose(quantity.vertex_values, |
---|
437 | [[0,0,0], |
---|
438 | [3.14,3.14,3.14], |
---|
439 | [3.14,3.14,3.14], |
---|
440 | [0,0,0]]) |
---|
441 | |
---|
442 | |
---|
443 | # Same polygon now use vertices (default) |
---|
444 | polygon = [[2.1, 0.0], [3.5,0.1], [2,2.2], [0.2,2]] |
---|
445 | quantity.set_values(0.0) |
---|
446 | #print 'Here 2' |
---|
447 | quantity.set_values(3.14, polygon=polygon) |
---|
448 | assert num.allclose(quantity.vertex_values, |
---|
449 | [[0,0,0], |
---|
450 | [3.14,3.14,3.14], |
---|
451 | [3.14,3.14,3.14], |
---|
452 | [0,0,0]]) |
---|
453 | |
---|
454 | |
---|
455 | # Test input checking |
---|
456 | try: |
---|
457 | quantity.set_values(3.14, polygon=polygon, indices = [0,2]) |
---|
458 | except: |
---|
459 | pass |
---|
460 | else: |
---|
461 | msg = 'Should have caught this' |
---|
462 | raise msg |
---|
463 | |
---|
464 | |
---|
465 | |
---|
466 | |
---|
467 | |
---|
468 | def test_set_vertex_values_using_general_interface_subset_and_geo(self): |
---|
469 | """test_set_vertex_values_using_general_interface_with_subset(self): |
---|
470 | Test that indices and polygon works using georeferencing |
---|
471 | """ |
---|
472 | |
---|
473 | quantity = Quantity(self.mesh4) |
---|
474 | G = Geo_reference(56, 10, 100) |
---|
475 | quantity.domain.set_georeference(G) |
---|
476 | |
---|
477 | |
---|
478 | # Constant |
---|
479 | quantity.set_values(0.0) |
---|
480 | quantity.set_values(3.14, indices=[0,2], location='vertices') |
---|
481 | |
---|
482 | # Indices refer to triangle numbers here - not vertices (why?) |
---|
483 | assert num.allclose(quantity.vertex_values, |
---|
484 | [[3.14,3.14,3.14], [0,0,0], |
---|
485 | [3.14,3.14,3.14], [0,0,0]]) |
---|
486 | |
---|
487 | |
---|
488 | |
---|
489 | # Now try with polygon (pick points where y>2) |
---|
490 | polygon = num.array([[0,2.1], [4,2.1], [4,7], [0,7]]) |
---|
491 | polygon += [G.xllcorner, G.yllcorner] |
---|
492 | |
---|
493 | quantity.set_values(0.0) |
---|
494 | quantity.set_values(3.14, polygon=polygon, location='centroids') |
---|
495 | assert num.allclose(quantity.vertex_values, |
---|
496 | [[0,0,0], [0,0,0], [0,0,0], |
---|
497 | [3.14,3.14,3.14]]) |
---|
498 | |
---|
499 | |
---|
500 | # Another polygon (pick triangle 1 and 2 (rightmost triangles) |
---|
501 | polygon = num.array([[2.1, 0.0], [3.5,0.1], [2,2.2], [0.2,2]]) |
---|
502 | polygon += [G.xllcorner, G.yllcorner] |
---|
503 | |
---|
504 | quantity.set_values(0.0) |
---|
505 | quantity.set_values(3.14, polygon=polygon) |
---|
506 | assert num.allclose(quantity.vertex_values, |
---|
507 | [[0,0,0], |
---|
508 | [3.14,3.14,3.14], |
---|
509 | [3.14,3.14,3.14], |
---|
510 | [0,0,0]]) |
---|
511 | |
---|
512 | |
---|
513 | |
---|
514 | def test_set_values_using_fit(self): |
---|
515 | |
---|
516 | |
---|
517 | quantity = Quantity(self.mesh4) |
---|
518 | |
---|
519 | #Get (enough) datapoints |
---|
520 | data_points = [[ 0.66666667, 0.66666667], |
---|
521 | [ 1.33333333, 1.33333333], |
---|
522 | [ 2.66666667, 0.66666667], |
---|
523 | [ 0.66666667, 2.66666667], |
---|
524 | [ 0.0, 1.0], |
---|
525 | [ 0.0, 3.0], |
---|
526 | [ 1.0, 0.0], |
---|
527 | [ 1.0, 1.0], |
---|
528 | [ 1.0, 2.0], |
---|
529 | [ 1.0, 3.0], |
---|
530 | [ 2.0, 1.0], |
---|
531 | [ 3.0, 0.0], |
---|
532 | [ 3.0, 1.0]] |
---|
533 | |
---|
534 | z = linear_function(data_points) |
---|
535 | |
---|
536 | #Use built-in fit_interpolate.fit |
---|
537 | quantity.set_values( Geospatial_data(data_points, z), alpha = 0 ) |
---|
538 | #quantity.set_values(points = data_points, values = z, alpha = 0) |
---|
539 | |
---|
540 | |
---|
541 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
542 | #print quantity.vertex_values, answer |
---|
543 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
544 | |
---|
545 | |
---|
546 | #Now try by setting the same values directly |
---|
547 | vertex_attributes = fit_to_mesh(data_points, |
---|
548 | quantity.domain.get_nodes(), |
---|
549 | quantity.domain.get_triangles(), |
---|
550 | point_attributes=z, |
---|
551 | alpha = 0, |
---|
552 | verbose=False) |
---|
553 | |
---|
554 | #print vertex_attributes |
---|
555 | quantity.set_values(vertex_attributes) |
---|
556 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
557 | |
---|
558 | |
---|
559 | |
---|
560 | |
---|
561 | |
---|
562 | def test_test_set_values_using_fit_w_geo(self): |
---|
563 | |
---|
564 | |
---|
565 | #Mesh |
---|
566 | vertex_coordinates = [[0.76, 0.76], |
---|
567 | [0.76, 5.76], |
---|
568 | [5.76, 0.76]] |
---|
569 | triangles = [[0,2,1]] |
---|
570 | |
---|
571 | mesh_georef = Geo_reference(56,-0.76,-0.76) |
---|
572 | mesh1 = Domain(vertex_coordinates, triangles, |
---|
573 | geo_reference = mesh_georef) |
---|
574 | mesh1.check_integrity() |
---|
575 | |
---|
576 | #Quantity |
---|
577 | quantity = Quantity(mesh1) |
---|
578 | |
---|
579 | #Data |
---|
580 | data_points = [[ 201.0, 401.0], |
---|
581 | [ 201.0, 403.0], |
---|
582 | [ 203.0, 401.0]] |
---|
583 | |
---|
584 | z = [2, 4, 4] |
---|
585 | |
---|
586 | data_georef = Geo_reference(56,-200,-400) |
---|
587 | |
---|
588 | |
---|
589 | #Reference |
---|
590 | ref = fit_to_mesh(data_points, vertex_coordinates, triangles, |
---|
591 | point_attributes=z, |
---|
592 | data_origin = data_georef.get_origin(), |
---|
593 | mesh_origin = mesh_georef.get_origin(), |
---|
594 | alpha = 0) |
---|
595 | |
---|
596 | assert num.allclose( ref, [0,5,5] ) |
---|
597 | |
---|
598 | |
---|
599 | #Test set_values |
---|
600 | |
---|
601 | quantity.set_values( Geospatial_data(data_points, z, data_georef), alpha = 0 ) |
---|
602 | |
---|
603 | #quantity.set_values(points = data_points, |
---|
604 | # values = z, |
---|
605 | # data_georef = data_georef, |
---|
606 | # alpha = 0) |
---|
607 | |
---|
608 | |
---|
609 | #quantity.set_values(points = data_points, |
---|
610 | # values = z, |
---|
611 | # data_georef = data_georef, |
---|
612 | # alpha = 0) |
---|
613 | assert num.allclose(quantity.vertex_values.flat, ref) |
---|
614 | |
---|
615 | |
---|
616 | |
---|
617 | #Test set_values using geospatial data object |
---|
618 | quantity.vertex_values[:] = 0.0 |
---|
619 | |
---|
620 | geo = Geospatial_data(data_points, z, data_georef) |
---|
621 | |
---|
622 | |
---|
623 | quantity.set_values(geospatial_data = geo, alpha = 0) |
---|
624 | assert num.allclose(quantity.vertex_values.flat, ref) |
---|
625 | |
---|
626 | |
---|
627 | |
---|
628 | def test_set_values_from_file1(self): |
---|
629 | quantity = Quantity(self.mesh4) |
---|
630 | |
---|
631 | #Get (enough) datapoints |
---|
632 | data_points = [[ 0.66666667, 0.66666667], |
---|
633 | [ 1.33333333, 1.33333333], |
---|
634 | [ 2.66666667, 0.66666667], |
---|
635 | [ 0.66666667, 2.66666667], |
---|
636 | [ 0.0, 1.0], |
---|
637 | [ 0.0, 3.0], |
---|
638 | [ 1.0, 0.0], |
---|
639 | [ 1.0, 1.0], |
---|
640 | [ 1.0, 2.0], |
---|
641 | [ 1.0, 3.0], |
---|
642 | [ 2.0, 1.0], |
---|
643 | [ 3.0, 0.0], |
---|
644 | [ 3.0, 1.0]] |
---|
645 | |
---|
646 | data_geo_spatial = Geospatial_data(data_points, |
---|
647 | geo_reference = Geo_reference(56, 0, 0)) |
---|
648 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
649 | attributes = linear_function(data_points_absolute) |
---|
650 | att = 'spam_and_eggs' |
---|
651 | |
---|
652 | #Create .txt file |
---|
653 | ptsfile = tempfile.mktemp(".txt") |
---|
654 | file = open(ptsfile,"w") |
---|
655 | file.write(" x,y," + att + " \n") |
---|
656 | for data_point, attribute in map(None, data_points_absolute |
---|
657 | ,attributes): |
---|
658 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
659 | + ',' + str(attribute) |
---|
660 | file.write(row + "\n") |
---|
661 | file.close() |
---|
662 | |
---|
663 | |
---|
664 | #Check that values can be set from file |
---|
665 | quantity.set_values(filename = ptsfile, |
---|
666 | attribute_name = att, alpha = 0) |
---|
667 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
668 | |
---|
669 | #print quantity.vertex_values.flat |
---|
670 | #print answer |
---|
671 | |
---|
672 | |
---|
673 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
674 | |
---|
675 | |
---|
676 | #Check that values can be set from file using default attribute |
---|
677 | quantity.set_values(filename = ptsfile, alpha = 0) |
---|
678 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
679 | |
---|
680 | #Cleanup |
---|
681 | import os |
---|
682 | os.remove(ptsfile) |
---|
683 | |
---|
684 | |
---|
685 | |
---|
686 | def Xtest_set_values_from_file_using_polygon(self): |
---|
687 | """test_set_values_from_file_using_polygon(self): |
---|
688 | |
---|
689 | Test that polygon restriction works for general points data |
---|
690 | """ |
---|
691 | |
---|
692 | quantity = Quantity(self.mesh4) |
---|
693 | |
---|
694 | #Get (enough) datapoints |
---|
695 | data_points = [[ 0.66666667, 0.66666667], |
---|
696 | [ 1.33333333, 1.33333333], |
---|
697 | [ 2.66666667, 0.66666667], |
---|
698 | [ 0.66666667, 2.66666667], |
---|
699 | [ 0.0, 1.0], |
---|
700 | [ 0.0, 3.0], |
---|
701 | [ 1.0, 0.0], |
---|
702 | [ 1.0, 1.0], |
---|
703 | [ 1.0, 2.0], |
---|
704 | [ 1.0, 3.0], |
---|
705 | [ 2.0, 1.0], |
---|
706 | [ 3.0, 0.0], |
---|
707 | [ 3.0, 1.0]] |
---|
708 | |
---|
709 | data_geo_spatial = Geospatial_data(data_points, |
---|
710 | geo_reference = Geo_reference(56, 0, 0)) |
---|
711 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
712 | attributes = linear_function(data_points_absolute) |
---|
713 | att = 'spam_and_eggs' |
---|
714 | |
---|
715 | #Create .txt file |
---|
716 | ptsfile = tempfile.mktemp(".txt") |
---|
717 | file = open(ptsfile,"w") |
---|
718 | file.write(" x,y," + att + " \n") |
---|
719 | for data_point, attribute in map(None, data_points_absolute |
---|
720 | ,attributes): |
---|
721 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
722 | + ',' + str(attribute) |
---|
723 | file.write(row + "\n") |
---|
724 | file.close() |
---|
725 | |
---|
726 | # Create restricting polygon (containing node #4 (2,2) and |
---|
727 | # centroid of triangle #1 (bce) |
---|
728 | polygon = [[1.0, 1.0], [4.0, 1.0], |
---|
729 | [4.0, 4.0], [1.0, 4.0]] |
---|
730 | |
---|
731 | #print self.mesh4.nodes |
---|
732 | #print inside_polygon(self.mesh4.nodes, polygon) |
---|
733 | assert num.allclose(inside_polygon(self.mesh4.nodes, polygon), 4) |
---|
734 | |
---|
735 | #print quantity.domain.get_vertex_coordinates() |
---|
736 | #print quantity.domain.get_nodes() |
---|
737 | |
---|
738 | # Check that values can be set from file |
---|
739 | quantity.set_values(filename=ptsfile, |
---|
740 | polygon=polygon, |
---|
741 | location='unique vertices', |
---|
742 | alpha=0) |
---|
743 | |
---|
744 | # Get indices for vertex coordinates in polygon |
---|
745 | indices = inside_polygon(quantity.domain.get_vertex_coordinates(), |
---|
746 | polygon) |
---|
747 | points = take(quantity.domain.get_vertex_coordinates(), indices) |
---|
748 | |
---|
749 | answer = linear_function(points) |
---|
750 | |
---|
751 | #print quantity.vertex_values.flat |
---|
752 | #print answer |
---|
753 | |
---|
754 | # Check vertices in polygon have been set |
---|
755 | assert num.allclose(take(quantity.vertex_values.flat, indices), |
---|
756 | answer) |
---|
757 | |
---|
758 | # Check vertices outside polygon are zero |
---|
759 | indices = outside_polygon(quantity.domain.get_vertex_coordinates(), |
---|
760 | polygon) |
---|
761 | assert num.allclose(take(quantity.vertex_values.flat, indices), |
---|
762 | 0.0) |
---|
763 | |
---|
764 | #Cleanup |
---|
765 | import os |
---|
766 | os.remove(ptsfile) |
---|
767 | |
---|
768 | |
---|
769 | |
---|
770 | |
---|
771 | def test_cache_test_set_values_from_file(self): |
---|
772 | # FIXME (Ole): What is this about? |
---|
773 | # I don't think it checks anything new |
---|
774 | quantity = Quantity(self.mesh4) |
---|
775 | |
---|
776 | #Get (enough) datapoints |
---|
777 | data_points = [[ 0.66666667, 0.66666667], |
---|
778 | [ 1.33333333, 1.33333333], |
---|
779 | [ 2.66666667, 0.66666667], |
---|
780 | [ 0.66666667, 2.66666667], |
---|
781 | [ 0.0, 1.0], |
---|
782 | [ 0.0, 3.0], |
---|
783 | [ 1.0, 0.0], |
---|
784 | [ 1.0, 1.0], |
---|
785 | [ 1.0, 2.0], |
---|
786 | [ 1.0, 3.0], |
---|
787 | [ 2.0, 1.0], |
---|
788 | [ 3.0, 0.0], |
---|
789 | [ 3.0, 1.0]] |
---|
790 | |
---|
791 | georef = Geo_reference(56, 0, 0) |
---|
792 | data_geo_spatial = Geospatial_data(data_points, |
---|
793 | geo_reference=georef) |
---|
794 | |
---|
795 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
796 | attributes = linear_function(data_points_absolute) |
---|
797 | att = 'spam_and_eggs' |
---|
798 | |
---|
799 | # Create .txt file |
---|
800 | ptsfile = tempfile.mktemp(".txt") |
---|
801 | file = open(ptsfile,"w") |
---|
802 | file.write(" x,y," + att + " \n") |
---|
803 | for data_point, attribute in map(None, data_points_absolute |
---|
804 | ,attributes): |
---|
805 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
806 | + ',' + str(attribute) |
---|
807 | file.write(row + "\n") |
---|
808 | file.close() |
---|
809 | |
---|
810 | |
---|
811 | # Check that values can be set from file |
---|
812 | quantity.set_values(filename=ptsfile, |
---|
813 | attribute_name=att, |
---|
814 | alpha=0, |
---|
815 | use_cache=True, |
---|
816 | verbose=False) |
---|
817 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
818 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
819 | |
---|
820 | |
---|
821 | # Check that values can be set from file using default attribute |
---|
822 | quantity.set_values(filename=ptsfile, |
---|
823 | alpha=0) |
---|
824 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
825 | |
---|
826 | # Check cache |
---|
827 | quantity.set_values(filename=ptsfile, |
---|
828 | attribute_name=att, |
---|
829 | alpha=0, |
---|
830 | use_cache=True, |
---|
831 | verbose=False) |
---|
832 | |
---|
833 | |
---|
834 | #Cleanup |
---|
835 | import os |
---|
836 | os.remove(ptsfile) |
---|
837 | |
---|
838 | def test_set_values_from_lat_long(self): |
---|
839 | quantity = Quantity(self.mesh_onslow) |
---|
840 | |
---|
841 | #Get (enough) datapoints |
---|
842 | data_points = [[-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
843 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6]] |
---|
844 | |
---|
845 | data_geo_spatial = Geospatial_data(data_points, |
---|
846 | points_are_lats_longs=True) |
---|
847 | points_UTM = data_geo_spatial.get_data_points(absolute=True) |
---|
848 | attributes = linear_function(points_UTM) |
---|
849 | att = 'elevation' |
---|
850 | |
---|
851 | #Create .txt file |
---|
852 | txt_file = tempfile.mktemp(".txt") |
---|
853 | file = open(txt_file,"w") |
---|
854 | file.write(" lat,long," + att + " \n") |
---|
855 | for data_point, attribute in map(None, data_points, attributes): |
---|
856 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
857 | + ',' + str(attribute) |
---|
858 | #print "row", row |
---|
859 | file.write(row + "\n") |
---|
860 | file.close() |
---|
861 | |
---|
862 | |
---|
863 | #Check that values can be set from file |
---|
864 | quantity.set_values(filename=txt_file, |
---|
865 | attribute_name=att, |
---|
866 | alpha=0) |
---|
867 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
868 | |
---|
869 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
870 | #print "answer",answer |
---|
871 | |
---|
872 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
873 | |
---|
874 | |
---|
875 | #Check that values can be set from file using default attribute |
---|
876 | quantity.set_values(filename=txt_file, alpha=0) |
---|
877 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
878 | |
---|
879 | #Cleanup |
---|
880 | import os |
---|
881 | os.remove(txt_file) |
---|
882 | |
---|
883 | def test_set_values_from_lat_long(self): |
---|
884 | quantity = Quantity(self.mesh_onslow) |
---|
885 | |
---|
886 | #Get (enough) datapoints |
---|
887 | data_points = [[-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
888 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6]] |
---|
889 | |
---|
890 | data_geo_spatial = Geospatial_data(data_points, |
---|
891 | points_are_lats_longs=True) |
---|
892 | points_UTM = data_geo_spatial.get_data_points(absolute=True) |
---|
893 | attributes = linear_function(points_UTM) |
---|
894 | att = 'elevation' |
---|
895 | |
---|
896 | #Create .txt file |
---|
897 | txt_file = tempfile.mktemp(".txt") |
---|
898 | file = open(txt_file,"w") |
---|
899 | file.write(" lat,long," + att + " \n") |
---|
900 | for data_point, attribute in map(None, data_points, attributes): |
---|
901 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
902 | + ',' + str(attribute) |
---|
903 | #print "row", row |
---|
904 | file.write(row + "\n") |
---|
905 | file.close() |
---|
906 | |
---|
907 | |
---|
908 | #Check that values can be set from file |
---|
909 | quantity.set_values(filename=txt_file, |
---|
910 | attribute_name=att, alpha=0) |
---|
911 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
912 | |
---|
913 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
914 | #print "answer",answer |
---|
915 | |
---|
916 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
917 | |
---|
918 | |
---|
919 | #Check that values can be set from file using default attribute |
---|
920 | quantity.set_values(filename=txt_file, alpha=0) |
---|
921 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
922 | |
---|
923 | #Cleanup |
---|
924 | import os |
---|
925 | os.remove(txt_file) |
---|
926 | |
---|
927 | def test_set_values_from_UTM_pts(self): |
---|
928 | quantity = Quantity(self.mesh_onslow) |
---|
929 | |
---|
930 | #Get (enough) datapoints |
---|
931 | data_points = [[-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
932 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6]] |
---|
933 | |
---|
934 | data_geo_spatial = Geospatial_data(data_points, |
---|
935 | points_are_lats_longs=True) |
---|
936 | points_UTM = data_geo_spatial.get_data_points(absolute=True) |
---|
937 | attributes = linear_function(points_UTM) |
---|
938 | att = 'elevation' |
---|
939 | |
---|
940 | #Create .txt file |
---|
941 | txt_file = tempfile.mktemp(".txt") |
---|
942 | file = open(txt_file,"w") |
---|
943 | file.write(" x,y," + att + " \n") |
---|
944 | for data_point, attribute in map(None, points_UTM, attributes): |
---|
945 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
946 | + ',' + str(attribute) |
---|
947 | #print "row", row |
---|
948 | file.write(row + "\n") |
---|
949 | file.close() |
---|
950 | |
---|
951 | |
---|
952 | pts_file = tempfile.mktemp(".pts") |
---|
953 | convert = Geospatial_data(txt_file) |
---|
954 | convert.export_points_file(pts_file) |
---|
955 | |
---|
956 | #Check that values can be set from file |
---|
957 | quantity.set_values_from_file(pts_file, att, 0, |
---|
958 | 'vertices', None) |
---|
959 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
960 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
961 | #print "answer",answer |
---|
962 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
963 | |
---|
964 | #Check that values can be set from file |
---|
965 | quantity.set_values(filename=pts_file, |
---|
966 | attribute_name=att, alpha=0) |
---|
967 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
968 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
969 | #print "answer",answer |
---|
970 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
971 | |
---|
972 | |
---|
973 | #Check that values can be set from file using default attribute |
---|
974 | quantity.set_values(filename=txt_file, alpha=0) |
---|
975 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
976 | |
---|
977 | #Cleanup |
---|
978 | import os |
---|
979 | os.remove(txt_file) |
---|
980 | os.remove(pts_file) |
---|
981 | |
---|
982 | def verbose_test_set_values_from_UTM_pts(self): |
---|
983 | quantity = Quantity(self.mesh_onslow) |
---|
984 | |
---|
985 | #Get (enough) datapoints |
---|
986 | data_points = [[-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
987 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
988 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
989 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
990 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
991 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
992 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
993 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
994 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
995 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
996 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
997 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
998 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
999 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1000 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1001 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1002 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1003 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1004 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1005 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1006 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1007 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1008 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1009 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1010 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1011 | [-21.5, 114.5],[-21.4, 114.6],[-21.45,114.65], |
---|
1012 | [-21.35, 114.65],[-21.45, 114.55],[-21.45,114.6], |
---|
1013 | ] |
---|
1014 | |
---|
1015 | data_geo_spatial = Geospatial_data(data_points, |
---|
1016 | points_are_lats_longs=True) |
---|
1017 | points_UTM = data_geo_spatial.get_data_points(absolute=True) |
---|
1018 | attributes = linear_function(points_UTM) |
---|
1019 | att = 'elevation' |
---|
1020 | |
---|
1021 | #Create .txt file |
---|
1022 | txt_file = tempfile.mktemp(".txt") |
---|
1023 | file = open(txt_file,"w") |
---|
1024 | file.write(" x,y," + att + " \n") |
---|
1025 | for data_point, attribute in map(None, points_UTM, attributes): |
---|
1026 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
1027 | + ',' + str(attribute) |
---|
1028 | #print "row", row |
---|
1029 | file.write(row + "\n") |
---|
1030 | file.close() |
---|
1031 | |
---|
1032 | |
---|
1033 | pts_file = tempfile.mktemp(".pts") |
---|
1034 | convert = Geospatial_data(txt_file) |
---|
1035 | convert.export_points_file(pts_file) |
---|
1036 | |
---|
1037 | #Check that values can be set from file |
---|
1038 | quantity.set_values_from_file(pts_file, att, 0, |
---|
1039 | 'vertices', None, verbose = True, |
---|
1040 | max_read_lines=2) |
---|
1041 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
1042 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
1043 | #print "answer",answer |
---|
1044 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1045 | |
---|
1046 | #Check that values can be set from file |
---|
1047 | quantity.set_values(filename=pts_file, |
---|
1048 | attribute_name=att, alpha=0) |
---|
1049 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
1050 | #print "quantity.vertex_values.flat", quantity.vertex_values.flat |
---|
1051 | #print "answer",answer |
---|
1052 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1053 | |
---|
1054 | |
---|
1055 | #Check that values can be set from file using default attribute |
---|
1056 | quantity.set_values(filename=txt_file, alpha=0) |
---|
1057 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1058 | |
---|
1059 | #Cleanup |
---|
1060 | import os |
---|
1061 | os.remove(txt_file) |
---|
1062 | os.remove(pts_file) |
---|
1063 | |
---|
1064 | def test_set_values_from_file_with_georef1(self): |
---|
1065 | |
---|
1066 | #Mesh in zone 56 (absolute coords) |
---|
1067 | |
---|
1068 | x0 = 314036.58727982 |
---|
1069 | y0 = 6224951.2960092 |
---|
1070 | |
---|
1071 | a = [x0+0.0, y0+0.0] |
---|
1072 | b = [x0+0.0, y0+2.0] |
---|
1073 | c = [x0+2.0, y0+0.0] |
---|
1074 | d = [x0+0.0, y0+4.0] |
---|
1075 | e = [x0+2.0, y0+2.0] |
---|
1076 | f = [x0+4.0, y0+0.0] |
---|
1077 | |
---|
1078 | points = [a, b, c, d, e, f] |
---|
1079 | |
---|
1080 | #bac, bce, ecf, dbe |
---|
1081 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
1082 | |
---|
1083 | #absolute going in .. |
---|
1084 | mesh4 = Domain(points, elements, |
---|
1085 | geo_reference = Geo_reference(56, 0, 0)) |
---|
1086 | mesh4.check_integrity() |
---|
1087 | quantity = Quantity(mesh4) |
---|
1088 | |
---|
1089 | #Get (enough) datapoints (relative to georef) |
---|
1090 | data_points_rel = [[ 0.66666667, 0.66666667], |
---|
1091 | [ 1.33333333, 1.33333333], |
---|
1092 | [ 2.66666667, 0.66666667], |
---|
1093 | [ 0.66666667, 2.66666667], |
---|
1094 | [ 0.0, 1.0], |
---|
1095 | [ 0.0, 3.0], |
---|
1096 | [ 1.0, 0.0], |
---|
1097 | [ 1.0, 1.0], |
---|
1098 | [ 1.0, 2.0], |
---|
1099 | [ 1.0, 3.0], |
---|
1100 | [ 2.0, 1.0], |
---|
1101 | [ 3.0, 0.0], |
---|
1102 | [ 3.0, 1.0]] |
---|
1103 | |
---|
1104 | data_geo_spatial = Geospatial_data(data_points_rel, |
---|
1105 | geo_reference = Geo_reference(56, x0, y0)) |
---|
1106 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
1107 | attributes = linear_function(data_points_absolute) |
---|
1108 | att = 'spam_and_eggs' |
---|
1109 | |
---|
1110 | #Create .txt file |
---|
1111 | ptsfile = tempfile.mktemp(".txt") |
---|
1112 | file = open(ptsfile,"w") |
---|
1113 | file.write(" x,y," + att + " \n") |
---|
1114 | for data_point, attribute in map(None, data_points_absolute |
---|
1115 | ,attributes): |
---|
1116 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
1117 | + ',' + str(attribute) |
---|
1118 | file.write(row + "\n") |
---|
1119 | file.close() |
---|
1120 | |
---|
1121 | #file = open(ptsfile, 'r') |
---|
1122 | #lines = file.readlines() |
---|
1123 | #file.close() |
---|
1124 | |
---|
1125 | |
---|
1126 | #Check that values can be set from file |
---|
1127 | quantity.set_values(filename=ptsfile, |
---|
1128 | attribute_name=att, alpha=0) |
---|
1129 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
1130 | |
---|
1131 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1132 | |
---|
1133 | |
---|
1134 | #Check that values can be set from file using default attribute |
---|
1135 | quantity.set_values(filename=ptsfile, alpha=0) |
---|
1136 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1137 | |
---|
1138 | #Cleanup |
---|
1139 | import os |
---|
1140 | os.remove(ptsfile) |
---|
1141 | |
---|
1142 | |
---|
1143 | def test_set_values_from_file_with_georef2(self): |
---|
1144 | |
---|
1145 | #Mesh in zone 56 (relative coords) |
---|
1146 | |
---|
1147 | x0 = 314036.58727982 |
---|
1148 | y0 = 6224951.2960092 |
---|
1149 | #x0 = 0.0 |
---|
1150 | #y0 = 0.0 |
---|
1151 | |
---|
1152 | a = [0.0, 0.0] |
---|
1153 | b = [0.0, 2.0] |
---|
1154 | c = [2.0, 0.0] |
---|
1155 | d = [0.0, 4.0] |
---|
1156 | e = [2.0, 2.0] |
---|
1157 | f = [4.0, 0.0] |
---|
1158 | |
---|
1159 | points = [a, b, c, d, e, f] |
---|
1160 | |
---|
1161 | #bac, bce, ecf, dbe |
---|
1162 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
1163 | |
---|
1164 | mesh4 = Domain(points, elements, |
---|
1165 | geo_reference = Geo_reference(56, x0, y0)) |
---|
1166 | mesh4.check_integrity() |
---|
1167 | quantity = Quantity(mesh4) |
---|
1168 | |
---|
1169 | #Get (enough) datapoints |
---|
1170 | data_points = [[ x0+0.66666667, y0+0.66666667], |
---|
1171 | [ x0+1.33333333, y0+1.33333333], |
---|
1172 | [ x0+2.66666667, y0+0.66666667], |
---|
1173 | [ x0+0.66666667, y0+2.66666667], |
---|
1174 | [ x0+0.0, y0+1.0], |
---|
1175 | [ x0+0.0, y0+3.0], |
---|
1176 | [ x0+1.0, y0+0.0], |
---|
1177 | [ x0+1.0, y0+1.0], |
---|
1178 | [ x0+1.0, y0+2.0], |
---|
1179 | [ x0+1.0, y0+3.0], |
---|
1180 | [ x0+2.0, y0+1.0], |
---|
1181 | [ x0+3.0, y0+0.0], |
---|
1182 | [ x0+3.0, y0+1.0]] |
---|
1183 | |
---|
1184 | |
---|
1185 | data_geo_spatial = Geospatial_data(data_points, |
---|
1186 | geo_reference = Geo_reference(56, 0, 0)) |
---|
1187 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
1188 | attributes = linear_function(data_points_absolute) |
---|
1189 | att = 'spam_and_eggs' |
---|
1190 | |
---|
1191 | #Create .txt file |
---|
1192 | ptsfile = tempfile.mktemp(".txt") |
---|
1193 | file = open(ptsfile,"w") |
---|
1194 | file.write(" x,y," + att + " \n") |
---|
1195 | for data_point, attribute in map(None, data_points_absolute |
---|
1196 | ,attributes): |
---|
1197 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
1198 | + ',' + str(attribute) |
---|
1199 | file.write(row + "\n") |
---|
1200 | file.close() |
---|
1201 | |
---|
1202 | |
---|
1203 | #Check that values can be set from file |
---|
1204 | quantity.set_values(filename=ptsfile, |
---|
1205 | attribute_name=att, alpha=0) |
---|
1206 | answer = linear_function(quantity.domain. \ |
---|
1207 | get_vertex_coordinates(absolute=True)) |
---|
1208 | |
---|
1209 | |
---|
1210 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1211 | |
---|
1212 | |
---|
1213 | #Check that values can be set from file using default attribute |
---|
1214 | quantity.set_values(filename=ptsfile, alpha=0) |
---|
1215 | assert num.allclose(quantity.vertex_values.flat, answer) |
---|
1216 | |
---|
1217 | #Cleanup |
---|
1218 | import os |
---|
1219 | os.remove(ptsfile) |
---|
1220 | |
---|
1221 | |
---|
1222 | |
---|
1223 | |
---|
1224 | def test_set_values_from_quantity(self): |
---|
1225 | |
---|
1226 | quantity1 = Quantity(self.mesh4) |
---|
1227 | quantity1.set_vertex_values([0,1,2,3,4,5]) |
---|
1228 | |
---|
1229 | assert num.allclose(quantity1.vertex_values, |
---|
1230 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
1231 | |
---|
1232 | |
---|
1233 | quantity2 = Quantity(self.mesh4) |
---|
1234 | quantity2.set_values(quantity=quantity1) |
---|
1235 | assert num.allclose(quantity2.vertex_values, |
---|
1236 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
1237 | |
---|
1238 | quantity2.set_values(quantity = 2*quantity1) |
---|
1239 | assert num.allclose(quantity2.vertex_values, |
---|
1240 | [[2,0,4], [2,4,8], [8,4,10], [6,2,8]]) |
---|
1241 | |
---|
1242 | quantity2.set_values(quantity = 2*quantity1 + 3) |
---|
1243 | assert num.allclose(quantity2.vertex_values, |
---|
1244 | [[5,3,7], [5,7,11], [11,7,13], [9,5,11]]) |
---|
1245 | |
---|
1246 | |
---|
1247 | #Check detection of quantity as first orgument |
---|
1248 | quantity2.set_values(2*quantity1 + 3) |
---|
1249 | assert num.allclose(quantity2.vertex_values, |
---|
1250 | [[5,3,7], [5,7,11], [11,7,13], [9,5,11]]) |
---|
1251 | |
---|
1252 | |
---|
1253 | |
---|
1254 | def Xtest_set_values_from_quantity_using_polygon(self): |
---|
1255 | """test_set_values_from_quantity_using_polygon(self): |
---|
1256 | |
---|
1257 | Check that polygon can be used to restrict set_values when |
---|
1258 | using another quantity as argument. |
---|
1259 | """ |
---|
1260 | |
---|
1261 | # Create restricting polygon (containing node #4 (2,2) and |
---|
1262 | # centroid of triangle #1 (bce) |
---|
1263 | polygon = [[1.0, 1.0], [4.0, 1.0], |
---|
1264 | [4.0, 4.0], [1.0, 4.0]] |
---|
1265 | assert num.allclose(inside_polygon(self.mesh4.nodes, polygon), 4) |
---|
1266 | |
---|
1267 | quantity1 = Quantity(self.mesh4) |
---|
1268 | quantity1.set_vertex_values([0,1,2,3,4,5]) |
---|
1269 | |
---|
1270 | assert num.allclose(quantity1.vertex_values, |
---|
1271 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
1272 | |
---|
1273 | |
---|
1274 | quantity2 = Quantity(self.mesh4) |
---|
1275 | quantity2.set_values(quantity=quantity1, |
---|
1276 | polygon=polygon) |
---|
1277 | |
---|
1278 | msg = 'Only node #4(e) at (2,2) should have values applied ' |
---|
1279 | assert num.allclose(quantity2.vertex_values, |
---|
1280 | [[0,0,0], [0,0,4], [4,0,0], [0,0,4]]), msg |
---|
1281 | #bac, bce, ecf, dbe |
---|
1282 | |
---|
1283 | |
---|
1284 | |
---|
1285 | def test_overloading(self): |
---|
1286 | |
---|
1287 | quantity1 = Quantity(self.mesh4) |
---|
1288 | quantity1.set_vertex_values([0,1,2,3,4,5]) |
---|
1289 | |
---|
1290 | assert num.allclose(quantity1.vertex_values, |
---|
1291 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
1292 | |
---|
1293 | |
---|
1294 | quantity2 = Quantity(self.mesh4) |
---|
1295 | quantity2.set_values([[1,2,3], [5,5,5], [0,0,9], [-6, 3, 3]], |
---|
1296 | location = 'vertices') |
---|
1297 | |
---|
1298 | |
---|
1299 | |
---|
1300 | quantity3 = Quantity(self.mesh4) |
---|
1301 | quantity3.set_values([[2,2,2], [7,8,9], [7,6,3], [3, 8, -8]], |
---|
1302 | location = 'vertices') |
---|
1303 | |
---|
1304 | |
---|
1305 | # Negation |
---|
1306 | Q = -quantity1 |
---|
1307 | assert num.allclose(Q.vertex_values, -quantity1.vertex_values) |
---|
1308 | assert num.allclose(Q.centroid_values, -quantity1.centroid_values) |
---|
1309 | assert num.allclose(Q.edge_values, -quantity1.edge_values) |
---|
1310 | |
---|
1311 | # Addition |
---|
1312 | Q = quantity1 + 7 |
---|
1313 | assert num.allclose(Q.vertex_values, quantity1.vertex_values + 7) |
---|
1314 | assert num.allclose(Q.centroid_values, quantity1.centroid_values + 7) |
---|
1315 | assert num.allclose(Q.edge_values, quantity1.edge_values + 7) |
---|
1316 | |
---|
1317 | Q = 7 + quantity1 |
---|
1318 | assert num.allclose(Q.vertex_values, quantity1.vertex_values + 7) |
---|
1319 | assert num.allclose(Q.centroid_values, quantity1.centroid_values + 7) |
---|
1320 | assert num.allclose(Q.edge_values, quantity1.edge_values + 7) |
---|
1321 | |
---|
1322 | Q = quantity1 + quantity2 |
---|
1323 | assert num.allclose(Q.vertex_values, |
---|
1324 | quantity1.vertex_values + quantity2.vertex_values) |
---|
1325 | assert num.allclose(Q.centroid_values, |
---|
1326 | quantity1.centroid_values + quantity2.centroid_values) |
---|
1327 | assert num.allclose(Q.edge_values, |
---|
1328 | quantity1.edge_values + quantity2.edge_values) |
---|
1329 | |
---|
1330 | |
---|
1331 | Q = quantity1 + quantity2 - 3 |
---|
1332 | assert num.allclose(Q.vertex_values, |
---|
1333 | quantity1.vertex_values + quantity2.vertex_values - 3) |
---|
1334 | |
---|
1335 | Q = quantity1 - quantity2 |
---|
1336 | assert num.allclose(Q.vertex_values, |
---|
1337 | quantity1.vertex_values - quantity2.vertex_values) |
---|
1338 | |
---|
1339 | #Scaling |
---|
1340 | Q = quantity1*3 |
---|
1341 | assert num.allclose(Q.vertex_values, quantity1.vertex_values*3) |
---|
1342 | assert num.allclose(Q.centroid_values, quantity1.centroid_values*3) |
---|
1343 | assert num.allclose(Q.edge_values, quantity1.edge_values*3) |
---|
1344 | Q = 3*quantity1 |
---|
1345 | assert num.allclose(Q.vertex_values, quantity1.vertex_values*3) |
---|
1346 | |
---|
1347 | #Multiplication |
---|
1348 | Q = quantity1 * quantity2 |
---|
1349 | #print Q.vertex_values |
---|
1350 | #print Q.centroid_values |
---|
1351 | #print quantity1.centroid_values |
---|
1352 | #print quantity2.centroid_values |
---|
1353 | |
---|
1354 | assert num.allclose(Q.vertex_values, |
---|
1355 | quantity1.vertex_values * quantity2.vertex_values) |
---|
1356 | |
---|
1357 | #Linear combinations |
---|
1358 | Q = 4*quantity1 + 2 |
---|
1359 | assert num.allclose(Q.vertex_values, |
---|
1360 | 4*quantity1.vertex_values + 2) |
---|
1361 | |
---|
1362 | Q = quantity1*quantity2 + 2 |
---|
1363 | assert num.allclose(Q.vertex_values, |
---|
1364 | quantity1.vertex_values * quantity2.vertex_values + 2) |
---|
1365 | |
---|
1366 | Q = quantity1*quantity2 + quantity3 |
---|
1367 | assert num.allclose(Q.vertex_values, |
---|
1368 | quantity1.vertex_values * quantity2.vertex_values + |
---|
1369 | quantity3.vertex_values) |
---|
1370 | Q = quantity1*quantity2 + 3*quantity3 |
---|
1371 | assert num.allclose(Q.vertex_values, |
---|
1372 | quantity1.vertex_values * quantity2.vertex_values + |
---|
1373 | 3*quantity3.vertex_values) |
---|
1374 | Q = quantity1*quantity2 + 3*quantity3 + 5.0 |
---|
1375 | assert num.allclose(Q.vertex_values, |
---|
1376 | quantity1.vertex_values * quantity2.vertex_values + |
---|
1377 | 3*quantity3.vertex_values + 5) |
---|
1378 | |
---|
1379 | Q = quantity1*quantity2 - quantity3 |
---|
1380 | assert num.allclose(Q.vertex_values, |
---|
1381 | quantity1.vertex_values * quantity2.vertex_values - |
---|
1382 | quantity3.vertex_values) |
---|
1383 | Q = 1.5*quantity1*quantity2 - 3*quantity3 + 5.0 |
---|
1384 | assert num.allclose(Q.vertex_values, |
---|
1385 | 1.5*quantity1.vertex_values * quantity2.vertex_values - |
---|
1386 | 3*quantity3.vertex_values + 5) |
---|
1387 | |
---|
1388 | #Try combining quantities and arrays and scalars |
---|
1389 | Q = 1.5*quantity1*quantity2.vertex_values -\ |
---|
1390 | 3*quantity3.vertex_values + 5.0 |
---|
1391 | assert num.allclose(Q.vertex_values, |
---|
1392 | 1.5*quantity1.vertex_values * quantity2.vertex_values - |
---|
1393 | 3*quantity3.vertex_values + 5) |
---|
1394 | |
---|
1395 | |
---|
1396 | #Powers |
---|
1397 | Q = quantity1**2 |
---|
1398 | assert num.allclose(Q.vertex_values, quantity1.vertex_values**2) |
---|
1399 | |
---|
1400 | Q = quantity1**2 +quantity2**2 |
---|
1401 | assert num.allclose(Q.vertex_values, |
---|
1402 | quantity1.vertex_values**2 + \ |
---|
1403 | quantity2.vertex_values**2) |
---|
1404 | |
---|
1405 | Q = (quantity1**2 +quantity2**2)**0.5 |
---|
1406 | assert num.allclose(Q.vertex_values, |
---|
1407 | (quantity1.vertex_values**2 + \ |
---|
1408 | quantity2.vertex_values**2)**0.5) |
---|
1409 | |
---|
1410 | |
---|
1411 | |
---|
1412 | |
---|
1413 | |
---|
1414 | |
---|
1415 | |
---|
1416 | def test_compute_gradient(self): |
---|
1417 | quantity = Quantity(self.mesh4) |
---|
1418 | |
---|
1419 | #Set up for a gradient of (2,0) at mid triangle |
---|
1420 | quantity.set_values([2.0, 4.0, 6.0, 2.0], |
---|
1421 | location = 'centroids') |
---|
1422 | |
---|
1423 | |
---|
1424 | #Gradients |
---|
1425 | quantity.compute_gradients() |
---|
1426 | |
---|
1427 | a = quantity.x_gradient |
---|
1428 | b = quantity.y_gradient |
---|
1429 | #print self.mesh4.centroid_coordinates |
---|
1430 | #print a, b |
---|
1431 | |
---|
1432 | #The central triangle (1) |
---|
1433 | #(using standard gradient based on neigbours controid values) |
---|
1434 | assert num.allclose(a[1], 2.0) |
---|
1435 | assert num.allclose(b[1], 0.0) |
---|
1436 | |
---|
1437 | |
---|
1438 | #Left triangle (0) using two point gradient |
---|
1439 | #q0 = q1 + a*(x0-x1) + b*(y0-y1) <=> |
---|
1440 | #2 = 4 + a*(-2/3) + b*(-2/3) |
---|
1441 | assert num.allclose(a[0] + b[0], 3) |
---|
1442 | #From orthogonality (a*(y0-y1) + b*(x0-x1) == 0) |
---|
1443 | assert num.allclose(a[0] - b[0], 0) |
---|
1444 | |
---|
1445 | |
---|
1446 | #Right triangle (2) using two point gradient |
---|
1447 | #q2 = q1 + a*(x2-x1) + b*(y2-y1) <=> |
---|
1448 | #6 = 4 + a*(4/3) + b*(-2/3) |
---|
1449 | assert num.allclose(2*a[2] - b[2], 3) |
---|
1450 | #From orthogonality (a*(y1-y2) + b*(x2-x1) == 0) |
---|
1451 | assert num.allclose(a[2] + 2*b[2], 0) |
---|
1452 | |
---|
1453 | |
---|
1454 | #Top triangle (3) using two point gradient |
---|
1455 | #q3 = q1 + a*(x3-x1) + b*(y3-y1) <=> |
---|
1456 | #2 = 4 + a*(-2/3) + b*(4/3) |
---|
1457 | assert num.allclose(a[3] - 2*b[3], 3) |
---|
1458 | #From orthogonality (a*(y1-y3) + b*(x3-x1) == 0) |
---|
1459 | assert num.allclose(2*a[3] + b[3], 0) |
---|
1460 | |
---|
1461 | |
---|
1462 | |
---|
1463 | #print a, b |
---|
1464 | quantity.extrapolate_second_order() |
---|
1465 | |
---|
1466 | #Apply q(x,y) = qc + a*(x-xc) + b*(y-yc) |
---|
1467 | assert num.allclose(quantity.vertex_values[0,:], [3., 0., 3.]) |
---|
1468 | assert num.allclose(quantity.vertex_values[1,:], [4./3, 16./3, 16./3]) |
---|
1469 | |
---|
1470 | |
---|
1471 | #a = 1.2, b=-0.6 |
---|
1472 | #q(4,0) = 6 + a*(4 - 8/3) + b*(-2/3) |
---|
1473 | assert num.allclose(quantity.vertex_values[2,2], 8) |
---|
1474 | |
---|
1475 | def test_get_gradients(self): |
---|
1476 | quantity = Quantity(self.mesh4) |
---|
1477 | |
---|
1478 | #Set up for a gradient of (2,0) at mid triangle |
---|
1479 | quantity.set_values([2.0, 4.0, 6.0, 2.0], |
---|
1480 | location = 'centroids') |
---|
1481 | |
---|
1482 | |
---|
1483 | #Gradients |
---|
1484 | quantity.compute_gradients() |
---|
1485 | |
---|
1486 | a, b = quantity.get_gradients() |
---|
1487 | #print self.mesh4.centroid_coordinates |
---|
1488 | #print a, b |
---|
1489 | |
---|
1490 | #The central triangle (1) |
---|
1491 | #(using standard gradient based on neigbours controid values) |
---|
1492 | assert num.allclose(a[1], 2.0) |
---|
1493 | assert num.allclose(b[1], 0.0) |
---|
1494 | |
---|
1495 | |
---|
1496 | #Left triangle (0) using two point gradient |
---|
1497 | #q0 = q1 + a*(x0-x1) + b*(y0-y1) <=> |
---|
1498 | #2 = 4 + a*(-2/3) + b*(-2/3) |
---|
1499 | assert num.allclose(a[0] + b[0], 3) |
---|
1500 | #From orthogonality (a*(y0-y1) + b*(x0-x1) == 0) |
---|
1501 | assert num.allclose(a[0] - b[0], 0) |
---|
1502 | |
---|
1503 | |
---|
1504 | #Right triangle (2) using two point gradient |
---|
1505 | #q2 = q1 + a*(x2-x1) + b*(y2-y1) <=> |
---|
1506 | #6 = 4 + a*(4/3) + b*(-2/3) |
---|
1507 | assert num.allclose(2*a[2] - b[2], 3) |
---|
1508 | #From orthogonality (a*(y1-y2) + b*(x2-x1) == 0) |
---|
1509 | assert num.allclose(a[2] + 2*b[2], 0) |
---|
1510 | |
---|
1511 | |
---|
1512 | #Top triangle (3) using two point gradient |
---|
1513 | #q3 = q1 + a*(x3-x1) + b*(y3-y1) <=> |
---|
1514 | #2 = 4 + a*(-2/3) + b*(4/3) |
---|
1515 | assert num.allclose(a[3] - 2*b[3], 3) |
---|
1516 | #From orthogonality (a*(y1-y3) + b*(x3-x1) == 0) |
---|
1517 | assert num.allclose(2*a[3] + b[3], 0) |
---|
1518 | |
---|
1519 | |
---|
1520 | def test_second_order_extrapolation2(self): |
---|
1521 | quantity = Quantity(self.mesh4) |
---|
1522 | |
---|
1523 | #Set up for a gradient of (3,1), f(x) = 3x+y |
---|
1524 | quantity.set_values([2.0+2.0/3, 4.0+4.0/3, 8.0+2.0/3, 2.0+8.0/3], |
---|
1525 | location = 'centroids') |
---|
1526 | |
---|
1527 | #Gradients |
---|
1528 | quantity.compute_gradients() |
---|
1529 | |
---|
1530 | a = quantity.x_gradient |
---|
1531 | b = quantity.y_gradient |
---|
1532 | |
---|
1533 | #print a, b |
---|
1534 | |
---|
1535 | assert num.allclose(a[1], 3.0) |
---|
1536 | assert num.allclose(b[1], 1.0) |
---|
1537 | |
---|
1538 | #Work out the others |
---|
1539 | |
---|
1540 | quantity.extrapolate_second_order() |
---|
1541 | |
---|
1542 | #print quantity.vertex_values |
---|
1543 | assert num.allclose(quantity.vertex_values[1,0], 2.0) |
---|
1544 | assert num.allclose(quantity.vertex_values[1,1], 6.0) |
---|
1545 | assert num.allclose(quantity.vertex_values[1,2], 8.0) |
---|
1546 | |
---|
1547 | |
---|
1548 | |
---|
1549 | def test_backup_saxpy_centroid_values(self): |
---|
1550 | quantity = Quantity(self.mesh4) |
---|
1551 | |
---|
1552 | #Set up for a gradient of (3,1), f(x) = 3x+y |
---|
1553 | c_values = num.array([2.0+2.0/3, 4.0+4.0/3, 8.0+2.0/3, 2.0+8.0/3]) |
---|
1554 | d_values = num.array([1.0, 2.0, 3.0, 4.0]) |
---|
1555 | quantity.set_values(c_values, location = 'centroids') |
---|
1556 | |
---|
1557 | #Backup |
---|
1558 | quantity.backup_centroid_values() |
---|
1559 | |
---|
1560 | #print quantity.vertex_values |
---|
1561 | assert num.allclose(quantity.centroid_values, quantity.centroid_backup_values) |
---|
1562 | |
---|
1563 | |
---|
1564 | quantity.set_values(d_values, location = 'centroids') |
---|
1565 | |
---|
1566 | quantity.saxpy_centroid_values(2.0, 3.0) |
---|
1567 | |
---|
1568 | assert(quantity.centroid_values, 2.0*d_values + 3.0*c_values) |
---|
1569 | |
---|
1570 | |
---|
1571 | |
---|
1572 | def test_first_order_extrapolator(self): |
---|
1573 | quantity = Quantity(self.mesh4) |
---|
1574 | |
---|
1575 | #Test centroids |
---|
1576 | quantity.set_values([1.,2.,3.,4.], location = 'centroids') |
---|
1577 | assert num.allclose(quantity.centroid_values, [1, 2, 3, 4]) #Centroid |
---|
1578 | |
---|
1579 | #Extrapolate |
---|
1580 | quantity.extrapolate_first_order() |
---|
1581 | |
---|
1582 | #Check that gradient is zero |
---|
1583 | a,b = quantity.get_gradients() |
---|
1584 | assert num.allclose(a, [0,0,0,0]) |
---|
1585 | assert num.allclose(b, [0,0,0,0]) |
---|
1586 | |
---|
1587 | #Check vertices but not edge values |
---|
1588 | assert num.allclose(quantity.vertex_values, |
---|
1589 | [[1,1,1], [2,2,2], [3,3,3], [4, 4, 4]]) |
---|
1590 | |
---|
1591 | |
---|
1592 | def test_second_order_extrapolator(self): |
---|
1593 | quantity = Quantity(self.mesh4) |
---|
1594 | |
---|
1595 | #Set up for a gradient of (3,0) at mid triangle |
---|
1596 | quantity.set_values([2.0, 4.0, 8.0, 2.0], |
---|
1597 | location = 'centroids') |
---|
1598 | |
---|
1599 | |
---|
1600 | |
---|
1601 | quantity.extrapolate_second_order() |
---|
1602 | quantity.limit() |
---|
1603 | |
---|
1604 | |
---|
1605 | #Assert that central triangle is limited by neighbours |
---|
1606 | assert quantity.vertex_values[1,0] >= quantity.vertex_values[0,0] |
---|
1607 | assert quantity.vertex_values[1,0] >= quantity.vertex_values[3,1] |
---|
1608 | |
---|
1609 | assert quantity.vertex_values[1,1] <= quantity.vertex_values[2,1] |
---|
1610 | assert quantity.vertex_values[1,1] >= quantity.vertex_values[0,2] |
---|
1611 | |
---|
1612 | assert quantity.vertex_values[1,2] <= quantity.vertex_values[2,0] |
---|
1613 | assert quantity.vertex_values[1,2] >= quantity.vertex_values[3,1] |
---|
1614 | |
---|
1615 | |
---|
1616 | #Assert that quantities are conserved |
---|
1617 | for k in range(quantity.centroid_values.shape[0]): |
---|
1618 | assert num.allclose (quantity.centroid_values[k], |
---|
1619 | num.sum(quantity.vertex_values[k,:])/3) |
---|
1620 | |
---|
1621 | |
---|
1622 | |
---|
1623 | |
---|
1624 | |
---|
1625 | def test_limit_vertices_by_all_neighbours(self): |
---|
1626 | quantity = Quantity(self.mesh4) |
---|
1627 | |
---|
1628 | #Create a deliberate overshoot (e.g. from gradient computation) |
---|
1629 | quantity.set_values([[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
1630 | |
---|
1631 | |
---|
1632 | #Limit |
---|
1633 | quantity.limit_vertices_by_all_neighbours() |
---|
1634 | |
---|
1635 | #Assert that central triangle is limited by neighbours |
---|
1636 | assert quantity.vertex_values[1,0] >= quantity.vertex_values[0,0] |
---|
1637 | assert quantity.vertex_values[1,0] <= quantity.vertex_values[3,1] |
---|
1638 | |
---|
1639 | assert quantity.vertex_values[1,1] <= quantity.vertex_values[2,1] |
---|
1640 | assert quantity.vertex_values[1,1] >= quantity.vertex_values[0,2] |
---|
1641 | |
---|
1642 | assert quantity.vertex_values[1,2] <= quantity.vertex_values[2,0] |
---|
1643 | assert quantity.vertex_values[1,2] <= quantity.vertex_values[3,1] |
---|
1644 | |
---|
1645 | |
---|
1646 | |
---|
1647 | #Assert that quantities are conserved |
---|
1648 | for k in range(quantity.centroid_values.shape[0]): |
---|
1649 | assert num.allclose (quantity.centroid_values[k], |
---|
1650 | num.sum(quantity.vertex_values[k,:])/3) |
---|
1651 | |
---|
1652 | |
---|
1653 | |
---|
1654 | def test_limit_edges_by_all_neighbours(self): |
---|
1655 | quantity = Quantity(self.mesh4) |
---|
1656 | |
---|
1657 | #Create a deliberate overshoot (e.g. from gradient computation) |
---|
1658 | quantity.set_values([[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
1659 | |
---|
1660 | |
---|
1661 | #Limit |
---|
1662 | quantity.limit_edges_by_all_neighbours() |
---|
1663 | |
---|
1664 | #Assert that central triangle is limited by neighbours |
---|
1665 | assert quantity.edge_values[1,0] <= quantity.centroid_values[2] |
---|
1666 | assert quantity.edge_values[1,0] >= quantity.centroid_values[0] |
---|
1667 | |
---|
1668 | assert quantity.edge_values[1,1] <= quantity.centroid_values[2] |
---|
1669 | assert quantity.edge_values[1,1] >= quantity.centroid_values[0] |
---|
1670 | |
---|
1671 | assert quantity.edge_values[1,2] <= quantity.centroid_values[2] |
---|
1672 | assert quantity.edge_values[1,2] >= quantity.centroid_values[0] |
---|
1673 | |
---|
1674 | |
---|
1675 | |
---|
1676 | #Assert that quantities are conserved |
---|
1677 | for k in range(quantity.centroid_values.shape[0]): |
---|
1678 | assert num.allclose (quantity.centroid_values[k], |
---|
1679 | num.sum(quantity.vertex_values[k,:])/3) |
---|
1680 | |
---|
1681 | |
---|
1682 | def test_limit_edges_by_neighbour(self): |
---|
1683 | quantity = Quantity(self.mesh4) |
---|
1684 | |
---|
1685 | #Create a deliberate overshoot (e.g. from gradient computation) |
---|
1686 | quantity.set_values([[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
1687 | |
---|
1688 | |
---|
1689 | #Limit |
---|
1690 | quantity.limit_edges_by_neighbour() |
---|
1691 | |
---|
1692 | #Assert that central triangle is limited by neighbours |
---|
1693 | assert quantity.edge_values[1,0] <= quantity.centroid_values[3] |
---|
1694 | assert quantity.edge_values[1,0] >= quantity.centroid_values[1] |
---|
1695 | |
---|
1696 | assert quantity.edge_values[1,1] <= quantity.centroid_values[2] |
---|
1697 | assert quantity.edge_values[1,1] >= quantity.centroid_values[1] |
---|
1698 | |
---|
1699 | assert quantity.edge_values[1,2] <= quantity.centroid_values[1] |
---|
1700 | assert quantity.edge_values[1,2] >= quantity.centroid_values[0] |
---|
1701 | |
---|
1702 | |
---|
1703 | |
---|
1704 | #Assert that quantities are conserved |
---|
1705 | for k in range(quantity.centroid_values.shape[0]): |
---|
1706 | assert num.allclose (quantity.centroid_values[k], |
---|
1707 | num.sum(quantity.vertex_values[k,:])/3) |
---|
1708 | |
---|
1709 | def test_limiter2(self): |
---|
1710 | """Taken from test_shallow_water |
---|
1711 | """ |
---|
1712 | quantity = Quantity(self.mesh4) |
---|
1713 | quantity.domain.beta_w = 0.9 |
---|
1714 | |
---|
1715 | #Test centroids |
---|
1716 | quantity.set_values([2.,4.,8.,2.], location = 'centroids') |
---|
1717 | assert num.allclose(quantity.centroid_values, [2, 4, 8, 2]) #Centroid |
---|
1718 | |
---|
1719 | |
---|
1720 | #Extrapolate |
---|
1721 | quantity.extrapolate_second_order() |
---|
1722 | |
---|
1723 | assert num.allclose(quantity.vertex_values[1,:], [0.0, 6, 6]) |
---|
1724 | |
---|
1725 | #Limit |
---|
1726 | quantity.limit() |
---|
1727 | |
---|
1728 | # limited value for beta_w = 0.9 |
---|
1729 | |
---|
1730 | assert num.allclose(quantity.vertex_values[1,:], [2.2, 4.9, 4.9]) |
---|
1731 | # limited values for beta_w = 0.5 |
---|
1732 | #assert allclose(quantity.vertex_values[1,:], [3.0, 4.5, 4.5]) |
---|
1733 | |
---|
1734 | |
---|
1735 | #Assert that quantities are conserved |
---|
1736 | for k in range(quantity.centroid_values.shape[0]): |
---|
1737 | assert num.allclose (quantity.centroid_values[k], |
---|
1738 | num.sum(quantity.vertex_values[k,:])/3) |
---|
1739 | |
---|
1740 | |
---|
1741 | |
---|
1742 | |
---|
1743 | |
---|
1744 | def test_distribute_first_order(self): |
---|
1745 | quantity = Quantity(self.mesh4) |
---|
1746 | |
---|
1747 | #Test centroids |
---|
1748 | quantity.set_values([1.,2.,3.,4.], location = 'centroids') |
---|
1749 | assert num.allclose(quantity.centroid_values, [1, 2, 3, 4]) #Centroid |
---|
1750 | |
---|
1751 | |
---|
1752 | #Extrapolate from centroid to vertices and edges |
---|
1753 | quantity.extrapolate_first_order() |
---|
1754 | |
---|
1755 | #Interpolate |
---|
1756 | #quantity.interpolate_from_vertices_to_edges() |
---|
1757 | |
---|
1758 | assert num.allclose(quantity.vertex_values, |
---|
1759 | [[1,1,1], [2,2,2], [3,3,3], [4, 4, 4]]) |
---|
1760 | assert num.allclose(quantity.edge_values, [[1,1,1], [2,2,2], |
---|
1761 | [3,3,3], [4, 4, 4]]) |
---|
1762 | |
---|
1763 | |
---|
1764 | def test_interpolate_from_vertices_to_edges(self): |
---|
1765 | quantity = Quantity(self.mesh4) |
---|
1766 | |
---|
1767 | quantity.vertex_values = num.array([[1,0,2], [1,2,4], [4,2,5], [3,1,4]], num.float) |
---|
1768 | |
---|
1769 | quantity.interpolate_from_vertices_to_edges() |
---|
1770 | |
---|
1771 | assert num.allclose(quantity.edge_values, [[1., 1.5, 0.5], |
---|
1772 | [3., 2.5, 1.5], |
---|
1773 | [3.5, 4.5, 3.], |
---|
1774 | [2.5, 3.5, 2]]) |
---|
1775 | |
---|
1776 | |
---|
1777 | def test_interpolate_from_edges_to_vertices(self): |
---|
1778 | quantity = Quantity(self.mesh4) |
---|
1779 | |
---|
1780 | quantity.edge_values = num.array([[1., 1.5, 0.5], |
---|
1781 | [3., 2.5, 1.5], |
---|
1782 | [3.5, 4.5, 3.], |
---|
1783 | [2.5, 3.5, 2]], num.float) |
---|
1784 | |
---|
1785 | quantity.interpolate_from_edges_to_vertices() |
---|
1786 | |
---|
1787 | assert num.allclose(quantity.vertex_values, |
---|
1788 | [[1,0,2], [1,2,4], [4,2,5], [3,1,4]]) |
---|
1789 | |
---|
1790 | |
---|
1791 | |
---|
1792 | def test_distribute_second_order(self): |
---|
1793 | quantity = Quantity(self.mesh4) |
---|
1794 | |
---|
1795 | #Test centroids |
---|
1796 | quantity.set_values([2.,4.,8.,2.], location = 'centroids') |
---|
1797 | assert num.allclose(quantity.centroid_values, [2, 4, 8, 2]) #Centroid |
---|
1798 | |
---|
1799 | |
---|
1800 | #Extrapolate |
---|
1801 | quantity.extrapolate_second_order() |
---|
1802 | |
---|
1803 | assert num.allclose(quantity.vertex_values[1,:], [0.0, 6, 6]) |
---|
1804 | |
---|
1805 | |
---|
1806 | def test_update_explicit(self): |
---|
1807 | quantity = Quantity(self.mesh4) |
---|
1808 | |
---|
1809 | #Test centroids |
---|
1810 | quantity.set_values([1.,2.,3.,4.], location = 'centroids') |
---|
1811 | assert num.allclose(quantity.centroid_values, [1, 2, 3, 4]) #Centroid |
---|
1812 | |
---|
1813 | #Set explicit_update |
---|
1814 | quantity.explicit_update = num.array( [1.,1.,1.,1.] ) |
---|
1815 | |
---|
1816 | #Update with given timestep |
---|
1817 | quantity.update(0.1) |
---|
1818 | |
---|
1819 | x = num.array([1, 2, 3, 4]) + num.array( [.1,.1,.1,.1] ) |
---|
1820 | assert num.allclose( quantity.centroid_values, x) |
---|
1821 | |
---|
1822 | def test_update_semi_implicit(self): |
---|
1823 | quantity = Quantity(self.mesh4) |
---|
1824 | |
---|
1825 | #Test centroids |
---|
1826 | quantity.set_values([1.,2.,3.,4.], location = 'centroids') |
---|
1827 | assert num.allclose(quantity.centroid_values, [1, 2, 3, 4]) #Centroid |
---|
1828 | |
---|
1829 | #Set semi implicit update |
---|
1830 | quantity.semi_implicit_update = num.array([1.,1.,1.,1.]) |
---|
1831 | |
---|
1832 | #Update with given timestep |
---|
1833 | timestep = 0.1 |
---|
1834 | quantity.update(timestep) |
---|
1835 | |
---|
1836 | sem = num.array([1.,1.,1.,1.])/num.array([1, 2, 3, 4]) |
---|
1837 | denom = num.ones(4, num.float)-timestep*sem |
---|
1838 | |
---|
1839 | x = num.array([1, 2, 3, 4])/denom |
---|
1840 | assert num.allclose( quantity.centroid_values, x) |
---|
1841 | |
---|
1842 | |
---|
1843 | def test_both_updates(self): |
---|
1844 | quantity = Quantity(self.mesh4) |
---|
1845 | |
---|
1846 | #Test centroids |
---|
1847 | quantity.set_values([1.,2.,3.,4.], location = 'centroids') |
---|
1848 | assert num.allclose(quantity.centroid_values, [1, 2, 3, 4]) #Centroid |
---|
1849 | |
---|
1850 | #Set explicit_update |
---|
1851 | quantity.explicit_update = num.array( [4.,3.,2.,1.] ) |
---|
1852 | |
---|
1853 | #Set semi implicit update |
---|
1854 | quantity.semi_implicit_update = num.array( [1.,1.,1.,1.] ) |
---|
1855 | |
---|
1856 | #Update with given timestep |
---|
1857 | timestep = 0.1 |
---|
1858 | quantity.update(0.1) |
---|
1859 | |
---|
1860 | sem = num.array([1.,1.,1.,1.])/num.array([1, 2, 3, 4]) |
---|
1861 | denom = num.ones(4, num.float)-timestep*sem |
---|
1862 | |
---|
1863 | x = num.array([1., 2., 3., 4.]) |
---|
1864 | x /= denom |
---|
1865 | x += timestep*num.array( [4.0, 3.0, 2.0, 1.0] ) |
---|
1866 | |
---|
1867 | assert num.allclose( quantity.centroid_values, x) |
---|
1868 | |
---|
1869 | |
---|
1870 | |
---|
1871 | |
---|
1872 | #Test smoothing |
---|
1873 | def test_smoothing(self): |
---|
1874 | |
---|
1875 | from mesh_factory import rectangular |
---|
1876 | from shallow_water import Domain, Transmissive_boundary |
---|
1877 | from anuga.utilities.numerical_tools import mean |
---|
1878 | |
---|
1879 | #Create basic mesh |
---|
1880 | points, vertices, boundary = rectangular(2, 2) |
---|
1881 | |
---|
1882 | #Create shallow water domain |
---|
1883 | domain = Domain(points, vertices, boundary) |
---|
1884 | domain.default_order=2 |
---|
1885 | domain.reduction = mean |
---|
1886 | |
---|
1887 | |
---|
1888 | #Set some field values |
---|
1889 | domain.set_quantity('elevation', lambda x,y: x) |
---|
1890 | domain.set_quantity('friction', 0.03) |
---|
1891 | |
---|
1892 | |
---|
1893 | ###################### |
---|
1894 | # Boundary conditions |
---|
1895 | B = Transmissive_boundary(domain) |
---|
1896 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
1897 | |
---|
1898 | |
---|
1899 | ###################### |
---|
1900 | #Initial condition - with jumps |
---|
1901 | |
---|
1902 | bed = domain.quantities['elevation'].vertex_values |
---|
1903 | stage = num.zeros(bed.shape, num.float) |
---|
1904 | |
---|
1905 | h = 0.03 |
---|
1906 | for i in range(stage.shape[0]): |
---|
1907 | if i % 2 == 0: |
---|
1908 | stage[i,:] = bed[i,:] + h |
---|
1909 | else: |
---|
1910 | stage[i,:] = bed[i,:] |
---|
1911 | |
---|
1912 | domain.set_quantity('stage', stage) |
---|
1913 | |
---|
1914 | stage = domain.quantities['stage'] |
---|
1915 | |
---|
1916 | #Get smoothed stage |
---|
1917 | A, V = stage.get_vertex_values(xy=False, smooth=True) |
---|
1918 | Q = stage.vertex_values |
---|
1919 | |
---|
1920 | |
---|
1921 | assert A.shape[0] == 9 |
---|
1922 | assert V.shape[0] == 8 |
---|
1923 | assert V.shape[1] == 3 |
---|
1924 | |
---|
1925 | #First four points |
---|
1926 | assert num.allclose(A[0], (Q[0,2] + Q[1,1])/2) |
---|
1927 | assert num.allclose(A[1], (Q[1,0] + Q[3,1] + Q[2,2])/3) |
---|
1928 | assert num.allclose(A[2], Q[3,0]) |
---|
1929 | assert num.allclose(A[3], (Q[0,0] + Q[5,1] + Q[4,2])/3) |
---|
1930 | |
---|
1931 | #Center point |
---|
1932 | assert num.allclose(A[4], (Q[0,1] + Q[1,2] + Q[2,0] +\ |
---|
1933 | Q[5,0] + Q[6,2] + Q[7,1])/6) |
---|
1934 | |
---|
1935 | |
---|
1936 | #Check V |
---|
1937 | assert num.allclose(V[0,:], [3,4,0]) |
---|
1938 | assert num.allclose(V[1,:], [1,0,4]) |
---|
1939 | assert num.allclose(V[2,:], [4,5,1]) |
---|
1940 | assert num.allclose(V[3,:], [2,1,5]) |
---|
1941 | assert num.allclose(V[4,:], [6,7,3]) |
---|
1942 | assert num.allclose(V[5,:], [4,3,7]) |
---|
1943 | assert num.allclose(V[6,:], [7,8,4]) |
---|
1944 | assert num.allclose(V[7,:], [5,4,8]) |
---|
1945 | |
---|
1946 | #Get smoothed stage with XY |
---|
1947 | X, Y, A1, V1 = stage.get_vertex_values(xy=True, smooth=True) |
---|
1948 | |
---|
1949 | assert num.allclose(A, A1) |
---|
1950 | assert num.allclose(V, V1) |
---|
1951 | |
---|
1952 | #Check XY |
---|
1953 | assert num.allclose(X[4], 0.5) |
---|
1954 | assert num.allclose(Y[4], 0.5) |
---|
1955 | |
---|
1956 | assert num.allclose(X[7], 1.0) |
---|
1957 | assert num.allclose(Y[7], 0.5) |
---|
1958 | |
---|
1959 | |
---|
1960 | |
---|
1961 | |
---|
1962 | def test_vertex_values_no_smoothing(self): |
---|
1963 | |
---|
1964 | from mesh_factory import rectangular |
---|
1965 | from shallow_water import Domain, Transmissive_boundary |
---|
1966 | from anuga.utilities.numerical_tools import mean |
---|
1967 | |
---|
1968 | |
---|
1969 | #Create basic mesh |
---|
1970 | points, vertices, boundary = rectangular(2, 2) |
---|
1971 | |
---|
1972 | #Create shallow water domain |
---|
1973 | domain = Domain(points, vertices, boundary) |
---|
1974 | domain.default_order=2 |
---|
1975 | domain.reduction = mean |
---|
1976 | |
---|
1977 | |
---|
1978 | #Set some field values |
---|
1979 | domain.set_quantity('elevation', lambda x,y: x) |
---|
1980 | domain.set_quantity('friction', 0.03) |
---|
1981 | |
---|
1982 | |
---|
1983 | ###################### |
---|
1984 | #Initial condition - with jumps |
---|
1985 | |
---|
1986 | bed = domain.quantities['elevation'].vertex_values |
---|
1987 | stage = num.zeros(bed.shape, num.float) |
---|
1988 | |
---|
1989 | h = 0.03 |
---|
1990 | for i in range(stage.shape[0]): |
---|
1991 | if i % 2 == 0: |
---|
1992 | stage[i,:] = bed[i,:] + h |
---|
1993 | else: |
---|
1994 | stage[i,:] = bed[i,:] |
---|
1995 | |
---|
1996 | domain.set_quantity('stage', stage) |
---|
1997 | |
---|
1998 | #Get stage |
---|
1999 | stage = domain.quantities['stage'] |
---|
2000 | A, V = stage.get_vertex_values(xy=False, smooth=False) |
---|
2001 | Q = stage.vertex_values.flatten() |
---|
2002 | |
---|
2003 | for k in range(8): |
---|
2004 | assert num.allclose(A[k], Q[k]) |
---|
2005 | |
---|
2006 | |
---|
2007 | for k in range(8): |
---|
2008 | assert V[k, 0] == 3*k |
---|
2009 | assert V[k, 1] == 3*k+1 |
---|
2010 | assert V[k, 2] == 3*k+2 |
---|
2011 | |
---|
2012 | |
---|
2013 | |
---|
2014 | X, Y, A1, V1 = stage.get_vertex_values(xy=True, smooth=False) |
---|
2015 | |
---|
2016 | |
---|
2017 | assert num.allclose(A, A1) |
---|
2018 | assert num.allclose(V, V1) |
---|
2019 | |
---|
2020 | #Check XY |
---|
2021 | assert num.allclose(X[1], 0.5) |
---|
2022 | assert num.allclose(Y[1], 0.5) |
---|
2023 | assert num.allclose(X[4], 0.0) |
---|
2024 | assert num.allclose(Y[4], 0.0) |
---|
2025 | assert num.allclose(X[12], 1.0) |
---|
2026 | assert num.allclose(Y[12], 0.0) |
---|
2027 | |
---|
2028 | |
---|
2029 | |
---|
2030 | def set_array_values_by_index(self): |
---|
2031 | |
---|
2032 | from mesh_factory import rectangular |
---|
2033 | from shallow_water import Domain |
---|
2034 | |
---|
2035 | #Create basic mesh |
---|
2036 | points, vertices, boundary = rectangular(1, 1) |
---|
2037 | |
---|
2038 | #Create shallow water domain |
---|
2039 | domain = Domain(points, vertices, boundary) |
---|
2040 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2041 | quantity = Quantity(domain,[[1,1,1],[2,2,2]]) |
---|
2042 | value = [7] |
---|
2043 | indices = [1] |
---|
2044 | quantity.set_array_values_by_index(value, |
---|
2045 | location = 'centroids', |
---|
2046 | indices = indices) |
---|
2047 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2048 | |
---|
2049 | assert num.allclose(quantity.centroid_values, [1,7]) |
---|
2050 | |
---|
2051 | quantity.set_array_values([15,20,25], indices = indices) |
---|
2052 | assert num.allclose(quantity.centroid_values, [1,20]) |
---|
2053 | |
---|
2054 | quantity.set_array_values([15,20,25], indices = indices) |
---|
2055 | assert num.allclose(quantity.centroid_values, [1,20]) |
---|
2056 | |
---|
2057 | def test_setting_some_vertex_values(self): |
---|
2058 | """ |
---|
2059 | set values based on triangle lists. |
---|
2060 | """ |
---|
2061 | from mesh_factory import rectangular |
---|
2062 | from shallow_water import Domain |
---|
2063 | |
---|
2064 | #Create basic mesh |
---|
2065 | points, vertices, boundary = rectangular(1, 3) |
---|
2066 | #print "vertices",vertices |
---|
2067 | #Create shallow water domain |
---|
2068 | domain = Domain(points, vertices, boundary) |
---|
2069 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2070 | quantity = Quantity(domain,[[1,1,1],[2,2,2],[3,3,3], |
---|
2071 | [4,4,4],[5,5,5],[6,6,6]]) |
---|
2072 | |
---|
2073 | |
---|
2074 | # Check that constants work |
---|
2075 | value = 7 |
---|
2076 | indices = [1] |
---|
2077 | quantity.set_values(value, |
---|
2078 | location = 'centroids', |
---|
2079 | indices = indices) |
---|
2080 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2081 | assert num.allclose(quantity.centroid_values, [1,7,3,4,5,6]) |
---|
2082 | |
---|
2083 | value = [7] |
---|
2084 | indices = [1] |
---|
2085 | quantity.set_values(value, |
---|
2086 | location = 'centroids', |
---|
2087 | indices = indices) |
---|
2088 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2089 | assert num.allclose(quantity.centroid_values, [1,7,3,4,5,6]) |
---|
2090 | |
---|
2091 | value = [[15,20,25]] |
---|
2092 | quantity.set_values(value, indices = indices) |
---|
2093 | #print "1 quantity.vertex_values",quantity.vertex_values |
---|
2094 | assert num.allclose(quantity.vertex_values[1], value[0]) |
---|
2095 | |
---|
2096 | |
---|
2097 | #print "quantity",quantity.vertex_values |
---|
2098 | values = [10,100,50] |
---|
2099 | quantity.set_values(values, indices = [0,1,5], location = 'centroids') |
---|
2100 | #print "2 quantity.vertex_values",quantity.vertex_values |
---|
2101 | assert num.allclose(quantity.vertex_values[0], [10,10,10]) |
---|
2102 | assert num.allclose(quantity.vertex_values[5], [50,50,50]) |
---|
2103 | #quantity.interpolate() |
---|
2104 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2105 | assert num.allclose(quantity.centroid_values, [10,100,3,4,5,50]) |
---|
2106 | |
---|
2107 | |
---|
2108 | quantity = Quantity(domain,[[1,1,1],[2,2,2],[3,3,3], |
---|
2109 | [4,4,4],[5,5,5],[6,6,6]]) |
---|
2110 | values = [10,100,50] |
---|
2111 | #this will be per unique vertex, indexing the vertices |
---|
2112 | #print "quantity.vertex_values",quantity.vertex_values |
---|
2113 | quantity.set_values(values, indices = [0,1,5]) |
---|
2114 | #print "quantity.vertex_values",quantity.vertex_values |
---|
2115 | assert num.allclose(quantity.vertex_values[0], [1,50,10]) |
---|
2116 | assert num.allclose(quantity.vertex_values[5], [6,6,6]) |
---|
2117 | assert num.allclose(quantity.vertex_values[1], [100,10,50]) |
---|
2118 | |
---|
2119 | quantity = Quantity(domain,[[1,1,1],[2,2,2],[3,3,3], |
---|
2120 | [4,4,4],[5,5,5],[6,6,6]]) |
---|
2121 | values = [[31,30,29],[400,400,400],[1000,999,998]] |
---|
2122 | quantity.set_values(values, indices = [3,3,5]) |
---|
2123 | quantity.interpolate() |
---|
2124 | assert num.allclose(quantity.centroid_values, [1,2,3,400,5,999]) |
---|
2125 | |
---|
2126 | values = [[1,1,1],[2,2,2],[3,3,3], |
---|
2127 | [4,4,4],[5,5,5],[6,6,6]] |
---|
2128 | quantity.set_values(values) |
---|
2129 | |
---|
2130 | # testing the standard set values by vertex |
---|
2131 | # indexed by vertex_id in general_mesh.coordinates |
---|
2132 | values = [0,1,2,3,4,5,6,7] |
---|
2133 | |
---|
2134 | quantity.set_values(values) |
---|
2135 | #print "1 quantity.vertex_values",quantity.vertex_values |
---|
2136 | assert num.allclose(quantity.vertex_values,[[ 4., 5., 0.], |
---|
2137 | [ 1., 0., 5.], |
---|
2138 | [ 5., 6., 1.], |
---|
2139 | [ 2., 1., 6.], |
---|
2140 | [ 6., 7., 2.], |
---|
2141 | [ 3., 2., 7.]]) |
---|
2142 | |
---|
2143 | def test_setting_unique_vertex_values(self): |
---|
2144 | """ |
---|
2145 | set values based on unique_vertex lists. |
---|
2146 | """ |
---|
2147 | from mesh_factory import rectangular |
---|
2148 | from shallow_water import Domain |
---|
2149 | |
---|
2150 | #Create basic mesh |
---|
2151 | points, vertices, boundary = rectangular(1, 3) |
---|
2152 | #print "vertices",vertices |
---|
2153 | #Create shallow water domain |
---|
2154 | domain = Domain(points, vertices, boundary) |
---|
2155 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2156 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
2157 | [4,4,4],[5,5,5]]) |
---|
2158 | value = 7 |
---|
2159 | indices = [1,5] |
---|
2160 | quantity.set_values(value, |
---|
2161 | location = 'unique vertices', |
---|
2162 | indices = indices) |
---|
2163 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2164 | assert num.allclose(quantity.vertex_values[0], [0,7,0]) |
---|
2165 | assert num.allclose(quantity.vertex_values[1], [7,1,7]) |
---|
2166 | assert num.allclose(quantity.vertex_values[2], [7,2,7]) |
---|
2167 | |
---|
2168 | |
---|
2169 | def test_get_values(self): |
---|
2170 | """ |
---|
2171 | get values based on triangle lists. |
---|
2172 | """ |
---|
2173 | from mesh_factory import rectangular |
---|
2174 | from shallow_water import Domain |
---|
2175 | |
---|
2176 | #Create basic mesh |
---|
2177 | points, vertices, boundary = rectangular(1, 3) |
---|
2178 | |
---|
2179 | #print "points",points |
---|
2180 | #print "vertices",vertices |
---|
2181 | #print "boundary",boundary |
---|
2182 | |
---|
2183 | #Create shallow water domain |
---|
2184 | domain = Domain(points, vertices, boundary) |
---|
2185 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2186 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
2187 | [4,4,4],[5,5,5]]) |
---|
2188 | |
---|
2189 | #print "quantity.get_values(location = 'unique vertices')", \ |
---|
2190 | # quantity.get_values(location = 'unique vertices') |
---|
2191 | |
---|
2192 | #print "quantity.get_values(location = 'unique vertices')", \ |
---|
2193 | # quantity.get_values(indices=[0,1,2,3,4,5,6,7], \ |
---|
2194 | # location = 'unique vertices') |
---|
2195 | |
---|
2196 | answer = [0.5,2,4,5,0,1,3,4.5] |
---|
2197 | assert num.allclose(answer, |
---|
2198 | quantity.get_values(location = 'unique vertices')) |
---|
2199 | |
---|
2200 | indices = [0,5,3] |
---|
2201 | answer = [0.5,1,5] |
---|
2202 | assert num.allclose(answer, |
---|
2203 | quantity.get_values(indices=indices, |
---|
2204 | location = 'unique vertices')) |
---|
2205 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2206 | #print "quantity.get_values(location = 'centroids') ",\ |
---|
2207 | # quantity.get_values(location = 'centroids') |
---|
2208 | |
---|
2209 | |
---|
2210 | |
---|
2211 | |
---|
2212 | def test_get_values_2(self): |
---|
2213 | """Different mesh (working with domain object) - also check centroids. |
---|
2214 | """ |
---|
2215 | |
---|
2216 | |
---|
2217 | a = [0.0, 0.0] |
---|
2218 | b = [0.0, 2.0] |
---|
2219 | c = [2.0,0.0] |
---|
2220 | d = [0.0, 4.0] |
---|
2221 | e = [2.0, 2.0] |
---|
2222 | f = [4.0,0.0] |
---|
2223 | |
---|
2224 | points = [a, b, c, d, e, f] |
---|
2225 | #bac, bce, ecf, dbe |
---|
2226 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2227 | |
---|
2228 | domain = Domain(points, vertices) |
---|
2229 | |
---|
2230 | quantity = Quantity(domain) |
---|
2231 | quantity.set_values(lambda x, y: x+2*y) #2 4 4 6 |
---|
2232 | |
---|
2233 | assert num.allclose(quantity.get_values(location='centroids'), [2,4,4,6]) |
---|
2234 | assert num.allclose(quantity.get_values(location='centroids', indices=[1,3]), [4,6]) |
---|
2235 | |
---|
2236 | |
---|
2237 | assert num.allclose(quantity.get_values(location='vertices'), [[4,0,2], |
---|
2238 | [4,2,6], |
---|
2239 | [6,2,4], |
---|
2240 | [8,4,6]]) |
---|
2241 | |
---|
2242 | assert num.allclose(quantity.get_values(location='vertices', indices=[1,3]), [[4,2,6], |
---|
2243 | [8,4,6]]) |
---|
2244 | |
---|
2245 | |
---|
2246 | assert num.allclose(quantity.get_values(location='edges'), [[1,3,2], |
---|
2247 | [4,5,3], |
---|
2248 | [3,5,4], |
---|
2249 | [5,7,6]]) |
---|
2250 | assert num.allclose(quantity.get_values(location='edges', indices=[1,3]), |
---|
2251 | [[4,5,3], |
---|
2252 | [5,7,6]]) |
---|
2253 | |
---|
2254 | # Check averaging over vertices |
---|
2255 | #a: 0 |
---|
2256 | #b: (4+4+4)/3 |
---|
2257 | #c: (2+2+2)/3 |
---|
2258 | #d: 8 |
---|
2259 | #e: (6+6+6)/3 |
---|
2260 | #f: 4 |
---|
2261 | assert(quantity.get_values(location='unique vertices'), [0, 4, 2, 8, 6, 4]) |
---|
2262 | |
---|
2263 | |
---|
2264 | |
---|
2265 | |
---|
2266 | |
---|
2267 | |
---|
2268 | def test_get_interpolated_values(self): |
---|
2269 | |
---|
2270 | from mesh_factory import rectangular |
---|
2271 | from shallow_water import Domain |
---|
2272 | |
---|
2273 | #Create basic mesh |
---|
2274 | points, vertices, boundary = rectangular(1, 3) |
---|
2275 | domain = Domain(points, vertices, boundary) |
---|
2276 | |
---|
2277 | #Constant values |
---|
2278 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
2279 | [4,4,4],[5,5,5]]) |
---|
2280 | |
---|
2281 | |
---|
2282 | |
---|
2283 | # Get interpolated values at centroids |
---|
2284 | interpolation_points = domain.get_centroid_coordinates() |
---|
2285 | answer = quantity.get_values(location='centroids') |
---|
2286 | |
---|
2287 | |
---|
2288 | #print quantity.get_values(points=interpolation_points) |
---|
2289 | assert num.allclose(answer, quantity.get_values(interpolation_points=interpolation_points)) |
---|
2290 | |
---|
2291 | |
---|
2292 | #Arbitrary values |
---|
2293 | quantity = Quantity(domain,[[0,1,2],[3,1,7],[2,1,2],[3,3,7], |
---|
2294 | [1,4,-9],[2,5,0]]) |
---|
2295 | |
---|
2296 | |
---|
2297 | # Get interpolated values at centroids |
---|
2298 | interpolation_points = domain.get_centroid_coordinates() |
---|
2299 | answer = quantity.get_values(location='centroids') |
---|
2300 | #print answer |
---|
2301 | #print quantity.get_values(interpolation_points=interpolation_points) |
---|
2302 | assert num.allclose(answer, quantity.get_values(interpolation_points=interpolation_points, |
---|
2303 | verbose=False)) |
---|
2304 | |
---|
2305 | |
---|
2306 | #FIXME TODO |
---|
2307 | #indices = [0,5,3] |
---|
2308 | #answer = [0.5,1,5] |
---|
2309 | #assert allclose(answer, |
---|
2310 | # quantity.get_values(indices=indices, \ |
---|
2311 | # location = 'unique vertices')) |
---|
2312 | |
---|
2313 | |
---|
2314 | |
---|
2315 | |
---|
2316 | def test_get_interpolated_values_2(self): |
---|
2317 | a = [0.0, 0.0] |
---|
2318 | b = [0.0, 2.0] |
---|
2319 | c = [2.0,0.0] |
---|
2320 | d = [0.0, 4.0] |
---|
2321 | e = [2.0, 2.0] |
---|
2322 | f = [4.0,0.0] |
---|
2323 | |
---|
2324 | points = [a, b, c, d, e, f] |
---|
2325 | #bac, bce, ecf, dbe |
---|
2326 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2327 | |
---|
2328 | domain = Domain(points, vertices) |
---|
2329 | |
---|
2330 | quantity = Quantity(domain) |
---|
2331 | quantity.set_values(lambda x, y: x+2*y) #2 4 4 6 |
---|
2332 | |
---|
2333 | #First pick one point |
---|
2334 | x, y = 2.0/3, 8.0/3 |
---|
2335 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
2336 | assert num.allclose(v, 6) |
---|
2337 | |
---|
2338 | # Then another to test that algorithm won't blindly |
---|
2339 | # reuse interpolation matrix |
---|
2340 | x, y = 4.0/3, 4.0/3 |
---|
2341 | v = quantity.get_values(interpolation_points = [[x,y]]) |
---|
2342 | assert num.allclose(v, 4) |
---|
2343 | |
---|
2344 | |
---|
2345 | |
---|
2346 | def test_get_interpolated_values_with_georef(self): |
---|
2347 | |
---|
2348 | zone = 56 |
---|
2349 | xllcorner = 308500 |
---|
2350 | yllcorner = 6189000 |
---|
2351 | a = [0.0, 0.0] |
---|
2352 | b = [0.0, 2.0] |
---|
2353 | c = [2.0,0.0] |
---|
2354 | d = [0.0, 4.0] |
---|
2355 | e = [2.0, 2.0] |
---|
2356 | f = [4.0,0.0] |
---|
2357 | |
---|
2358 | points = [a, b, c, d, e, f] |
---|
2359 | #bac, bce, ecf, dbe |
---|
2360 | vertices = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2361 | |
---|
2362 | domain = Domain(points, vertices, |
---|
2363 | geo_reference=Geo_reference(zone,xllcorner,yllcorner)) |
---|
2364 | |
---|
2365 | quantity = Quantity(domain) |
---|
2366 | quantity.set_values(lambda x, y: x+2*y) #2 4 4 6 |
---|
2367 | |
---|
2368 | #First pick one point (and turn it into absolute coordinates) |
---|
2369 | x, y = 2.0/3, 8.0/3 |
---|
2370 | v = quantity.get_values(interpolation_points = [[x+xllcorner,y+yllcorner]]) |
---|
2371 | assert num.allclose(v, 6) |
---|
2372 | |
---|
2373 | |
---|
2374 | # Then another to test that algorithm won't blindly |
---|
2375 | # reuse interpolation matrix |
---|
2376 | x, y = 4.0/3, 4.0/3 |
---|
2377 | v = quantity.get_values(interpolation_points = [[x+xllcorner,y+yllcorner]]) |
---|
2378 | assert num.allclose(v, 4) |
---|
2379 | |
---|
2380 | # Try two points |
---|
2381 | pts = [[2.0/3 + xllcorner, 8.0/3 + yllcorner], |
---|
2382 | [4.0/3 + xllcorner, 4.0/3 + yllcorner]] |
---|
2383 | v = quantity.get_values(interpolation_points=pts) |
---|
2384 | assert num.allclose(v, [6, 4]) |
---|
2385 | |
---|
2386 | # Test it using the geospatial data format with absolute input points and default georef |
---|
2387 | pts = Geospatial_data(data_points=pts) |
---|
2388 | v = quantity.get_values(interpolation_points=pts) |
---|
2389 | assert num.allclose(v, [6, 4]) |
---|
2390 | |
---|
2391 | |
---|
2392 | # Test it using the geospatial data format with relative input points |
---|
2393 | pts = Geospatial_data(data_points=[[2.0/3, 8.0/3], [4.0/3, 4.0/3]], |
---|
2394 | geo_reference=Geo_reference(zone,xllcorner,yllcorner)) |
---|
2395 | v = quantity.get_values(interpolation_points=pts) |
---|
2396 | assert num.allclose(v, [6, 4]) |
---|
2397 | |
---|
2398 | |
---|
2399 | |
---|
2400 | |
---|
2401 | def test_getting_some_vertex_values(self): |
---|
2402 | """ |
---|
2403 | get values based on triangle lists. |
---|
2404 | """ |
---|
2405 | from mesh_factory import rectangular |
---|
2406 | from shallow_water import Domain |
---|
2407 | |
---|
2408 | #Create basic mesh |
---|
2409 | points, vertices, boundary = rectangular(1, 3) |
---|
2410 | |
---|
2411 | #print "points",points |
---|
2412 | #print "vertices",vertices |
---|
2413 | #print "boundary",boundary |
---|
2414 | |
---|
2415 | #Create shallow water domain |
---|
2416 | domain = Domain(points, vertices, boundary) |
---|
2417 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2418 | quantity = Quantity(domain,[[1,1,1],[2,2,2],[3,3,3], |
---|
2419 | [4,4,4],[5,5,5],[6,6,6]]) |
---|
2420 | value = [7] |
---|
2421 | indices = [1] |
---|
2422 | quantity.set_values(value, |
---|
2423 | location = 'centroids', |
---|
2424 | indices = indices) |
---|
2425 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2426 | #print "quantity.get_values(location = 'centroids') ",\ |
---|
2427 | # quantity.get_values(location = 'centroids') |
---|
2428 | assert num.allclose(quantity.centroid_values, |
---|
2429 | quantity.get_values(location = 'centroids')) |
---|
2430 | |
---|
2431 | |
---|
2432 | value = [[15,20,25]] |
---|
2433 | quantity.set_values(value, indices = indices) |
---|
2434 | #print "1 quantity.vertex_values",quantity.vertex_values |
---|
2435 | assert num.allclose(quantity.vertex_values, quantity.get_values()) |
---|
2436 | |
---|
2437 | assert num.allclose(quantity.edge_values, |
---|
2438 | quantity.get_values(location = 'edges')) |
---|
2439 | |
---|
2440 | # get a subset of elements |
---|
2441 | subset = quantity.get_values(location='centroids', indices=[0,5]) |
---|
2442 | answer = [quantity.centroid_values[0],quantity.centroid_values[5]] |
---|
2443 | assert num.allclose(subset, answer) |
---|
2444 | |
---|
2445 | |
---|
2446 | subset = quantity.get_values(location='edges', indices=[0,5]) |
---|
2447 | answer = [quantity.edge_values[0],quantity.edge_values[5]] |
---|
2448 | #print "subset",subset |
---|
2449 | #print "answer",answer |
---|
2450 | assert num.allclose(subset, answer) |
---|
2451 | |
---|
2452 | subset = quantity.get_values( indices=[1,5]) |
---|
2453 | answer = [quantity.vertex_values[1],quantity.vertex_values[5]] |
---|
2454 | #print "subset",subset |
---|
2455 | #print "answer",answer |
---|
2456 | assert num.allclose(subset, answer) |
---|
2457 | |
---|
2458 | def test_smooth_vertex_values(self): |
---|
2459 | """ |
---|
2460 | get values based on triangle lists. |
---|
2461 | """ |
---|
2462 | from mesh_factory import rectangular |
---|
2463 | from shallow_water import Domain |
---|
2464 | |
---|
2465 | #Create basic mesh |
---|
2466 | points, vertices, boundary = rectangular(2, 2) |
---|
2467 | |
---|
2468 | #print "points",points |
---|
2469 | #print "vertices",vertices |
---|
2470 | #print "boundary",boundary |
---|
2471 | |
---|
2472 | #Create shallow water domain |
---|
2473 | domain = Domain(points, vertices, boundary) |
---|
2474 | #print "domain.number_of_elements ",domain.number_of_elements |
---|
2475 | quantity = Quantity(domain,[[0,0,0],[1,1,1],[2,2,2],[3,3,3], |
---|
2476 | [4,4,4],[5,5,5],[6,6,6],[7,7,7]]) |
---|
2477 | |
---|
2478 | #print "quantity.get_values(location = 'unique vertices')", \ |
---|
2479 | # quantity.get_values(location = 'unique vertices') |
---|
2480 | |
---|
2481 | #print "quantity.get_values(location = 'unique vertices')", \ |
---|
2482 | # quantity.get_values(indices=[0,1,2,3,4,5,6,7], \ |
---|
2483 | # location = 'unique vertices') |
---|
2484 | |
---|
2485 | #print quantity.get_values(location = 'unique vertices') |
---|
2486 | #print quantity.domain.number_of_triangles_per_node |
---|
2487 | #print quantity.vertex_values |
---|
2488 | |
---|
2489 | #answer = [0.5, 2, 3, 3, 3.5, 4, 4, 5, 6.5] |
---|
2490 | #assert allclose(answer, |
---|
2491 | # quantity.get_values(location = 'unique vertices')) |
---|
2492 | |
---|
2493 | quantity.smooth_vertex_values() |
---|
2494 | |
---|
2495 | #print quantity.vertex_values |
---|
2496 | |
---|
2497 | |
---|
2498 | answer_vertex_values = [[3,3.5,0.5],[2,0.5,3.5],[3.5,4,2],[3,2,4], |
---|
2499 | [4,5,3],[3.5,3,5],[5,6.5,3.5],[4,3.5,6.5]] |
---|
2500 | |
---|
2501 | assert num.allclose(answer_vertex_values, |
---|
2502 | quantity.vertex_values) |
---|
2503 | #print "quantity.centroid_values",quantity.centroid_values |
---|
2504 | #print "quantity.get_values(location = 'centroids') ",\ |
---|
2505 | # quantity.get_values(location = 'centroids') |
---|
2506 | |
---|
2507 | |
---|
2508 | |
---|
2509 | #------------------------------------------------------------- |
---|
2510 | if __name__ == "__main__": |
---|
2511 | suite = unittest.makeSuite(Test_Quantity, 'test') |
---|
2512 | #suite = unittest.makeSuite(Test_Quantity, 'test_set_values_from_file_using_polygon') |
---|
2513 | runner = unittest.TextTestRunner() |
---|
2514 | runner.run(suite) |
---|