[4955] | 1 | """Alpha shape |
---|
| 2 | Determine the shape of a set of points. |
---|
| 3 | |
---|
| 4 | From website by Kaspar Fischer: |
---|
| 5 | As mentionned in Edelsbrunner's and Muecke's paper, one can |
---|
| 6 | intuitively think of an alpha-shape as the following: |
---|
| 7 | |
---|
| 8 | Imagine a huge mass of ice-cream making up the space and containing |
---|
| 9 | the points S as ``hard'' chocolate pieces. Using one of these |
---|
| 10 | sphere-formed ice-cream spoons we carve out all parts of the ice-cream |
---|
| 11 | block we can reach without bumping into chocolate pieces, even |
---|
| 12 | carving out holes in the inside (eg. parts not reachable by simply |
---|
| 13 | moving the spoon from the outside). We will eventually end up with a |
---|
| 14 | (not necessarily convex) object bounded by caps, arcs and points. If |
---|
| 15 | we now straighten all ``round'' faces to triangles and line segments, |
---|
| 16 | we have an intuitive description of what is called the alpha-shape. |
---|
| 17 | |
---|
| 18 | Author: Vanessa Robins, ANU |
---|
| 19 | """ |
---|
| 20 | |
---|
| 21 | import exceptions |
---|
| 22 | import random |
---|
| 23 | |
---|
| 24 | from load_mesh.loadASCII import export_boundary_file |
---|
| 25 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
| 26 | |
---|
[6304] | 27 | import numpy as num |
---|
[6147] | 28 | |
---|
| 29 | |
---|
[4955] | 30 | class AlphaError(exceptions.Exception):pass |
---|
| 31 | class PointError(AlphaError): pass |
---|
| 32 | class FlagError(AlphaError): pass |
---|
| 33 | |
---|
| 34 | OUTPUT_FILE_TITLE = "# The alpha shape boundary defined by point index pairs of edges" |
---|
| 35 | INF = pow(10,9) |
---|
| 36 | EPSILON = 1.0e-12 |
---|
| 37 | |
---|
| 38 | def alpha_shape_via_files(point_file, boundary_file, alpha= None): |
---|
| 39 | """ |
---|
| 40 | Load a point file and return the alpha shape boundary as a boundary file. |
---|
| 41 | |
---|
| 42 | Inputs: |
---|
| 43 | point_file: File location of the input file, points format (.csv or .pts) |
---|
| 44 | boundary_file: File location of the generated output file |
---|
| 45 | alpha: The alpha value can be optionally specified. If it is not specified |
---|
| 46 | the optimum alpha value will be used. |
---|
| 47 | """ |
---|
| 48 | geospatial = Geospatial_data(point_file) |
---|
| 49 | points = geospatial.get_data_points(absolute=False) |
---|
| 50 | |
---|
| 51 | AS = Alpha_Shape(points, alpha) |
---|
| 52 | AS.write_boundary(boundary_file) |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | class Alpha_Shape: |
---|
| 56 | |
---|
| 57 | def __init__(self, points, alpha = None): |
---|
| 58 | """ |
---|
| 59 | An Alpha_Shape requires input of a set of points. Other class routines |
---|
| 60 | return the alpha shape boundary. |
---|
| 61 | |
---|
| 62 | Inputs: |
---|
| 63 | points: List of coordinate pairs [[x1, y1],[x2, y2]..] |
---|
| 64 | alpha: The alpha value can be optionally specified. If it is |
---|
| 65 | not specified the optimum alpha value will be used. |
---|
| 66 | """ |
---|
| 67 | self._set_points(points) |
---|
| 68 | self._alpha_shape_algorithm(alpha) |
---|
| 69 | |
---|
| 70 | def _set_points(self, points): |
---|
| 71 | """ |
---|
| 72 | Create self.points array, do Error checking |
---|
| 73 | Inputs: |
---|
| 74 | points: List of coordinate pairs [[x1, y1],[x2, y2]..] |
---|
| 75 | """ |
---|
| 76 | # print "setting points" |
---|
| 77 | if len (points) <= 2: |
---|
| 78 | raise PointError, "Too few points to find an alpha shape" |
---|
| 79 | if len(points)==3: |
---|
| 80 | #check not in a straight line |
---|
| 81 | # FIXME check points 1,2,3 if straingt, check if points 2,3,4, ect |
---|
| 82 | x01 = points[0][0] - points[1][0] |
---|
| 83 | y01 = points[0][1] - points[1][1] |
---|
| 84 | x12 = points[1][0] - points[2][0] |
---|
| 85 | y12 = points[1][1] - points[2][1] |
---|
| 86 | crossprod = x01*y12 - x12*y01 |
---|
| 87 | if crossprod==0: |
---|
| 88 | raise PointError, "Three points on a straight line" |
---|
| 89 | |
---|
[6304] | 90 | #Convert input to numeric arrays |
---|
| 91 | self.points = num.array(points, num.float) |
---|
[4955] | 92 | |
---|
| 93 | |
---|
| 94 | def write_boundary(self,file_name): |
---|
| 95 | """ |
---|
| 96 | Write the boundary to a file |
---|
| 97 | """ |
---|
| 98 | #print " this info will be in the file" |
---|
| 99 | export_boundary_file(file_name, self.get_boundary(), |
---|
| 100 | OUTPUT_FILE_TITLE, delimiter = ',') |
---|
| 101 | |
---|
| 102 | def get_boundary(self): |
---|
| 103 | """ |
---|
| 104 | Return a list of tuples. |
---|
| 105 | Each tuple represents a segment in the boundary |
---|
| 106 | by the index of its two end points. |
---|
| 107 | The list of tuples represents the alpha shape boundary. |
---|
| 108 | """ |
---|
| 109 | return self.boundary |
---|
| 110 | |
---|
| 111 | def set_boundary_type(self,raw_boundary=True, |
---|
| 112 | remove_holes=False, |
---|
| 113 | smooth_indents=False, |
---|
| 114 | expand_pinch=False, |
---|
| 115 | boundary_points_fraction=0.2): |
---|
| 116 | """ |
---|
| 117 | Use the flags to set constraints on the boundary: |
---|
| 118 | raw_boundary Return raw boundary i.e. the regular edges of the |
---|
| 119 | alpha shape. |
---|
| 120 | remove_holes filter to remove small holes |
---|
| 121 | (small is defined by boundary_points_fraction ) |
---|
| 122 | smooth_indents remove sharp triangular indents in boundary |
---|
| 123 | expand_pinch test for pinch-off and correct |
---|
| 124 | i.e. a boundary vertex with more than two edges. |
---|
| 125 | """ |
---|
| 126 | |
---|
| 127 | if raw_boundary: |
---|
| 128 | # reset alpha shape boundary |
---|
| 129 | reg_edge = self.get_regular_edges(self.alpha) |
---|
| 130 | self.boundary = [self.edge[k] for k in reg_edge] |
---|
| 131 | self._init_boundary_triangles() |
---|
| 132 | if remove_holes: |
---|
| 133 | #remove small holes |
---|
| 134 | self.boundary = self._remove_holes(boundary_points_fraction) |
---|
| 135 | if smooth_indents: |
---|
| 136 | #remove sharp triangular indents |
---|
| 137 | self.boundary = self._smooth_indents() |
---|
| 138 | if expand_pinch: |
---|
| 139 | #deal with pinch-off |
---|
| 140 | self.boundary = self._expand_pinch() |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | def get_delaunay(self): |
---|
| 144 | """ |
---|
| 145 | """ |
---|
| 146 | return self.deltri |
---|
| 147 | |
---|
| 148 | def get_optimum_alpha(self): |
---|
| 149 | """ |
---|
| 150 | """ |
---|
| 151 | return self.optimum_alpha |
---|
| 152 | |
---|
| 153 | def get_alpha(self): |
---|
| 154 | """ |
---|
| 155 | Return current alpha value. |
---|
| 156 | """ |
---|
| 157 | return self.alpha |
---|
| 158 | |
---|
| 159 | def set_alpha(self,alpha): |
---|
| 160 | """ |
---|
| 161 | Set alpha and update alpha-boundary. |
---|
| 162 | """ |
---|
| 163 | self.alpha = alpha |
---|
| 164 | reg_edge = self.get_regular_edges(alpha) |
---|
| 165 | self.boundary = [self.edge[k] for k in reg_edge] |
---|
| 166 | self._init_boundary_triangles() |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | def _alpha_shape_algorithm(self, alpha=None): |
---|
| 170 | """ |
---|
| 171 | Given a set of points (self.points) and an optional alpha value |
---|
| 172 | determines the alpha shape boundary (stored in self.boundary, |
---|
| 173 | accessed by get_boundary). |
---|
| 174 | |
---|
| 175 | Inputs: |
---|
| 176 | alpha: The alpha value can be optionally specified. If it is |
---|
| 177 | not specified the optimum alpha value will be used. |
---|
| 178 | """ |
---|
| 179 | |
---|
| 180 | #print "starting alpha shape algorithm" |
---|
| 181 | |
---|
| 182 | self.alpha = alpha |
---|
| 183 | |
---|
| 184 | ## Build Delaunay triangulation |
---|
| 185 | from anuga.mesh_engine.mesh_engine import generate_mesh |
---|
| 186 | points = [] |
---|
| 187 | seglist = [] |
---|
| 188 | holelist = [] |
---|
| 189 | regionlist = [] |
---|
| 190 | pointattlist = [] |
---|
| 191 | segattlist = [] |
---|
| 192 | |
---|
| 193 | points = [(pt[0], pt[1]) for pt in self.points] |
---|
| 194 | pointattlist = [ [] for i in range(len(points)) ] |
---|
| 195 | mode = "Qzcn" |
---|
| 196 | #print "computing delaunay triangulation ... \n" |
---|
| 197 | tridata = generate_mesh(points,seglist,holelist,regionlist, |
---|
| 198 | pointattlist,segattlist,mode) |
---|
| 199 | #print tridata |
---|
| 200 | #print "point attlist: ", tridata['generatedpointattributelist'],"\n" |
---|
| 201 | #print "hull segments: ", tridata['generatedsegmentlist'], "\n" |
---|
| 202 | self.deltri = tridata['generatedtrianglelist'] |
---|
| 203 | self.deltrinbr = tridata['generatedtriangleneighborlist'] |
---|
| 204 | self.hulledges = tridata['generatedsegmentlist'] |
---|
| 205 | |
---|
| 206 | #print "Number of delaunay triangles: ", len(self.deltri), "\n" |
---|
| 207 | #print "deltrinbrs: ", self.deltrinbr, "\n" |
---|
| 208 | |
---|
| 209 | ## Build Alpha table |
---|
| 210 | ## the following routines determine alpha thresholds for the |
---|
| 211 | ## triangles, edges, and vertices of the delaunay triangulation |
---|
| 212 | self._tri_circumradius() |
---|
| 213 | # print "Largest circumradius ", max(self.triradius) |
---|
| 214 | self._edge_intervals() |
---|
| 215 | self._vertex_intervals() |
---|
| 216 | |
---|
| 217 | if alpha==None: |
---|
| 218 | # Find optimum alpha |
---|
| 219 | # Ken Clarkson's hull program uses smallest alpha so that |
---|
| 220 | # every vertex is non-singular so... |
---|
| 221 | self.optimum_alpha = max([iv[0] for iv in self.vertexinterval \ |
---|
| 222 | if iv!=[] ]) |
---|
| 223 | # print "optimum alpha ", self.optimum_alpha |
---|
| 224 | alpha = self.optimum_alpha |
---|
| 225 | self.alpha = alpha |
---|
| 226 | reg_edge = self.get_regular_edges(self.alpha) |
---|
| 227 | self.boundary = [self.edge[k] for k in reg_edge] |
---|
| 228 | #print "alpha boundary edges ", self.boundary |
---|
| 229 | self._init_boundary_triangles() |
---|
| 230 | |
---|
| 231 | return |
---|
| 232 | |
---|
| 233 | def _tri_circumradius(self): |
---|
| 234 | """ |
---|
| 235 | Compute circumradii of the delaunay triangles |
---|
| 236 | """ |
---|
| 237 | |
---|
| 238 | x = self.points[:,0] |
---|
| 239 | y = self.points[:,1] |
---|
| 240 | ind1 = [self.deltri[j][0] for j in range(len(self.deltri))] |
---|
| 241 | ind2 = [self.deltri[j][1] for j in range(len(self.deltri))] |
---|
| 242 | ind3 = [self.deltri[j][2] for j in range(len(self.deltri))] |
---|
| 243 | |
---|
[6174] | 244 | x1 = num.array([x[j] for j in ind1]) |
---|
| 245 | y1 = num.array([y[j] for j in ind1]) |
---|
| 246 | x2 = num.array([x[j] for j in ind2]) |
---|
| 247 | y2 = num.array([y[j] for j in ind2]) |
---|
| 248 | x3 = num.array([x[j] for j in ind3]) |
---|
| 249 | y3 = num.array([y[j] for j in ind3]) |
---|
[4955] | 250 | |
---|
| 251 | x21 = x2-x1 |
---|
| 252 | x31 = x3-x1 |
---|
| 253 | y21 = y2-y1 |
---|
| 254 | y31 = y3-y1 |
---|
| 255 | |
---|
| 256 | dist21 = x21*x21 + y21*y21 |
---|
| 257 | dist31 = x31*x31 + y31*y31 |
---|
| 258 | |
---|
| 259 | denom = x21*y31 - x31*y21 |
---|
| 260 | #print "denom = ", denom |
---|
| 261 | |
---|
| 262 | # dx/2, dy/2 give circumcenter relative to x1,y1. |
---|
| 263 | # dx = (y31*dist21 - y21*dist31)/denom |
---|
| 264 | # dy = (x21*dist31 - x31*dist21)/denom |
---|
| 265 | # first need to check for near-zero values of denom |
---|
| 266 | delta = 0.00000001 |
---|
| 267 | zeroind = [k for k in range(len(denom)) if \ |
---|
| 268 | (denom[k]< EPSILON and denom[k] > -EPSILON)] |
---|
| 269 | # if some denom values are close to zero, |
---|
| 270 | # we perturb the associated vertices and recalculate |
---|
| 271 | while zeroind!=[]: |
---|
| 272 | random.seed() |
---|
| 273 | print "Warning: degenerate triangles found in alpha_shape.py, results may be inaccurate." |
---|
| 274 | for d in zeroind: |
---|
| 275 | x1[d] = x1[d]+delta*(random.random()-0.5) |
---|
| 276 | x2[d] = x2[d]+delta*(random.random()-0.5) |
---|
| 277 | x3[d] = x3[d]+delta*(random.random()-0.5) |
---|
| 278 | y1[d] = y1[d]+delta*(random.random()-0.5) |
---|
| 279 | y2[d] = y2[d]+delta*(random.random()-0.5) |
---|
| 280 | y3[d] = y3[d]+delta*(random.random()-0.5) |
---|
| 281 | x21 = x2-x1 |
---|
| 282 | x31 = x3-x1 |
---|
| 283 | y21 = y2-y1 |
---|
| 284 | y31 = y3-y1 |
---|
| 285 | dist21 = x21*x21 + y21*y21 |
---|
| 286 | dist31 = x31*x31 + y31*y31 |
---|
| 287 | denom = x21*y31 - x31*y21 |
---|
| 288 | zeroind = [k for k in range(len(denom)) if \ |
---|
| 289 | (denom[k]< EPSILON and denom[k] > -EPSILON)] |
---|
[6304] | 290 | |
---|
[6517] | 291 | if num.alltrue(denom != 0.0): |
---|
| 292 | dx = num.divide(y31*dist21 - y21*dist31,denom) |
---|
| 293 | dy = num.divide(x21*dist31 - x31*dist21,denom) |
---|
| 294 | else: |
---|
| 295 | raise AlphaError |
---|
| 296 | |
---|
[6147] | 297 | self.triradius = 0.5*num.sqrt(dx*dx + dy*dy) |
---|
[4955] | 298 | #print "triangle radii", self.triradius |
---|
| 299 | |
---|
| 300 | def _edge_intervals(self): |
---|
| 301 | """ |
---|
| 302 | for each edge, find triples |
---|
| 303 | (length/2, min_adj_triradius, max_adj_triradius) if unattached |
---|
| 304 | (min_adj_triradius, min_adj_triradius, max_adj_triradius) if attached. |
---|
| 305 | An edge is attached if it is opposite an obtuse angle |
---|
| 306 | """ |
---|
| 307 | |
---|
| 308 | # It should be possible to rewrite this routine in an array-friendly |
---|
| 309 | # form like _tri_circumradius() if we need to speed things up. |
---|
| 310 | # Hard to do though. |
---|
| 311 | |
---|
| 312 | edges = [] |
---|
| 313 | edgenbrs = [] |
---|
| 314 | edgeinterval = [] |
---|
| 315 | for t in range(len(self.deltri)): |
---|
| 316 | tri = self.deltri[t] |
---|
| 317 | trinbr = self.deltrinbr[t] |
---|
[6147] | 318 | dx = num.array([self.points[tri[(i+1)%3],0] - |
---|
| 319 | self.points[tri[(i+2)%3],0] for i in [0,1,2]]) |
---|
| 320 | dy = num.array([self.points[tri[(i+1)%3],1] - |
---|
| 321 | self.points[tri[(i+2)%3],1] for i in [0,1,2]]) |
---|
| 322 | elen = num.sqrt(dx*dx+dy*dy) |
---|
[4955] | 323 | # really only need sign - not angle value: |
---|
[6147] | 324 | anglesign = num.array([(-dx[(i+1)%3]*dx[(i+2)%3]- |
---|
| 325 | dy[(i+1)%3]*dy[(i+2)%3]) for i in [0,1,2]]) |
---|
[4955] | 326 | |
---|
| 327 | #print "dx ",dx,"\n" |
---|
| 328 | #print "dy ",dy,"\n" |
---|
| 329 | #print "edge lengths of triangle ",t,"\t",elen,"\n" |
---|
| 330 | #print "angles ",angle,"\n" |
---|
| 331 | |
---|
| 332 | for i in [0,1,2]: |
---|
| 333 | j = (i+1)%3 |
---|
| 334 | k = (i+2)%3 |
---|
| 335 | if trinbr[i]==-1: |
---|
| 336 | edges.append((tri[j], tri[k])) |
---|
| 337 | edgenbrs.append((t, -1)) |
---|
| 338 | edgeinterval.append([0.5*elen[i], self.triradius[t], INF]) |
---|
| 339 | elif (tri[j]<tri[k]): |
---|
| 340 | edges.append((tri[j], tri[k])) |
---|
| 341 | edgenbrs.append((t, trinbr[i])) |
---|
| 342 | edgeinterval.append([0.5*elen[i],\ |
---|
| 343 | min(self.triradius[t],self.triradius[trinbr[i]]),\ |
---|
| 344 | max(self.triradius[t],self.triradius[trinbr[i]]) ]) |
---|
| 345 | else: |
---|
| 346 | continue |
---|
| 347 | if anglesign[i] < 0: |
---|
| 348 | edgeinterval[-1][0] = edgeinterval[-1][1] |
---|
| 349 | |
---|
| 350 | self.edge = edges |
---|
| 351 | self.edgenbr = edgenbrs |
---|
| 352 | self.edgeinterval = edgeinterval |
---|
| 353 | #print "edges: ",edges, "\n" |
---|
| 354 | #print "edge nbrs:", edgenbrs ,"\n" |
---|
| 355 | #print "edge intervals: ",edgeinterval , "\n" |
---|
| 356 | |
---|
| 357 | def _vertex_intervals(self): |
---|
| 358 | """ |
---|
| 359 | for each vertex find pairs |
---|
| 360 | (min_adj_triradius, max_adj_triradius) |
---|
| 361 | """ |
---|
| 362 | nv = len(self.points) |
---|
| 363 | vertexnbrs = [ [] for i in range(nv)] |
---|
| 364 | vertexinterval = [ [] for i in range(nv)] |
---|
| 365 | for t in range(len(self.deltri)): |
---|
| 366 | for j in self.deltri[t]: |
---|
| 367 | vertexnbrs[int(j)].append(t) |
---|
| 368 | for h in range(len(self.hulledges)): |
---|
| 369 | for j in self.hulledges[h]: |
---|
| 370 | vertexnbrs[int(j)].append(-1) |
---|
| 371 | |
---|
| 372 | for i in range(nv): |
---|
| 373 | radii = [ self.triradius[t] for t in vertexnbrs[i] if t>=0 ] |
---|
| 374 | try: |
---|
| 375 | vertexinterval[i] = [min(radii), max(radii)] |
---|
| 376 | if vertexnbrs[i][-1]==-1: |
---|
| 377 | vertexinterval[i][1]=INF |
---|
| 378 | except ValueError: |
---|
| 379 | raise AlphaError |
---|
| 380 | |
---|
| 381 | self.vertexnbr = vertexnbrs |
---|
| 382 | self.vertexinterval = vertexinterval |
---|
| 383 | #print "vertex nbrs ", vertexnbrs, "\n" |
---|
| 384 | #print "vertex intervals ",vertexinterval, "\n" |
---|
| 385 | |
---|
| 386 | def get_alpha_triangles(self,alpha): |
---|
| 387 | """ |
---|
| 388 | Given an alpha value, |
---|
| 389 | return indices of triangles in the alpha-shape |
---|
| 390 | """ |
---|
| 391 | def tri_rad_lta(k): |
---|
| 392 | return self.triradius[k]<=alpha |
---|
| 393 | |
---|
| 394 | return filter(tri_rad_lta, range(len(self.triradius))) |
---|
| 395 | |
---|
| 396 | def get_regular_edges(self,alpha): |
---|
| 397 | """ |
---|
| 398 | Given an alpha value, |
---|
| 399 | return the indices of edges on the boundary of the alpha-shape |
---|
| 400 | """ |
---|
| 401 | def reg_edge(k): |
---|
| 402 | return self.edgeinterval[k][1]<=alpha and \ |
---|
| 403 | self.edgeinterval[k][2]>alpha |
---|
| 404 | |
---|
| 405 | return filter(reg_edge, range(len(self.edgeinterval))) |
---|
| 406 | |
---|
| 407 | def get_exposed_vertices(self,alpha): |
---|
| 408 | """ |
---|
| 409 | Given an alpha value, |
---|
| 410 | return the vertices on the boundary of the alpha-shape |
---|
| 411 | """ |
---|
| 412 | def exp_vert(k): |
---|
| 413 | return self.vertexinterval[k][0]<=alpha and \ |
---|
| 414 | self.vertexinterval[k][1]>alpha |
---|
| 415 | |
---|
| 416 | return filter(exp_vert, range(len(self.vertexinterval))) |
---|
| 417 | |
---|
| 418 | def _vertices_from_edges(self,elist): |
---|
| 419 | """ |
---|
| 420 | Returns the list of unique vertex labels from edges in elist |
---|
| 421 | """ |
---|
| 422 | |
---|
| 423 | v1 = [elist[k][0] for k in range(len(elist))] |
---|
| 424 | v2 = [elist[k][1] for k in range(len(elist))] |
---|
| 425 | v = v1+v2 |
---|
| 426 | v.sort() |
---|
| 427 | vertices = [v[k] for k in range(len(v)) if v[k]!=v[k-1] ] |
---|
| 428 | return vertices |
---|
| 429 | |
---|
| 430 | def _init_boundary_triangles(self): |
---|
| 431 | """ |
---|
| 432 | Creates the initial list of triangle indices |
---|
| 433 | exterior to and touching the boundary of the alpha shape |
---|
| 434 | """ |
---|
| 435 | def tri_rad_gta(k): |
---|
| 436 | return self.triradius[k]>self.alpha |
---|
| 437 | |
---|
| 438 | extrind = filter(tri_rad_gta, range(len(self.triradius))) |
---|
| 439 | |
---|
| 440 | bv = self._vertices_from_edges(self.boundary) |
---|
| 441 | |
---|
| 442 | btri = [] |
---|
| 443 | for et in extrind: |
---|
| 444 | v0 = self.deltri[et][0] |
---|
| 445 | v1 = self.deltri[et][1] |
---|
| 446 | v2 = self.deltri[et][2] |
---|
| 447 | if v0 in bv or v1 in bv or v2 in bv: |
---|
| 448 | btri.append(et) |
---|
| 449 | |
---|
| 450 | self.boundarytriangle = btri |
---|
| 451 | |
---|
| 452 | #print "exterior triangles: ", extrind |
---|
| 453 | |
---|
| 454 | |
---|
| 455 | def _remove_holes(self,small): |
---|
| 456 | """ |
---|
| 457 | Given the edges in self.boundary, finds the largest components. |
---|
| 458 | The routine does this by implementing a union-find algorithm. |
---|
| 459 | """ |
---|
| 460 | |
---|
| 461 | #print "running _remove_holes \n" |
---|
| 462 | |
---|
| 463 | bdry = self.boundary |
---|
| 464 | |
---|
| 465 | def findroot(i): |
---|
| 466 | if vptr[i] < 0: |
---|
| 467 | return i |
---|
| 468 | k = findroot(vptr[i]) |
---|
| 469 | vptr[i] = k # this produces "path compression" in the |
---|
| 470 | # union-find tree. |
---|
| 471 | return k |
---|
| 472 | |
---|
| 473 | |
---|
| 474 | |
---|
| 475 | # get a list of unique vertex labels: |
---|
| 476 | verts = self._vertices_from_edges(bdry) |
---|
| 477 | #print "verts ", verts, "\n" |
---|
| 478 | |
---|
| 479 | # vptr represents the union-find tree. |
---|
| 480 | # if vptr[i] = EMPTY < 0, the vertex verts[i] has not been visited yet |
---|
| 481 | # if vptr[i] = j > 0, then j verts[j] is the parent of verts[i]. |
---|
| 482 | # if vptr[i] = n < 0, then verts[i] is a root vertex and |
---|
| 483 | # represents a connected component of n vertices. |
---|
| 484 | |
---|
| 485 | #initialise vptr to negative number outside range |
---|
| 486 | EMPTY = -max(verts)-len(verts) |
---|
| 487 | vptr = [EMPTY for k in range(len(verts))] |
---|
| 488 | #print "vptr init: ", vptr, "\n" |
---|
| 489 | |
---|
| 490 | #add edges and maintain union tree |
---|
| 491 | for i in range(len(bdry)): |
---|
| 492 | #print "edge ",i,"\t",bdry[i] |
---|
| 493 | vl = verts.index(bdry[i][0]) |
---|
| 494 | vr = verts.index(bdry[i][1]) |
---|
| 495 | rvl = findroot(vl) |
---|
| 496 | rvr = findroot(vr) |
---|
| 497 | #print "roots: ",rvl, rvr |
---|
| 498 | if not(rvl==rvr): |
---|
| 499 | if (vptr[vl]==EMPTY): |
---|
| 500 | if (vptr[vr]==EMPTY): |
---|
| 501 | vptr[vl] = -2 |
---|
| 502 | vptr[vr] = vl |
---|
| 503 | else: |
---|
| 504 | vptr[vl] = rvr |
---|
| 505 | vptr[rvr] = vptr[rvr]-1 |
---|
| 506 | else: |
---|
| 507 | if (vptr[vr]==EMPTY): |
---|
| 508 | vptr[vr] = rvl |
---|
| 509 | vptr[rvl] = vptr[rvl]-1 |
---|
| 510 | else: |
---|
| 511 | if vptr[rvl] > vptr[rvr]: |
---|
| 512 | vptr[rvr] = vptr[rvr] + vptr[rvl] |
---|
| 513 | vptr[rvl] = rvr |
---|
| 514 | vptr[vl] = rvr |
---|
| 515 | else: |
---|
| 516 | vptr[rvl] = vptr[rvl] + vptr[rvr] |
---|
| 517 | vptr[rvr] = rvl |
---|
| 518 | vptr[vr] = rvl |
---|
| 519 | #print "vptr: ", vptr, "\n" |
---|
| 520 | # end edge loop |
---|
| 521 | |
---|
| 522 | if vptr.count(EMPTY): |
---|
| 523 | raise FlagError, "We didn't hit all the vertices in the boundary" |
---|
| 524 | |
---|
| 525 | # print "number of vertices in the connected components: ", [-v for v in vptr if v<0], "\n" |
---|
| 526 | # print "largest component has: ", -min(vptr), " points. \n" |
---|
| 527 | # discard the edges in the little components |
---|
| 528 | # (i.e. those components with less than 'small' fraction of bdry points) |
---|
| 529 | cutoff = round(small*len(verts)) |
---|
| 530 | # print "cutoff component size is ", cutoff, "\n" |
---|
| 531 | largest_component = -min(vptr) |
---|
| 532 | if cutoff > largest_component: |
---|
| 533 | cutoff = round((1-small)*largest_component) |
---|
| 534 | |
---|
| 535 | # littleind has root indices for small components |
---|
| 536 | littleind = [k for k in range(len(vptr)) if \ |
---|
| 537 | (vptr[k]<0 and vptr[k]>-cutoff)] |
---|
| 538 | if littleind: |
---|
| 539 | # littlecomp has all vptr indices in the small components |
---|
| 540 | littlecomp = [k for k in range(len(vptr)) if \ |
---|
| 541 | findroot(k) in littleind] |
---|
| 542 | # vdiscard has the vertex indices corresponding to vptr indices |
---|
| 543 | vdiscard = [verts[k] for k in littlecomp] |
---|
| 544 | newbdry = [e for e in bdry if \ |
---|
| 545 | not((e[0] in vdiscard) and (e[1] in vdiscard))] |
---|
| 546 | |
---|
| 547 | newverts = self._vertices_from_edges(newbdry) |
---|
| 548 | # recompute the boundary triangles |
---|
| 549 | newbt = [] |
---|
| 550 | for bt in self.boundarytriangle: |
---|
| 551 | v0 = self.deltri[bt][0] |
---|
| 552 | v1 = self.deltri[bt][1] |
---|
| 553 | v2 = self.deltri[bt][2] |
---|
| 554 | if (v0 in newverts or v1 in newverts or v2 in newverts): |
---|
| 555 | newbt.append(bt) |
---|
| 556 | |
---|
| 557 | self.boundarytriangle = newbt |
---|
| 558 | else: |
---|
| 559 | newbdry = bdry |
---|
| 560 | |
---|
| 561 | return newbdry |
---|
| 562 | |
---|
| 563 | |
---|
| 564 | def _smooth_indents(self): |
---|
| 565 | """ |
---|
| 566 | Given edges in bdry, test for acute-angle triangular indents |
---|
| 567 | and remove them. |
---|
| 568 | """ |
---|
| 569 | |
---|
| 570 | #print "running _smooth_indents \n" |
---|
| 571 | |
---|
| 572 | bdry = self.boundary |
---|
| 573 | bdrytri = self.boundarytriangle |
---|
| 574 | |
---|
| 575 | # find boundary triangles that have two edges in bdry |
---|
| 576 | # v2ind has the place index relative to the triangle deltri[ind] |
---|
| 577 | # for the bdry vertex where the two edges meet. |
---|
| 578 | |
---|
| 579 | verts = self._vertices_from_edges(bdry) |
---|
| 580 | |
---|
| 581 | b2etri = [] |
---|
| 582 | for ind in bdrytri: |
---|
| 583 | bect = 0 |
---|
| 584 | v2ind = [0,1,2] |
---|
| 585 | for j in [0,1,2]: |
---|
| 586 | eda = (self.deltri[ind][(j+1)%3], self.deltri[ind][(j+2)%3]) |
---|
| 587 | edb = (self.deltri[ind][(j+2)%3], self.deltri[ind][(j+1)%3]) |
---|
| 588 | if eda in bdry or edb in bdry: |
---|
| 589 | bect +=1 |
---|
| 590 | v2ind.remove(j) |
---|
| 591 | if bect==2: |
---|
| 592 | b2etri.append((ind,v2ind[0])) |
---|
| 593 | |
---|
| 594 | # test the bdrytri triangles for acute angles |
---|
| 595 | acutetri = [] |
---|
| 596 | for tind in b2etri: |
---|
| 597 | tri = self.deltri[tind[0]] |
---|
| 598 | |
---|
[6147] | 599 | dx = num.array([self.points[tri[(i+1)%3],0] - \ |
---|
| 600 | self.points[tri[(i+2)%3],0] for i in [0,1,2]]) |
---|
| 601 | dy = num.array([self.points[tri[(i+1)%3],1] - \ |
---|
| 602 | self.points[tri[(i+2)%3],1] for i in [0,1,2]]) |
---|
| 603 | anglesign = num.array([(-dx[(i+1)%3]*dx[(i+2)%3]-\ |
---|
| 604 | dy[(i+1)%3]*dy[(i+2)%3]) for i in [0,1,2]]) |
---|
[4955] | 605 | # record any triangle that has an acute angle spanned by |
---|
| 606 | #two edges along the boundary.. |
---|
| 607 | if anglesign[tind[1]] > 0: |
---|
| 608 | acutetri.append(tind[0]) |
---|
| 609 | |
---|
| 610 | #print "acute boundary triangles ", acutetri |
---|
| 611 | |
---|
| 612 | # adjust the bdry edges and triangles by adding |
---|
| 613 | #in the acutetri triangles |
---|
| 614 | for pind in acutetri: |
---|
| 615 | bdrytri.remove(pind) |
---|
| 616 | tri = self.deltri[pind] |
---|
| 617 | for i in [0,1,2]: |
---|
| 618 | bdry.append((tri[(i+1)%3], tri[(i+2)%3])) |
---|
| 619 | |
---|
| 620 | newbdry = [] |
---|
| 621 | for ed in bdry: |
---|
| 622 | numed = bdry.count(ed)+bdry.count((ed[1],ed[0])) |
---|
| 623 | if numed%2 == 1: |
---|
| 624 | newbdry.append(ed) |
---|
| 625 | |
---|
| 626 | #print "new boundary ", newbdry |
---|
| 627 | return newbdry |
---|
| 628 | |
---|
| 629 | def _expand_pinch(self): |
---|
| 630 | """ |
---|
| 631 | Given edges in bdry, test for vertices with more than 2 incident edges. |
---|
| 632 | Expand by adding back in associated triangles. |
---|
| 633 | """ |
---|
| 634 | #print "running _expand_pinch \n" |
---|
| 635 | |
---|
| 636 | bdry = self.boundary |
---|
| 637 | bdrytri = self.boundarytriangle |
---|
| 638 | |
---|
| 639 | v1 = [bdry[k][0] for k in range(len(bdry))] |
---|
| 640 | v2 = [bdry[k][1] for k in range(len(bdry))] |
---|
| 641 | v = v1+v2 |
---|
| 642 | v.sort() |
---|
| 643 | probv = [v[k] for k in range(len(v)) \ |
---|
| 644 | if (v[k]!=v[k-1] and v.count(v[k])>2) ] |
---|
| 645 | #print "problem vertices: ", probv |
---|
| 646 | |
---|
| 647 | # find boundary triangles that have at least one vertex in probv |
---|
| 648 | probtri = [] |
---|
| 649 | for ind in bdrytri: |
---|
| 650 | v0 = self.deltri[ind][0] |
---|
| 651 | v1 = self.deltri[ind][1] |
---|
| 652 | v2 = self.deltri[ind][2] |
---|
| 653 | if v0 in probv or v1 in probv or v2 in probv: |
---|
| 654 | probtri.append(ind) |
---|
| 655 | |
---|
| 656 | #print "problem boundary triangle indices ", probtri |
---|
| 657 | |
---|
| 658 | # "add in" the problem triangles |
---|
| 659 | for pind in probtri: |
---|
| 660 | bdrytri.remove(pind) |
---|
| 661 | tri = self.deltri[pind] |
---|
| 662 | for i in [0,1,2]: |
---|
| 663 | bdry.append((tri[(i+1)%3], tri[(i+2)%3])) |
---|
| 664 | |
---|
| 665 | newbdry = [] |
---|
| 666 | for ed in bdry: |
---|
| 667 | numed = bdry.count(ed)+bdry.count((ed[1],ed[0])) |
---|
| 668 | if numed%2 == 1: |
---|
| 669 | newbdry.append(ed) |
---|
| 670 | |
---|
| 671 | #print "new boundary ", newbdry |
---|
| 672 | return newbdry |
---|
| 673 | |
---|
| 674 | |
---|
| 675 | #------------------------------------------------------------- |
---|
| 676 | if __name__ == "__main__": |
---|
| 677 | """ |
---|
| 678 | Load in a data point file. |
---|
| 679 | Determine the alpha shape boundary |
---|
| 680 | Save the boundary to a file. |
---|
| 681 | |
---|
| 682 | usage: alpha_shape.py point_file.csv boundary_file.bnd [alpha] |
---|
| 683 | |
---|
| 684 | The alpha value is optional. |
---|
| 685 | """ |
---|
| 686 | |
---|
| 687 | import os, sys |
---|
| 688 | usage = "usage: %s point_file.csv boundary_file.bnd [alpha]"%os.path.basename(sys.argv[0]) |
---|
| 689 | if len(sys.argv) < 3: |
---|
| 690 | print usage |
---|
| 691 | else: |
---|
| 692 | point_file = sys.argv[1] |
---|
| 693 | boundary_file = sys.argv[2] |
---|
| 694 | if len(sys.argv) > 4: |
---|
| 695 | alpha = sys.argv[3] |
---|
| 696 | else: |
---|
| 697 | alpha = None |
---|
| 698 | |
---|
| 699 | #print "about to call alpha shape routine \n" |
---|
| 700 | alpha_shape_via_files(point_file, boundary_file, alpha) |
---|
| 701 | |
---|