[6150] | 1 | import sys |
---|
| 2 | |
---|
| 3 | from anuga.shallow_water.shallow_water_domain import Inflow, General_forcing |
---|
| 4 | from anuga.culvert_flows.culvert_polygons import create_culvert_polygons |
---|
| 5 | from anuga.utilities.system_tools import log_to_file |
---|
| 6 | from anuga.utilities.polygon import inside_polygon |
---|
| 7 | from anuga.utilities.polygon import is_inside_polygon |
---|
| 8 | from anuga.utilities.polygon import plot_polygons |
---|
| 9 | |
---|
| 10 | from anuga.utilities.numerical_tools import mean |
---|
| 11 | from anuga.utilities.numerical_tools import ensure_numeric, sign |
---|
| 12 | |
---|
| 13 | from anuga.config import g, epsilon |
---|
| 14 | from anuga.config import minimum_allowed_height, velocity_protection |
---|
| 15 | |
---|
[6304] | 16 | import numpy as num |
---|
[7035] | 17 | from math import sqrt |
---|
[6150] | 18 | |
---|
| 19 | class Below_interval(Exception): pass |
---|
| 20 | class Above_interval(Exception): pass |
---|
| 21 | |
---|
| 22 | # FIXME(Ole): Take a good hard look at logging here |
---|
| 23 | |
---|
| 24 | |
---|
| 25 | # FIXME(Ole): Write in C and reuse this function by similar code |
---|
| 26 | # in interpolate.py |
---|
| 27 | def interpolate_linearly(x, xvec, yvec): |
---|
| 28 | |
---|
| 29 | msg = 'Input to function interpolate_linearly could not be converted ' |
---|
| 30 | msg += 'to numerical scalar: x = %s' % str(x) |
---|
| 31 | try: |
---|
| 32 | x = float(x) |
---|
| 33 | except: |
---|
| 34 | raise Exception, msg |
---|
| 35 | |
---|
| 36 | |
---|
| 37 | # Check bounds |
---|
| 38 | if x < xvec[0]: |
---|
| 39 | msg = 'Value provided = %.2f, interpolation minimum = %.2f.'\ |
---|
| 40 | % (x, xvec[0]) |
---|
| 41 | raise Below_interval, msg |
---|
| 42 | |
---|
| 43 | if x > xvec[-1]: |
---|
| 44 | msg = 'Value provided = %.2f, interpolation maximum = %.2f.'\ |
---|
| 45 | %(x, xvec[-1]) |
---|
| 46 | raise Above_interval, msg |
---|
| 47 | |
---|
| 48 | |
---|
| 49 | # Find appropriate slot within bounds |
---|
| 50 | i = 0 |
---|
| 51 | while x > xvec[i]: i += 1 |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | x0 = xvec[i-1] |
---|
| 55 | x1 = xvec[i] |
---|
| 56 | alpha = (x - x0)/(x1 - x0) |
---|
| 57 | |
---|
| 58 | y0 = yvec[i-1] |
---|
| 59 | y1 = yvec[i] |
---|
| 60 | y = alpha*y1 + (1-alpha)*y0 |
---|
| 61 | |
---|
| 62 | return y |
---|
| 63 | |
---|
| 64 | |
---|
| 65 | |
---|
| 66 | def read_culvert_description(culvert_description_filename): |
---|
| 67 | |
---|
| 68 | # Read description file |
---|
| 69 | fid = open(culvert_description_filename) |
---|
| 70 | |
---|
| 71 | read_rating_curve_data = False |
---|
| 72 | rating_curve = [] |
---|
| 73 | for i, line in enumerate(fid.readlines()): |
---|
| 74 | |
---|
| 75 | if read_rating_curve_data is True: |
---|
| 76 | fields = line.split(',') |
---|
| 77 | head_difference = float(fields[0].strip()) |
---|
| 78 | flow_rate = float(fields[1].strip()) |
---|
| 79 | barrel_velocity = float(fields[2].strip()) |
---|
| 80 | |
---|
| 81 | rating_curve.append([head_difference, flow_rate, barrel_velocity]) |
---|
| 82 | |
---|
| 83 | if i == 0: |
---|
| 84 | # Header |
---|
| 85 | continue |
---|
| 86 | if i == 1: |
---|
| 87 | # Metadata |
---|
| 88 | fields = line.split(',') |
---|
| 89 | label=fields[0].strip() |
---|
| 90 | type=fields[1].strip().lower() |
---|
| 91 | assert type in ['box', 'pipe'] |
---|
| 92 | |
---|
| 93 | width=float(fields[2].strip()) |
---|
| 94 | height=float(fields[3].strip()) |
---|
| 95 | length=float(fields[4].strip()) |
---|
| 96 | number_of_barrels=int(fields[5].strip()) |
---|
| 97 | #fields[6] refers to losses |
---|
| 98 | description=fields[7].strip() |
---|
| 99 | |
---|
| 100 | if line.strip() == '': continue # Skip blanks |
---|
| 101 | |
---|
| 102 | if line.startswith('Rating'): |
---|
| 103 | read_rating_curve_data = True |
---|
| 104 | # Flow data follows |
---|
| 105 | |
---|
| 106 | fid.close() |
---|
| 107 | |
---|
| 108 | return label, type, width, height, length, number_of_barrels, description, rating_curve |
---|
| 109 | |
---|
| 110 | |
---|
| 111 | |
---|
| 112 | |
---|
| 113 | class Culvert_flow_general: |
---|
| 114 | """Culvert flow - transfer water from one hole to another |
---|
| 115 | |
---|
| 116 | This version will work with either rating curve file or with culvert |
---|
| 117 | routine. |
---|
| 118 | |
---|
| 119 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 120 | mannings_rougness, |
---|
| 121 | """ |
---|
| 122 | |
---|
| 123 | def __init__(self, |
---|
| 124 | domain, |
---|
| 125 | culvert_description_filename=None, |
---|
| 126 | culvert_routine=None, |
---|
| 127 | end_point0=None, |
---|
| 128 | end_point1=None, |
---|
| 129 | enquiry_point0=None, |
---|
| 130 | enquiry_point1=None, |
---|
| 131 | type='box', |
---|
| 132 | width=None, |
---|
| 133 | height=None, |
---|
| 134 | length=None, |
---|
| 135 | number_of_barrels=1, |
---|
| 136 | trigger_depth=0.01, # Depth below which no flow happens |
---|
| 137 | manning=None, # Mannings Roughness for Culvert |
---|
| 138 | sum_loss=None, |
---|
[7035] | 139 | use_velocity_head=False, # FIXME(Ole): Get rid of - always True |
---|
[6150] | 140 | use_momentum_jet=False, # FIXME(Ole): Not yet implemented |
---|
| 141 | label=None, |
---|
| 142 | description=None, |
---|
| 143 | update_interval=None, |
---|
| 144 | log_file=False, |
---|
| 145 | discharge_hydrograph=False, |
---|
| 146 | verbose=False): |
---|
| 147 | |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | # Input check |
---|
| 151 | |
---|
| 152 | if height is None: height = width |
---|
| 153 | self.height = height |
---|
| 154 | self.width = width |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | assert number_of_barrels >= 1 |
---|
| 158 | assert use_velocity_head is True or use_velocity_head is False |
---|
| 159 | |
---|
| 160 | msg = 'Momentum jet not yet moved to general culvert' |
---|
| 161 | assert use_momentum_jet is False, msg |
---|
| 162 | |
---|
| 163 | self.culvert_routine = culvert_routine |
---|
| 164 | self.culvert_description_filename = culvert_description_filename |
---|
| 165 | if culvert_description_filename is not None: |
---|
| 166 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
| 167 | self.rating_curve = ensure_numeric(rating_curve) |
---|
| 168 | |
---|
| 169 | self.domain = domain |
---|
| 170 | self.trigger_depth = trigger_depth |
---|
| 171 | |
---|
| 172 | if manning is None: |
---|
| 173 | self.manning = 0.012 # Default roughness for pipe |
---|
| 174 | |
---|
| 175 | if sum_loss is None: |
---|
| 176 | self.sum_loss = 0.0 |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | # Store culvert information |
---|
| 181 | self.label = label |
---|
| 182 | self.description = description |
---|
| 183 | self.culvert_type = type |
---|
| 184 | self.number_of_barrels = number_of_barrels |
---|
| 185 | |
---|
| 186 | # Store options |
---|
| 187 | self.use_velocity_head = use_velocity_head |
---|
| 188 | |
---|
| 189 | if label is None: label = 'culvert_flow' |
---|
| 190 | label += '_' + str(id(self)) |
---|
| 191 | self.label = label |
---|
| 192 | |
---|
| 193 | # File for storing discharge_hydrograph |
---|
| 194 | if discharge_hydrograph is True: |
---|
| 195 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 196 | fid = open(self.timeseries_filename, 'w') |
---|
| 197 | fid.write('time, discharge\n') |
---|
| 198 | fid.close() |
---|
| 199 | |
---|
| 200 | # Log file for storing general textual output |
---|
| 201 | if log_file is True: |
---|
| 202 | self.log_filename = label + '.log' |
---|
| 203 | log_to_file(self.log_filename, self.label) |
---|
| 204 | log_to_file(self.log_filename, description) |
---|
| 205 | log_to_file(self.log_filename, self.culvert_type) |
---|
[6553] | 206 | else: |
---|
| 207 | self.log_filename = None |
---|
[6150] | 208 | |
---|
| 209 | |
---|
| 210 | # Create the fundamental culvert polygons from polygon |
---|
| 211 | P = create_culvert_polygons(end_point0, |
---|
| 212 | end_point1, |
---|
| 213 | width=width, |
---|
| 214 | height=height, |
---|
| 215 | number_of_barrels=number_of_barrels) |
---|
| 216 | self.culvert_polygons = P |
---|
| 217 | |
---|
| 218 | # Select enquiry points |
---|
| 219 | if enquiry_point0 is None: |
---|
| 220 | enquiry_point0 = P['enquiry_point0'] |
---|
| 221 | |
---|
| 222 | if enquiry_point1 is None: |
---|
| 223 | enquiry_point1 = P['enquiry_point1'] |
---|
| 224 | |
---|
| 225 | if verbose is True: |
---|
| 226 | pass |
---|
| 227 | #plot_polygons([[end_point0, end_point1], |
---|
| 228 | # P['exchange_polygon0'], |
---|
| 229 | # P['exchange_polygon1'], |
---|
| 230 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 231 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 232 | # figname='culvert_polygon_output') |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | |
---|
| 236 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 237 | self.enquiry_indices = self.get_enquiry_indices() |
---|
| 238 | self.check_culvert_inside_domain() |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | # Create inflow object at each end of the culvert. |
---|
| 242 | self.openings = [] |
---|
| 243 | self.openings.append(Inflow(domain, |
---|
| 244 | polygon=P['exchange_polygon0'])) |
---|
| 245 | self.openings.append(Inflow(domain, |
---|
| 246 | polygon=P['exchange_polygon1'])) |
---|
| 247 | |
---|
| 248 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 249 | assert len(self.openings) == 2 |
---|
| 250 | |
---|
| 251 | # Establish initial values at each enquiry point |
---|
| 252 | dq = domain.quantities |
---|
| 253 | for i, opening in enumerate(self.openings): |
---|
| 254 | idx = self.enquiry_indices[i] |
---|
| 255 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 256 | indices=[idx])[0] |
---|
| 257 | stage = dq['stage'].get_values(location='centroids', |
---|
| 258 | indices=[idx])[0] |
---|
| 259 | opening.elevation = elevation |
---|
| 260 | opening.stage = stage |
---|
| 261 | opening.depth = stage-elevation |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | |
---|
| 265 | # Determine initial pipe direction. |
---|
| 266 | # This may change dynamically based on the total energy difference |
---|
| 267 | # Consequently, this may be superfluous |
---|
| 268 | delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
| 269 | if delta_z > 0.0: |
---|
| 270 | self.inlet = self.openings[0] |
---|
| 271 | self.outlet = self.openings[1] |
---|
| 272 | else: |
---|
| 273 | self.outlet = self.openings[0] |
---|
| 274 | self.inlet = self.openings[1] |
---|
| 275 | |
---|
| 276 | |
---|
| 277 | # Store basic geometry |
---|
| 278 | self.end_points = [end_point0, end_point1] |
---|
| 279 | self.vector = P['vector'] |
---|
| 280 | self.length = P['length']; assert self.length > 0.0 |
---|
| 281 | if culvert_description_filename is not None: |
---|
| 282 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
| 283 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)'\ |
---|
| 284 | % (culvert_description_filename, |
---|
| 285 | length) |
---|
| 286 | msg += ' does not match distance between specified' |
---|
| 287 | msg += ' end points (%.2f m)' %self.length |
---|
| 288 | print msg |
---|
| 289 | |
---|
| 290 | self.verbose = verbose |
---|
| 291 | |
---|
| 292 | |
---|
| 293 | |
---|
| 294 | # For use with update_interval |
---|
| 295 | self.last_update = 0.0 |
---|
| 296 | self.update_interval = update_interval |
---|
| 297 | |
---|
| 298 | |
---|
| 299 | # Print some diagnostics to log if requested |
---|
[6553] | 300 | if self.log_filename is not None: |
---|
[6150] | 301 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 302 | log_to_file(self.log_filename, s) |
---|
| 303 | |
---|
| 304 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 305 | log_to_file(self.log_filename, s) |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | |
---|
| 311 | def __call__(self, domain): |
---|
| 312 | |
---|
| 313 | # Time stuff |
---|
| 314 | time = domain.get_time() |
---|
| 315 | |
---|
| 316 | |
---|
| 317 | update = False |
---|
| 318 | if self.update_interval is None: |
---|
| 319 | # Use next timestep as has been computed in domain.py |
---|
| 320 | delta_t = domain.timestep |
---|
| 321 | update = True |
---|
| 322 | else: |
---|
| 323 | # Use update interval |
---|
| 324 | delta_t = self.update_interval |
---|
| 325 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 326 | update = True |
---|
[6553] | 327 | |
---|
| 328 | if self.log_filename is not None: |
---|
[6150] | 329 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 330 | log_to_file(self.log_filename, s) |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | if update is True: |
---|
| 334 | self.compute_rates(delta_t) |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | # Execute flow term for each opening |
---|
| 338 | # This is where Inflow objects are evaluated using the last rate |
---|
| 339 | # that has been calculated |
---|
| 340 | # |
---|
| 341 | # This will take place at every internal timestep and update the domain |
---|
| 342 | for opening in self.openings: |
---|
| 343 | opening(domain) |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | |
---|
| 347 | def get_enquiry_indices(self): |
---|
| 348 | """Get indices for nearest centroids to self.enquiry_points |
---|
| 349 | """ |
---|
| 350 | |
---|
| 351 | domain = self.domain |
---|
| 352 | |
---|
| 353 | enquiry_indices = [] |
---|
| 354 | for point in self.enquiry_points: |
---|
| 355 | # Find nearest centroid |
---|
| 356 | N = len(domain) |
---|
| 357 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 358 | |
---|
| 359 | # Calculate indices in exchange area for this forcing term |
---|
| 360 | |
---|
| 361 | triangle_id = min_dist = sys.maxint |
---|
| 362 | for k in range(N): |
---|
| 363 | x, y = points[k,:] # Centroid |
---|
| 364 | |
---|
| 365 | c = point |
---|
| 366 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 367 | if distance < min_dist: |
---|
| 368 | min_dist = distance |
---|
| 369 | triangle_id = k |
---|
| 370 | |
---|
| 371 | |
---|
| 372 | if triangle_id < sys.maxint: |
---|
| 373 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 374 | %tuple(points[triangle_id, :]) |
---|
| 375 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 376 | |
---|
| 377 | enquiry_indices.append(triangle_id) |
---|
| 378 | else: |
---|
| 379 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 380 | raise Exception, msg |
---|
| 381 | |
---|
| 382 | return enquiry_indices |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | def check_culvert_inside_domain(self): |
---|
| 386 | """Check that all polygons and enquiry points lie within the mesh. |
---|
| 387 | """ |
---|
| 388 | bounding_polygon = self.domain.get_boundary_polygon() |
---|
| 389 | P = self.culvert_polygons |
---|
| 390 | for key in P.keys(): |
---|
| 391 | if key in ['exchange_polygon0', |
---|
| 392 | 'exchange_polygon1']: |
---|
| 393 | for point in list(P[key]) + self.enquiry_points: |
---|
| 394 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 395 | %(str(point), key, self.label) |
---|
| 396 | msg += 'fall within the domain boundary.' |
---|
| 397 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | def adjust_flow_for_available_water_at_inlet(self, Q, delta_t): |
---|
| 401 | """Adjust Q downwards depending on available water at inlet |
---|
| 402 | """ |
---|
| 403 | |
---|
| 404 | if delta_t < epsilon: |
---|
| 405 | # No need to adjust if time step is very small or zero |
---|
| 406 | # In this case the possible flow will be very large |
---|
| 407 | # anyway. |
---|
| 408 | return Q |
---|
| 409 | |
---|
| 410 | # Short hands |
---|
| 411 | domain = self.domain |
---|
| 412 | dq = domain.quantities |
---|
| 413 | time = domain.get_time() |
---|
| 414 | I = self.inlet |
---|
| 415 | idx = I.exchange_indices |
---|
| 416 | |
---|
| 417 | # Find triangle with the smallest depth |
---|
| 418 | stage = dq['stage'].get_values(location='centroids', |
---|
| 419 | indices=[idx]) |
---|
| 420 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 421 | indices=[idx]) |
---|
| 422 | depth = stage-elevation |
---|
| 423 | min_depth = min(depth.flat) |
---|
| 424 | |
---|
| 425 | # Compute possible flow for exchange region based on |
---|
| 426 | # triangle with smallest depth |
---|
| 427 | max_Q = min_depth*I.exchange_area/delta_t |
---|
| 428 | |
---|
| 429 | # Calculate the minimum in absolute terms of |
---|
| 430 | # the requsted flow and the possible flow |
---|
| 431 | Q_reduced = sign(Q)*min(abs(Q), abs(max_Q)) |
---|
| 432 | |
---|
| 433 | if abs(Q_reduced) < abs(Q): |
---|
| 434 | msg = '%.2fs: Requested flow is ' % time |
---|
| 435 | msg += 'greater than what is supported by the smallest ' |
---|
| 436 | msg += 'depth at inlet exchange area:\n ' |
---|
| 437 | msg += 'h_min*inlet_area/delta_t = %.2f*%.2f/%.2f '\ |
---|
| 438 | % (min_depth, I.exchange_area, delta_t) |
---|
| 439 | msg += ' = %.2f m^3/s\n ' % Q_reduced |
---|
| 440 | msg += 'Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
| 441 | if self.verbose is True: |
---|
| 442 | print msg |
---|
[6553] | 443 | |
---|
| 444 | if self.log_filename is not None: |
---|
[6150] | 445 | log_to_file(self.log_filename, msg) |
---|
| 446 | |
---|
| 447 | return Q_reduced |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | def compute_rates(self, delta_t): |
---|
| 451 | """Compute new rates for inlet and outlet |
---|
| 452 | """ |
---|
| 453 | |
---|
| 454 | # Short hands |
---|
| 455 | domain = self.domain |
---|
| 456 | dq = domain.quantities |
---|
| 457 | |
---|
| 458 | # Time stuff |
---|
| 459 | time = domain.get_time() |
---|
| 460 | self.last_update = time |
---|
| 461 | |
---|
| 462 | |
---|
| 463 | if hasattr(self, 'log_filename'): |
---|
| 464 | log_filename = self.log_filename |
---|
| 465 | |
---|
[7035] | 466 | # Compute stage, energy and velocity at the |
---|
[6150] | 467 | # enquiry points at each end of the culvert |
---|
| 468 | openings = self.openings |
---|
| 469 | for i, opening in enumerate(openings): |
---|
| 470 | idx = self.enquiry_indices[i] |
---|
| 471 | |
---|
| 472 | stage = dq['stage'].get_values(location='centroids', |
---|
| 473 | indices=[idx])[0] |
---|
| 474 | depth = h = stage-opening.elevation |
---|
| 475 | |
---|
| 476 | |
---|
[7035] | 477 | # Get velocity |
---|
| 478 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 479 | indices=[idx])[0] |
---|
| 480 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 481 | indices=[idx])[0] |
---|
| 482 | |
---|
| 483 | if h > minimum_allowed_height: |
---|
| 484 | u = xmomentum/(h + velocity_protection/h) |
---|
| 485 | v = ymomentum/(h + velocity_protection/h) |
---|
| 486 | else: |
---|
| 487 | u = v = 0.0 |
---|
[6150] | 488 | |
---|
[7035] | 489 | v_squared = u*u + v*v |
---|
| 490 | |
---|
| 491 | if self.use_velocity_head is True: |
---|
| 492 | velocity_head = 0.5*v_squared/g |
---|
[6150] | 493 | else: |
---|
| 494 | velocity_head = 0.0 |
---|
| 495 | |
---|
| 496 | opening.total_energy = velocity_head + stage |
---|
| 497 | opening.specific_energy = velocity_head + depth |
---|
| 498 | opening.stage = stage |
---|
| 499 | opening.depth = depth |
---|
[7035] | 500 | opening.velocity = sqrt(v_squared) |
---|
[6150] | 501 | |
---|
| 502 | |
---|
| 503 | # We now need to deal with each opening individually |
---|
| 504 | # Determine flow direction based on total energy difference |
---|
| 505 | delta_total_energy = openings[0].total_energy - openings[1].total_energy |
---|
| 506 | if delta_total_energy > 0: |
---|
| 507 | #print 'Flow U/S ---> D/S' |
---|
| 508 | inlet = openings[0] |
---|
| 509 | outlet = openings[1] |
---|
| 510 | else: |
---|
| 511 | #print 'Flow D/S ---> U/S' |
---|
| 512 | inlet = openings[1] |
---|
| 513 | outlet = openings[0] |
---|
| 514 | |
---|
| 515 | delta_total_energy = -delta_total_energy |
---|
| 516 | |
---|
| 517 | self.inlet = inlet |
---|
| 518 | self.outlet = outlet |
---|
| 519 | |
---|
| 520 | msg = 'Total energy difference is negative' |
---|
| 521 | assert delta_total_energy > 0.0, msg |
---|
| 522 | |
---|
| 523 | # Recompute slope and issue warning if flow is uphill |
---|
| 524 | # These values do not enter the computation |
---|
| 525 | delta_z = inlet.elevation - outlet.elevation |
---|
| 526 | culvert_slope = (delta_z/self.length) |
---|
| 527 | if culvert_slope < 0.0: |
---|
| 528 | # Adverse gradient - flow is running uphill |
---|
| 529 | # Flow will be purely controlled by uphill outlet face |
---|
| 530 | if self.verbose is True: |
---|
| 531 | print '%.2fs - WARNING: Flow is running uphill.' % time |
---|
| 532 | |
---|
[6553] | 533 | if self.log_filename is not None: |
---|
[6150] | 534 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f'\ |
---|
| 535 | %(time, self.inlet.stage, self.outlet.stage) |
---|
| 536 | log_to_file(self.log_filename, s) |
---|
| 537 | s = 'Delta total energy = %.3f' %(delta_total_energy) |
---|
| 538 | log_to_file(log_filename, s) |
---|
| 539 | |
---|
| 540 | |
---|
| 541 | # Determine controlling energy (driving head) for culvert |
---|
| 542 | if inlet.specific_energy > delta_total_energy: |
---|
| 543 | # Outlet control |
---|
| 544 | driving_head = delta_total_energy |
---|
| 545 | else: |
---|
| 546 | # Inlet control |
---|
| 547 | driving_head = inlet.specific_energy |
---|
| 548 | |
---|
| 549 | |
---|
| 550 | |
---|
| 551 | if self.inlet.depth <= self.trigger_depth: |
---|
| 552 | Q = 0.0 |
---|
| 553 | else: |
---|
| 554 | # Calculate discharge for one barrel and |
---|
| 555 | # set inlet.rate and outlet.rate |
---|
| 556 | |
---|
| 557 | if self.culvert_description_filename is not None: |
---|
| 558 | try: |
---|
| 559 | Q = interpolate_linearly(driving_head, |
---|
| 560 | self.rating_curve[:,0], |
---|
| 561 | self.rating_curve[:,1]) |
---|
| 562 | except Below_interval, e: |
---|
| 563 | Q = self.rating_curve[0,1] |
---|
| 564 | msg = '%.2fs: ' % time |
---|
| 565 | msg += 'Delta head smaller than rating curve minimum: ' |
---|
| 566 | msg += str(e) |
---|
| 567 | msg += '\n ' |
---|
| 568 | msg += 'I will use minimum discharge %.2f m^3/s ' % Q |
---|
| 569 | msg += 'for culvert "%s"' % self.label |
---|
| 570 | |
---|
| 571 | if hasattr(self, 'log_filename'): |
---|
| 572 | log_to_file(self.log_filename, msg) |
---|
| 573 | except Above_interval, e: |
---|
| 574 | Q = self.rating_curve[-1,1] |
---|
| 575 | msg = '%.2fs: ' % time |
---|
| 576 | msg += 'Delta head greater than rating curve maximum: ' |
---|
| 577 | msg += str(e) |
---|
| 578 | msg += '\n ' |
---|
| 579 | msg += 'I will use maximum discharge %.2f m^3/s ' % Q |
---|
| 580 | msg += 'for culvert "%s"' % self.label |
---|
| 581 | |
---|
[6553] | 582 | if self.log_filename is not None: |
---|
[6150] | 583 | log_to_file(self.log_filename, msg) |
---|
| 584 | else: |
---|
| 585 | # User culvert routine |
---|
| 586 | Q, barrel_velocity, culvert_outlet_depth =\ |
---|
[6553] | 587 | self.culvert_routine(inlet.depth, |
---|
| 588 | outlet.depth, |
---|
[7035] | 589 | inlet.velocity, |
---|
| 590 | outlet.velocity, |
---|
[6553] | 591 | inlet.specific_energy, |
---|
| 592 | delta_total_energy, |
---|
| 593 | g, |
---|
| 594 | culvert_length=self.length, |
---|
| 595 | culvert_width=self.width, |
---|
| 596 | culvert_height=self.height, |
---|
| 597 | culvert_type=self.culvert_type, |
---|
| 598 | manning=self.manning, |
---|
| 599 | sum_loss=self.sum_loss, |
---|
| 600 | log_filename=self.log_filename) |
---|
[6150] | 601 | |
---|
| 602 | |
---|
| 603 | |
---|
| 604 | # Adjust discharge for multiple barrels |
---|
| 605 | Q *= self.number_of_barrels |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | Q = self.adjust_flow_for_available_water_at_inlet(Q, delta_t) |
---|
| 609 | |
---|
| 610 | self.inlet.rate = -Q |
---|
| 611 | self.outlet.rate = Q |
---|
| 612 | |
---|
| 613 | # Log timeseries to file |
---|
| 614 | try: |
---|
| 615 | fid = open(self.timeseries_filename, 'a') |
---|
| 616 | except: |
---|
| 617 | pass |
---|
| 618 | else: |
---|
| 619 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
| 620 | fid.close() |
---|
| 621 | |
---|
| 622 | |
---|
[6553] | 623 | # OBSOLETE (Except for momentum jet in Culvert_flow_energy) |
---|
[6150] | 624 | class Culvert_flow_rating: |
---|
| 625 | """Culvert flow - transfer water from one hole to another |
---|
| 626 | |
---|
| 627 | |
---|
| 628 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 629 | mannings_rougness, |
---|
| 630 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
| 631 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
| 632 | |
---|
| 633 | """ |
---|
| 634 | |
---|
| 635 | def __init__(self, |
---|
| 636 | domain, |
---|
| 637 | culvert_description_filename=None, |
---|
| 638 | end_point0=None, |
---|
| 639 | end_point1=None, |
---|
| 640 | enquiry_point0=None, |
---|
| 641 | enquiry_point1=None, |
---|
| 642 | update_interval=None, |
---|
| 643 | log_file=False, |
---|
| 644 | discharge_hydrograph=False, |
---|
| 645 | verbose=False): |
---|
| 646 | |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | label, type, width, height, length, number_of_barrels, description, rating_curve = read_culvert_description(culvert_description_filename) |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | # Store culvert information |
---|
| 653 | self.label = label |
---|
| 654 | self.description = description |
---|
| 655 | self.culvert_type = type |
---|
| 656 | self.rating_curve = ensure_numeric(rating_curve) |
---|
| 657 | self.number_of_barrels = number_of_barrels |
---|
| 658 | |
---|
| 659 | if label is None: label = 'culvert_flow' |
---|
| 660 | label += '_' + str(id(self)) |
---|
| 661 | self.label = label |
---|
| 662 | |
---|
| 663 | # File for storing discharge_hydrograph |
---|
| 664 | if discharge_hydrograph is True: |
---|
| 665 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 666 | fid = open(self.timeseries_filename, 'w') |
---|
| 667 | fid.write('time, discharge\n') |
---|
| 668 | fid.close() |
---|
| 669 | |
---|
| 670 | # Log file for storing general textual output |
---|
| 671 | if log_file is True: |
---|
| 672 | self.log_filename = label + '.log' |
---|
| 673 | log_to_file(self.log_filename, self.label) |
---|
| 674 | log_to_file(self.log_filename, description) |
---|
| 675 | log_to_file(self.log_filename, self.culvert_type) |
---|
| 676 | |
---|
| 677 | |
---|
| 678 | # Create the fundamental culvert polygons from POLYGON |
---|
| 679 | #if self.culvert_type == 'circle': |
---|
| 680 | # # Redefine width and height for use with create_culvert_polygons |
---|
| 681 | # width = height = diameter |
---|
| 682 | |
---|
| 683 | P = create_culvert_polygons(end_point0, |
---|
| 684 | end_point1, |
---|
| 685 | width=width, |
---|
| 686 | height=height, |
---|
| 687 | number_of_barrels=number_of_barrels) |
---|
| 688 | |
---|
| 689 | # Select enquiry points |
---|
| 690 | if enquiry_point0 is None: |
---|
| 691 | enquiry_point0 = P['enquiry_point0'] |
---|
| 692 | |
---|
| 693 | if enquiry_point1 is None: |
---|
| 694 | enquiry_point1 = P['enquiry_point1'] |
---|
| 695 | |
---|
| 696 | if verbose is True: |
---|
| 697 | pass |
---|
| 698 | #plot_polygons([[end_point0, end_point1], |
---|
| 699 | # P['exchange_polygon0'], |
---|
| 700 | # P['exchange_polygon1'], |
---|
| 701 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 702 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 703 | # figname='culvert_polygon_output') |
---|
| 704 | |
---|
| 705 | |
---|
| 706 | |
---|
| 707 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 708 | |
---|
| 709 | self.enquiry_indices = [] |
---|
| 710 | for point in self.enquiry_points: |
---|
| 711 | # Find nearest centroid |
---|
| 712 | N = len(domain) |
---|
| 713 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 714 | |
---|
| 715 | # Calculate indices in exchange area for this forcing term |
---|
| 716 | |
---|
| 717 | triangle_id = min_dist = sys.maxint |
---|
| 718 | for k in range(N): |
---|
| 719 | x, y = points[k,:] # Centroid |
---|
| 720 | |
---|
| 721 | c = point |
---|
| 722 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 723 | if distance < min_dist: |
---|
| 724 | min_dist = distance |
---|
| 725 | triangle_id = k |
---|
| 726 | |
---|
| 727 | |
---|
| 728 | if triangle_id < sys.maxint: |
---|
| 729 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 730 | %tuple(points[triangle_id, :]) |
---|
| 731 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 732 | |
---|
| 733 | self.enquiry_indices.append(triangle_id) |
---|
| 734 | else: |
---|
| 735 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 736 | raise Exception, msg |
---|
| 737 | |
---|
| 738 | |
---|
| 739 | |
---|
| 740 | # Check that all polygons lie within the mesh. |
---|
| 741 | bounding_polygon = domain.get_boundary_polygon() |
---|
| 742 | for key in P.keys(): |
---|
| 743 | if key in ['exchange_polygon0', |
---|
| 744 | 'exchange_polygon1']: |
---|
| 745 | for point in list(P[key]) + self.enquiry_points: |
---|
| 746 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 747 | %(str(point), key, self.label) |
---|
| 748 | msg += 'fall within the domain boundary.' |
---|
| 749 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 750 | |
---|
| 751 | |
---|
| 752 | # Create inflow object at each end of the culvert. |
---|
| 753 | self.openings = [] |
---|
| 754 | self.openings.append(Inflow(domain, |
---|
| 755 | polygon=P['exchange_polygon0'])) |
---|
| 756 | |
---|
| 757 | self.openings.append(Inflow(domain, |
---|
| 758 | polygon=P['exchange_polygon1'])) |
---|
| 759 | |
---|
| 760 | |
---|
| 761 | |
---|
| 762 | dq = domain.quantities |
---|
| 763 | for i, opening in enumerate(self.openings): |
---|
| 764 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 765 | indices=[self.enquiry_indices[i]]) |
---|
| 766 | opening.elevation = elevation |
---|
| 767 | opening.stage = elevation # Simple assumption that culvert is dry initially |
---|
| 768 | |
---|
| 769 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 770 | assert len(self.openings) == 2 |
---|
| 771 | |
---|
| 772 | # Determine pipe direction |
---|
| 773 | self.delta_z = delta_z = self.openings[0].elevation - self.openings[1].elevation |
---|
| 774 | if delta_z > 0.0: |
---|
| 775 | self.inlet = self.openings[0] |
---|
| 776 | self.outlet = self.openings[1] |
---|
| 777 | else: |
---|
| 778 | self.outlet = self.openings[0] |
---|
| 779 | self.inlet = self.openings[1] |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | # Store basic geometry |
---|
| 783 | self.end_points = [end_point0, end_point1] |
---|
| 784 | self.vector = P['vector'] |
---|
| 785 | self.length = P['length']; assert self.length > 0.0 |
---|
| 786 | if not num.allclose(self.length, length, rtol=1.0e-2, atol=1.0e-2): |
---|
| 787 | msg = 'WARNING: barrel length specified in "%s" (%.2f m)' %(culvert_description_filename, length) |
---|
| 788 | msg += ' does not match distance between specified' |
---|
| 789 | msg += ' end points (%.2f m)' %self.length |
---|
| 790 | print msg |
---|
| 791 | |
---|
| 792 | self.verbose = verbose |
---|
| 793 | self.last_update = 0.0 # For use with update_interval |
---|
| 794 | self.last_time = 0.0 |
---|
| 795 | self.update_interval = update_interval |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | # Print something |
---|
| 799 | if hasattr(self, 'log_filename'): |
---|
| 800 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 801 | log_to_file(self.log_filename, s) |
---|
| 802 | |
---|
| 803 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 804 | log_to_file(self.log_filename, s) |
---|
| 805 | |
---|
| 806 | |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | |
---|
| 810 | def __call__(self, domain): |
---|
| 811 | |
---|
| 812 | # Time stuff |
---|
| 813 | time = domain.get_time() |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | update = False |
---|
| 817 | if self.update_interval is None: |
---|
| 818 | update = True |
---|
| 819 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
| 820 | else: |
---|
| 821 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 822 | update = True |
---|
| 823 | delta_t = self.update_interval |
---|
| 824 | |
---|
| 825 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 826 | if hasattr(self, 'log_filename'): |
---|
| 827 | log_to_file(self.log_filename, s) |
---|
| 828 | |
---|
| 829 | |
---|
| 830 | if update is True: |
---|
| 831 | self.last_update = time |
---|
| 832 | |
---|
| 833 | dq = domain.quantities |
---|
| 834 | |
---|
| 835 | # Get average water depths at each opening |
---|
| 836 | openings = self.openings # There are two Opening [0] and [1] |
---|
| 837 | for i, opening in enumerate(openings): |
---|
| 838 | |
---|
| 839 | # Compute mean values of selected quantitites in the |
---|
| 840 | # enquiry area in front of the culvert |
---|
| 841 | |
---|
| 842 | stage = dq['stage'].get_values(location='centroids', |
---|
| 843 | indices=[self.enquiry_indices[i]]) |
---|
| 844 | |
---|
| 845 | # Store current average stage and depth with each opening object |
---|
| 846 | opening.depth = stage - opening.elevation |
---|
| 847 | opening.stage = stage |
---|
| 848 | |
---|
| 849 | |
---|
| 850 | |
---|
| 851 | ################# End of the FOR loop ################################################ |
---|
| 852 | |
---|
| 853 | # We now need to deal with each opening individually |
---|
| 854 | |
---|
| 855 | # Determine flow direction based on total energy difference |
---|
| 856 | |
---|
| 857 | delta_w = self.inlet.stage - self.outlet.stage |
---|
| 858 | |
---|
| 859 | if hasattr(self, 'log_filename'): |
---|
| 860 | s = 'Time=%.2f, inlet stage = %.2f, outlet stage = %.2f' %(time, |
---|
| 861 | self.inlet.stage, |
---|
| 862 | self.outlet.stage) |
---|
| 863 | log_to_file(self.log_filename, s) |
---|
| 864 | |
---|
| 865 | |
---|
| 866 | if self.inlet.depth <= 0.01: |
---|
| 867 | Q = 0.0 |
---|
| 868 | else: |
---|
| 869 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
| 870 | |
---|
| 871 | try: |
---|
| 872 | Q = interpolate_linearly(delta_w, self.rating_curve[:,0], self.rating_curve[:,1]) |
---|
| 873 | except Below_interval, e: |
---|
| 874 | Q = self.rating_curve[0,1] |
---|
| 875 | msg = '%.2fs: Delta head smaller than rating curve minimum: ' %time |
---|
| 876 | msg += str(e) |
---|
| 877 | msg += '\n I will use minimum discharge %.2f m^3/s for culvert "%s"'\ |
---|
| 878 | %(Q, self.label) |
---|
| 879 | if hasattr(self, 'log_filename'): |
---|
| 880 | log_to_file(self.log_filename, msg) |
---|
| 881 | except Above_interval, e: |
---|
| 882 | Q = self.rating_curve[-1,1] |
---|
| 883 | msg = '%.2fs: Delta head greater than rating curve maximum: ' %time |
---|
| 884 | msg += str(e) |
---|
| 885 | msg += '\n I will use maximum discharge %.2f m^3/s for culvert "%s"'\ |
---|
| 886 | %(Q, self.label) |
---|
| 887 | if hasattr(self, 'log_filename'): |
---|
| 888 | log_to_file(self.log_filename, msg) |
---|
| 889 | |
---|
| 890 | |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | # Adjust discharge for multiple barrels |
---|
| 894 | Q *= self.number_of_barrels |
---|
| 895 | |
---|
| 896 | |
---|
| 897 | # Adjust Q downwards depending on available water at inlet |
---|
| 898 | stage = self.inlet.get_quantity_values(quantity_name='stage') |
---|
| 899 | elevation = self.inlet.get_quantity_values(quantity_name='elevation') |
---|
| 900 | depth = stage-elevation |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | V = 0 |
---|
| 904 | for i, d in enumerate(depth): |
---|
| 905 | V += d * domain.areas[i] |
---|
| 906 | |
---|
| 907 | #Vsimple = mean(depth)*self.inlet.exchange_area # Current volume in exchange area |
---|
| 908 | #print 'Q', Q, 'dt', delta_t, 'Q*dt', Q*delta_t, 'V', V, 'Vsimple', Vsimple |
---|
| 909 | |
---|
| 910 | dt = delta_t |
---|
| 911 | if Q*dt > V: |
---|
| 912 | |
---|
| 913 | Q_reduced = 0.9*V/dt # Reduce with safety factor |
---|
| 914 | |
---|
| 915 | msg = '%.2fs: Computed extraction for this time interval (Q*dt) is ' % time |
---|
| 916 | msg += 'greater than current volume (V) at inlet.\n' |
---|
| 917 | msg += ' Q will be reduced from %.2f m^3/s to %.2f m^3/s.' % (Q, Q_reduced) |
---|
| 918 | |
---|
| 919 | #print msg |
---|
| 920 | |
---|
| 921 | if self.verbose is True: |
---|
| 922 | print msg |
---|
| 923 | if hasattr(self, 'log_filename'): |
---|
| 924 | log_to_file(self.log_filename, msg) |
---|
| 925 | |
---|
| 926 | Q = Q_reduced |
---|
| 927 | |
---|
| 928 | self.inlet.rate = -Q |
---|
| 929 | self.outlet.rate = Q |
---|
| 930 | |
---|
| 931 | # Log timeseries to file |
---|
| 932 | try: |
---|
| 933 | fid = open(self.timeseries_filename, 'a') |
---|
| 934 | except: |
---|
| 935 | pass |
---|
| 936 | else: |
---|
| 937 | fid.write('%.2f, %.2f\n' %(time, Q)) |
---|
| 938 | fid.close() |
---|
| 939 | |
---|
| 940 | # Store value of time |
---|
| 941 | self.last_time = time |
---|
| 942 | |
---|
| 943 | |
---|
| 944 | |
---|
| 945 | # Execute flow term for each opening |
---|
| 946 | # This is where Inflow objects are evaluated using the last rate that has been calculated |
---|
| 947 | # |
---|
| 948 | # This will take place at every internal timestep and update the domain |
---|
| 949 | for opening in self.openings: |
---|
| 950 | opening(domain) |
---|
| 951 | |
---|
| 952 | |
---|
| 953 | |
---|
| 954 | |
---|
| 955 | |
---|
| 956 | |
---|
| 957 | class Culvert_flow_energy: |
---|
| 958 | """Culvert flow - transfer water from one hole to another |
---|
| 959 | |
---|
| 960 | Using Momentum as Calculated by Culvert Flow !! |
---|
| 961 | Could be Several Methods Investigated to do This !!! |
---|
| 962 | |
---|
| 963 | 2008_May_08 |
---|
| 964 | To Ole: |
---|
| 965 | OK so here we need to get the Polygon Creating code to create |
---|
| 966 | polygons for the culvert Based on |
---|
| 967 | the two input Points (X0,Y0) and (X1,Y1) - need to be passed |
---|
| 968 | to create polygon |
---|
| 969 | |
---|
| 970 | The two centers are now passed on to create_polygon. |
---|
| 971 | |
---|
| 972 | |
---|
| 973 | Input: Two points, pipe_size (either diameter or width, height), |
---|
| 974 | mannings_rougness, |
---|
| 975 | inlet/outlet energy_loss_coefficients, internal_bend_coefficent, |
---|
| 976 | top-down_blockage_factor and bottom_up_blockage_factor |
---|
| 977 | |
---|
| 978 | |
---|
| 979 | And the Delta H enquiry should be change from Openings in line 412 |
---|
| 980 | to the enquiry Polygons infront of the culvert |
---|
| 981 | At the moment this script uses only Depth, later we can change it to |
---|
| 982 | Energy... |
---|
| 983 | |
---|
| 984 | Once we have Delta H can calculate a Flow Rate and from Flow Rate |
---|
| 985 | an Outlet Velocity |
---|
| 986 | The Outlet Velocity x Outlet Depth = Momentum to be applied at the Outlet... |
---|
| 987 | |
---|
| 988 | Invert levels are optional. If left out they will default to the |
---|
| 989 | elevation at the opening. |
---|
| 990 | |
---|
| 991 | """ |
---|
| 992 | |
---|
| 993 | def __init__(self, |
---|
| 994 | domain, |
---|
| 995 | label=None, |
---|
| 996 | description=None, |
---|
| 997 | end_point0=None, |
---|
| 998 | end_point1=None, |
---|
| 999 | width=None, |
---|
| 1000 | height=None, |
---|
| 1001 | diameter=None, |
---|
| 1002 | manning=None, # Mannings Roughness for Culvert |
---|
| 1003 | invert_level0=None, # Invert level at opening 0 |
---|
| 1004 | invert_level1=None, # Invert level at opening 1 |
---|
| 1005 | loss_exit=None, |
---|
| 1006 | loss_entry=None, |
---|
| 1007 | loss_bend=None, |
---|
| 1008 | loss_special=None, |
---|
| 1009 | blockage_topdwn=None, |
---|
| 1010 | blockage_bottup=None, |
---|
| 1011 | culvert_routine=None, |
---|
| 1012 | number_of_barrels=1, |
---|
| 1013 | enquiry_point0=None, |
---|
| 1014 | enquiry_point1=None, |
---|
| 1015 | update_interval=None, |
---|
| 1016 | verbose=False): |
---|
| 1017 | |
---|
| 1018 | # Input check |
---|
| 1019 | if diameter is not None: |
---|
| 1020 | self.culvert_type = 'circle' |
---|
| 1021 | self.diameter = diameter |
---|
| 1022 | if height is not None or width is not None: |
---|
| 1023 | msg = 'Either diameter or width&height must be specified, ' |
---|
| 1024 | msg += 'but not both.' |
---|
| 1025 | raise Exception, msg |
---|
| 1026 | else: |
---|
| 1027 | if height is not None: |
---|
| 1028 | if width is None: |
---|
| 1029 | self.culvert_type = 'square' |
---|
| 1030 | width = height |
---|
| 1031 | else: |
---|
| 1032 | self.culvert_type = 'rectangle' |
---|
| 1033 | elif width is not None: |
---|
| 1034 | if height is None: |
---|
| 1035 | self.culvert_type = 'square' |
---|
| 1036 | height = width |
---|
| 1037 | else: |
---|
| 1038 | msg = 'Either diameter or width&height must be specified.' |
---|
| 1039 | raise Exception, msg |
---|
| 1040 | |
---|
| 1041 | if height == width: |
---|
| 1042 | self.culvert_type = 'square' |
---|
| 1043 | |
---|
| 1044 | self.height = height |
---|
| 1045 | self.width = width |
---|
| 1046 | |
---|
| 1047 | |
---|
| 1048 | assert self.culvert_type in ['circle', 'square', 'rectangle'] |
---|
| 1049 | |
---|
| 1050 | assert number_of_barrels >= 1 |
---|
| 1051 | self.number_of_barrels = number_of_barrels |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | # Set defaults |
---|
| 1055 | if manning is None: manning = 0.012 # Default roughness for pipe |
---|
| 1056 | if loss_exit is None: loss_exit = 1.00 |
---|
| 1057 | if loss_entry is None: loss_entry = 0.50 |
---|
| 1058 | if loss_bend is None: loss_bend=0.00 |
---|
| 1059 | if loss_special is None: loss_special=0.00 |
---|
| 1060 | if blockage_topdwn is None: blockage_topdwn=0.00 |
---|
| 1061 | if blockage_bottup is None: blockage_bottup=0.00 |
---|
| 1062 | if culvert_routine is None: |
---|
| 1063 | culvert_routine=boyd_generalised_culvert_model |
---|
| 1064 | |
---|
| 1065 | if label is None: label = 'culvert_flow' |
---|
| 1066 | label += '_' + str(id(self)) |
---|
| 1067 | self.label = label |
---|
| 1068 | |
---|
| 1069 | # File for storing culvert quantities |
---|
| 1070 | self.timeseries_filename = label + '_timeseries.csv' |
---|
| 1071 | fid = open(self.timeseries_filename, 'w') |
---|
| 1072 | fid.write('time, E0, E1, Velocity, Discharge\n') |
---|
| 1073 | fid.close() |
---|
| 1074 | |
---|
| 1075 | # Log file for storing general textual output |
---|
| 1076 | self.log_filename = label + '.log' |
---|
| 1077 | log_to_file(self.log_filename, self.label) |
---|
| 1078 | log_to_file(self.log_filename, description) |
---|
| 1079 | log_to_file(self.log_filename, self.culvert_type) |
---|
| 1080 | |
---|
| 1081 | |
---|
| 1082 | # Create the fundamental culvert polygons from POLYGON |
---|
| 1083 | if self.culvert_type == 'circle': |
---|
| 1084 | # Redefine width and height for use with create_culvert_polygons |
---|
| 1085 | width = height = diameter |
---|
| 1086 | |
---|
| 1087 | P = create_culvert_polygons(end_point0, |
---|
| 1088 | end_point1, |
---|
| 1089 | width=width, |
---|
| 1090 | height=height, |
---|
| 1091 | number_of_barrels=number_of_barrels) |
---|
| 1092 | |
---|
| 1093 | # Select enquiry points |
---|
| 1094 | if enquiry_point0 is None: |
---|
| 1095 | enquiry_point0 = P['enquiry_point0'] |
---|
| 1096 | |
---|
| 1097 | if enquiry_point1 is None: |
---|
| 1098 | enquiry_point1 = P['enquiry_point1'] |
---|
| 1099 | |
---|
| 1100 | if verbose is True: |
---|
| 1101 | pass |
---|
| 1102 | #plot_polygons([[end_point0, end_point1], |
---|
| 1103 | # P['exchange_polygon0'], |
---|
| 1104 | # P['exchange_polygon1'], |
---|
| 1105 | # [enquiry_point0, 1.005*enquiry_point0], |
---|
| 1106 | # [enquiry_point1, 1.005*enquiry_point1]], |
---|
| 1107 | # figname='culvert_polygon_output') |
---|
| 1108 | |
---|
| 1109 | |
---|
| 1110 | self.enquiry_points = [enquiry_point0, enquiry_point1] |
---|
| 1111 | |
---|
| 1112 | |
---|
| 1113 | self.enquiry_indices = [] |
---|
| 1114 | for point in self.enquiry_points: |
---|
| 1115 | # Find nearest centroid |
---|
| 1116 | N = len(domain) |
---|
| 1117 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 1118 | |
---|
| 1119 | # Calculate indices in exchange area for this forcing term |
---|
| 1120 | |
---|
| 1121 | triangle_id = min_dist = sys.maxint |
---|
| 1122 | for k in range(N): |
---|
| 1123 | x, y = points[k,:] # Centroid |
---|
| 1124 | |
---|
| 1125 | c = point |
---|
| 1126 | distance = (x-c[0])**2+(y-c[1])**2 |
---|
| 1127 | if distance < min_dist: |
---|
| 1128 | min_dist = distance |
---|
| 1129 | triangle_id = k |
---|
| 1130 | |
---|
| 1131 | |
---|
| 1132 | if triangle_id < sys.maxint: |
---|
| 1133 | msg = 'found triangle with centroid (%f, %f)'\ |
---|
| 1134 | %tuple(points[triangle_id, :]) |
---|
| 1135 | msg += ' for point (%f, %f)' %tuple(point) |
---|
| 1136 | |
---|
| 1137 | self.enquiry_indices.append(triangle_id) |
---|
| 1138 | else: |
---|
| 1139 | msg = 'Triangle not found for point (%f, %f)' %point |
---|
| 1140 | raise Exception, msg |
---|
| 1141 | |
---|
| 1142 | |
---|
| 1143 | |
---|
| 1144 | |
---|
| 1145 | |
---|
| 1146 | |
---|
| 1147 | # Check that all polygons lie within the mesh. |
---|
| 1148 | bounding_polygon = domain.get_boundary_polygon() |
---|
| 1149 | for key in P.keys(): |
---|
| 1150 | if key in ['exchange_polygon0', |
---|
| 1151 | 'exchange_polygon1']: |
---|
| 1152 | for point in P[key]: |
---|
| 1153 | |
---|
| 1154 | msg = 'Point %s in polygon %s for culvert %s did not'\ |
---|
| 1155 | %(str(point), key, self.label) |
---|
| 1156 | msg += 'fall within the domain boundary.' |
---|
| 1157 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 1158 | |
---|
| 1159 | |
---|
| 1160 | # Create inflow object at each end of the culvert. |
---|
| 1161 | self.openings = [] |
---|
| 1162 | self.openings.append(Inflow(domain, |
---|
| 1163 | polygon=P['exchange_polygon0'])) |
---|
| 1164 | |
---|
| 1165 | self.openings.append(Inflow(domain, |
---|
| 1166 | polygon=P['exchange_polygon1'])) |
---|
| 1167 | |
---|
| 1168 | |
---|
| 1169 | # Assume two openings for now: Referred to as 0 and 1 |
---|
| 1170 | assert len(self.openings) == 2 |
---|
| 1171 | |
---|
| 1172 | # Store basic geometry |
---|
| 1173 | self.end_points = [end_point0, end_point1] |
---|
| 1174 | self.invert_levels = [invert_level0, invert_level1] |
---|
| 1175 | #self.enquiry_polygons = [P['enquiry_polygon0'], P['enquiry_polygon1']] |
---|
| 1176 | #self.enquiry_polylines = [P['enquiry_polygon0'][:2], |
---|
| 1177 | # P['enquiry_polygon1'][:2]] |
---|
| 1178 | self.vector = P['vector'] |
---|
| 1179 | self.length = P['length']; assert self.length > 0.0 |
---|
| 1180 | self.verbose = verbose |
---|
| 1181 | self.last_time = 0.0 |
---|
| 1182 | self.last_update = 0.0 # For use with update_interval |
---|
| 1183 | self.update_interval = update_interval |
---|
| 1184 | |
---|
| 1185 | |
---|
| 1186 | # Store hydraulic parameters |
---|
| 1187 | self.manning = manning |
---|
| 1188 | self.loss_exit = loss_exit |
---|
| 1189 | self.loss_entry = loss_entry |
---|
| 1190 | self.loss_bend = loss_bend |
---|
| 1191 | self.loss_special = loss_special |
---|
| 1192 | self.sum_loss = loss_exit + loss_entry + loss_bend + loss_special |
---|
| 1193 | self.blockage_topdwn = blockage_topdwn |
---|
| 1194 | self.blockage_bottup = blockage_bottup |
---|
| 1195 | |
---|
| 1196 | # Store culvert routine |
---|
| 1197 | self.culvert_routine = culvert_routine |
---|
| 1198 | |
---|
| 1199 | |
---|
| 1200 | # Create objects to update momentum (a bit crude at this stage) |
---|
| 1201 | |
---|
| 1202 | |
---|
| 1203 | xmom0 = General_forcing(domain, 'xmomentum', |
---|
| 1204 | polygon=P['exchange_polygon0']) |
---|
| 1205 | |
---|
| 1206 | xmom1 = General_forcing(domain, 'xmomentum', |
---|
| 1207 | polygon=P['exchange_polygon1']) |
---|
| 1208 | |
---|
| 1209 | ymom0 = General_forcing(domain, 'ymomentum', |
---|
| 1210 | polygon=P['exchange_polygon0']) |
---|
| 1211 | |
---|
| 1212 | ymom1 = General_forcing(domain, 'ymomentum', |
---|
| 1213 | polygon=P['exchange_polygon1']) |
---|
| 1214 | |
---|
| 1215 | self.opening_momentum = [ [xmom0, ymom0], [xmom1, ymom1] ] |
---|
| 1216 | |
---|
| 1217 | |
---|
| 1218 | # Print something |
---|
| 1219 | s = 'Culvert Effective Length = %.2f m' %(self.length) |
---|
| 1220 | log_to_file(self.log_filename, s) |
---|
| 1221 | |
---|
| 1222 | s = 'Culvert Direction is %s\n' %str(self.vector) |
---|
| 1223 | log_to_file(self.log_filename, s) |
---|
| 1224 | |
---|
| 1225 | |
---|
| 1226 | def __call__(self, domain): |
---|
| 1227 | |
---|
| 1228 | log_filename = self.log_filename |
---|
| 1229 | |
---|
| 1230 | # Time stuff |
---|
| 1231 | time = domain.get_time() |
---|
| 1232 | |
---|
| 1233 | # Short hand |
---|
| 1234 | dq = domain.quantities |
---|
| 1235 | |
---|
| 1236 | |
---|
| 1237 | update = False |
---|
| 1238 | if self.update_interval is None: |
---|
| 1239 | update = True |
---|
| 1240 | delta_t = domain.timestep # Next timestep has been computed in domain.py |
---|
| 1241 | else: |
---|
| 1242 | if time - self.last_update > self.update_interval or time == 0.0: |
---|
| 1243 | update = True |
---|
| 1244 | delta_t = self.update_interval |
---|
| 1245 | |
---|
| 1246 | s = '\nTime = %.2f, delta_t = %f' %(time, delta_t) |
---|
| 1247 | if hasattr(self, 'log_filename'): |
---|
| 1248 | log_to_file(log_filename, s) |
---|
| 1249 | |
---|
| 1250 | |
---|
| 1251 | if update is True: |
---|
| 1252 | self.last_update = time |
---|
| 1253 | |
---|
| 1254 | msg = 'Time did not advance' |
---|
| 1255 | if time > 0.0: assert delta_t > 0.0, msg |
---|
| 1256 | |
---|
| 1257 | |
---|
| 1258 | # Get average water depths at each opening |
---|
| 1259 | openings = self.openings # There are two Opening [0] and [1] |
---|
| 1260 | for i, opening in enumerate(openings): |
---|
| 1261 | |
---|
| 1262 | # Compute mean values of selected quantitites in the |
---|
| 1263 | # exchange area in front of the culvert |
---|
| 1264 | |
---|
| 1265 | stage = opening.get_quantity_values(quantity_name='stage') |
---|
| 1266 | w = mean(stage) # Average stage |
---|
| 1267 | |
---|
| 1268 | # Use invert level instead of elevation if specified |
---|
| 1269 | invert_level = self.invert_levels[i] |
---|
| 1270 | if invert_level is not None: |
---|
| 1271 | z = invert_level |
---|
| 1272 | else: |
---|
| 1273 | elevation = opening.get_quantity_values(quantity_name='elevation') |
---|
| 1274 | z = mean(elevation) # Average elevation |
---|
| 1275 | |
---|
| 1276 | # Estimated depth above the culvert inlet |
---|
| 1277 | d = w - z # Used for calculations involving depth |
---|
| 1278 | if d < 0.0: |
---|
| 1279 | # This is possible since w and z are taken at different locations |
---|
| 1280 | #msg = 'D < 0.0: %f' %d |
---|
| 1281 | #raise msg |
---|
| 1282 | d = 0.0 |
---|
| 1283 | |
---|
| 1284 | |
---|
| 1285 | # Ratio of depth to culvert height. |
---|
| 1286 | # If ratio > 1 then culvert is running full |
---|
| 1287 | if self.culvert_type == 'circle': |
---|
| 1288 | ratio = d/self.diameter |
---|
| 1289 | else: |
---|
| 1290 | ratio = d/self.height |
---|
| 1291 | opening.ratio = ratio |
---|
| 1292 | |
---|
| 1293 | |
---|
| 1294 | # Average measures of energy in front of this opening |
---|
| 1295 | |
---|
| 1296 | id = [self.enquiry_indices[i]] |
---|
| 1297 | stage = dq['stage'].get_values(location='centroids', |
---|
| 1298 | indices=id) |
---|
| 1299 | elevation = dq['elevation'].get_values(location='centroids', |
---|
| 1300 | indices=id) |
---|
| 1301 | xmomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 1302 | indices=id) |
---|
| 1303 | ymomentum = dq['xmomentum'].get_values(location='centroids', |
---|
| 1304 | indices=id) |
---|
| 1305 | depth = stage-elevation |
---|
| 1306 | if depth > 0.0: |
---|
| 1307 | u = xmomentum/(depth + velocity_protection/depth) |
---|
| 1308 | v = ymomentum/(depth + velocity_protection/depth) |
---|
| 1309 | else: |
---|
| 1310 | u = v = 0.0 |
---|
| 1311 | |
---|
| 1312 | |
---|
| 1313 | opening.total_energy = 0.5*(u*u + v*v)/g + stage |
---|
| 1314 | #print 'Et = %.3f m' %opening.total_energy |
---|
| 1315 | |
---|
| 1316 | # Store current average stage and depth with each opening object |
---|
| 1317 | opening.depth = d |
---|
| 1318 | opening.depth_trigger = d # Use this for now |
---|
| 1319 | opening.stage = w |
---|
| 1320 | opening.elevation = z |
---|
| 1321 | |
---|
| 1322 | |
---|
| 1323 | ################# End of the FOR loop ################################################ |
---|
| 1324 | |
---|
| 1325 | # We now need to deal with each opening individually |
---|
| 1326 | |
---|
| 1327 | # Determine flow direction based on total energy difference |
---|
| 1328 | delta_Et = openings[0].total_energy - openings[1].total_energy |
---|
| 1329 | |
---|
| 1330 | if delta_Et > 0: |
---|
| 1331 | #print 'Flow U/S ---> D/S' |
---|
| 1332 | inlet = openings[0] |
---|
| 1333 | outlet = openings[1] |
---|
| 1334 | |
---|
| 1335 | inlet.momentum = self.opening_momentum[0] |
---|
| 1336 | outlet.momentum = self.opening_momentum[1] |
---|
| 1337 | |
---|
| 1338 | else: |
---|
| 1339 | #print 'Flow D/S ---> U/S' |
---|
| 1340 | inlet = openings[1] |
---|
| 1341 | outlet = openings[0] |
---|
| 1342 | |
---|
| 1343 | inlet.momentum = self.opening_momentum[1] |
---|
| 1344 | outlet.momentum = self.opening_momentum[0] |
---|
| 1345 | |
---|
| 1346 | delta_Et = -delta_Et |
---|
| 1347 | |
---|
| 1348 | self.inlet = inlet |
---|
| 1349 | self.outlet = outlet |
---|
| 1350 | |
---|
| 1351 | msg = 'Total energy difference is negative' |
---|
| 1352 | assert delta_Et > 0.0, msg |
---|
| 1353 | |
---|
| 1354 | delta_h = inlet.stage - outlet.stage |
---|
| 1355 | delta_z = inlet.elevation - outlet.elevation |
---|
| 1356 | culvert_slope = (delta_z/self.length) |
---|
| 1357 | |
---|
| 1358 | if culvert_slope < 0.0: |
---|
| 1359 | # Adverse gradient - flow is running uphill |
---|
| 1360 | # Flow will be purely controlled by uphill outlet face |
---|
| 1361 | if self.verbose is True: |
---|
| 1362 | print 'WARNING: Flow is running uphill. Watch Out!', inlet.elevation, outlet.elevation |
---|
| 1363 | |
---|
| 1364 | |
---|
| 1365 | s = 'Delta total energy = %.3f' %(delta_Et) |
---|
| 1366 | log_to_file(log_filename, s) |
---|
| 1367 | |
---|
| 1368 | |
---|
| 1369 | # Calculate discharge for one barrel and set inlet.rate and outlet.rate |
---|
| 1370 | Q, barrel_velocity, culvert_outlet_depth = self.culvert_routine(self, inlet, outlet, delta_Et, g) |
---|
| 1371 | |
---|
| 1372 | # Adjust discharge for multiple barrels |
---|
| 1373 | Q *= self.number_of_barrels |
---|
| 1374 | |
---|
| 1375 | # Compute barrel momentum |
---|
| 1376 | barrel_momentum = barrel_velocity*culvert_outlet_depth |
---|
| 1377 | |
---|
| 1378 | s = 'Barrel velocity = %f' %barrel_velocity |
---|
| 1379 | log_to_file(log_filename, s) |
---|
| 1380 | |
---|
| 1381 | # Compute momentum vector at outlet |
---|
| 1382 | outlet_mom_x, outlet_mom_y = self.vector * barrel_momentum |
---|
| 1383 | |
---|
| 1384 | s = 'Directional momentum = (%f, %f)' %(outlet_mom_x, outlet_mom_y) |
---|
| 1385 | log_to_file(log_filename, s) |
---|
| 1386 | |
---|
| 1387 | # Log timeseries to file |
---|
| 1388 | fid = open(self.timeseries_filename, 'a') |
---|
| 1389 | fid.write('%f, %f, %f, %f, %f\n'\ |
---|
| 1390 | %(time, |
---|
| 1391 | openings[0].total_energy, |
---|
| 1392 | openings[1].total_energy, |
---|
| 1393 | barrel_velocity, |
---|
| 1394 | Q)) |
---|
| 1395 | fid.close() |
---|
| 1396 | |
---|
| 1397 | # Update momentum |
---|
| 1398 | |
---|
| 1399 | if delta_t > 0.0: |
---|
| 1400 | xmomentum_rate = outlet_mom_x - outlet.momentum[0].value |
---|
| 1401 | xmomentum_rate /= delta_t |
---|
| 1402 | |
---|
| 1403 | ymomentum_rate = outlet_mom_y - outlet.momentum[1].value |
---|
| 1404 | ymomentum_rate /= delta_t |
---|
| 1405 | |
---|
| 1406 | s = 'X Y MOM_RATE = (%f, %f) ' %(xmomentum_rate, ymomentum_rate) |
---|
| 1407 | log_to_file(log_filename, s) |
---|
| 1408 | else: |
---|
| 1409 | xmomentum_rate = ymomentum_rate = 0.0 |
---|
| 1410 | |
---|
| 1411 | |
---|
| 1412 | # Set momentum rates for outlet jet |
---|
| 1413 | outlet.momentum[0].rate = xmomentum_rate |
---|
| 1414 | outlet.momentum[1].rate = ymomentum_rate |
---|
| 1415 | |
---|
| 1416 | # Remember this value for next step (IMPORTANT) |
---|
| 1417 | outlet.momentum[0].value = outlet_mom_x |
---|
| 1418 | outlet.momentum[1].value = outlet_mom_y |
---|
| 1419 | |
---|
| 1420 | if int(domain.time*100) % 100 == 0: |
---|
| 1421 | s = 'T=%.5f, Culvert Discharge = %.3f f'\ |
---|
| 1422 | %(time, Q) |
---|
| 1423 | s += ' Depth= %0.3f Momentum = (%0.3f, %0.3f)'\ |
---|
| 1424 | %(culvert_outlet_depth, outlet_mom_x,outlet_mom_y) |
---|
| 1425 | s += ' Momentum rate: (%.4f, %.4f)'\ |
---|
| 1426 | %(xmomentum_rate, ymomentum_rate) |
---|
| 1427 | s+='Outlet Vel= %.3f'\ |
---|
| 1428 | %(barrel_velocity) |
---|
| 1429 | log_to_file(log_filename, s) |
---|
| 1430 | |
---|
| 1431 | # Store value of time |
---|
| 1432 | self.last_time = time |
---|
| 1433 | |
---|
| 1434 | |
---|
| 1435 | |
---|
| 1436 | # Execute flow term for each opening |
---|
| 1437 | # This is where Inflow objects are evaluated and update the domain |
---|
| 1438 | for opening in self.openings: |
---|
| 1439 | opening(domain) |
---|
| 1440 | |
---|
| 1441 | # Execute momentum terms |
---|
| 1442 | # This is where Inflow objects are evaluated and update the domain |
---|
| 1443 | self.outlet.momentum[0](domain) |
---|
| 1444 | self.outlet.momentum[1](domain) |
---|
| 1445 | |
---|
| 1446 | |
---|
| 1447 | |
---|
| 1448 | Culvert_flow = Culvert_flow_general |
---|