[5436] | 1 | """Collection of culvert routines for use with Culvert_flow in culvert_class |
---|
| 2 | |
---|
| 3 | Usage: |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | |
---|
| 7 | """ |
---|
| 8 | |
---|
[6121] | 9 | #NOTE: |
---|
[6553] | 10 | # Inlet control: Delta_total_energy > inlet_specific_energy |
---|
| 11 | # Outlet control: Delta_total_energy < inlet_specific_energy |
---|
| 12 | # where total energy is (w + 0.5*v^2/g) and |
---|
| 13 | # specific energy is (h + 0.5*v^2/g) |
---|
[6121] | 14 | |
---|
| 15 | |
---|
[5436] | 16 | from math import pi, sqrt, sin, cos |
---|
| 17 | |
---|
| 18 | |
---|
[6553] | 19 | def boyd_generalised_culvert_model(inlet_depth, |
---|
| 20 | outlet_depth, |
---|
| 21 | inlet_specific_energy, |
---|
| 22 | delta_total_energy, |
---|
| 23 | g, |
---|
| 24 | culvert_length=0.0, |
---|
| 25 | culvert_width=0.0, |
---|
| 26 | culvert_height=0.0, |
---|
| 27 | culvert_type='box', |
---|
| 28 | manning=0.0, |
---|
| 29 | sum_loss=0.0, |
---|
[6689] | 30 | max_velocity=10.0, |
---|
[6553] | 31 | log_filename=None): |
---|
[5436] | 32 | |
---|
[6553] | 33 | """Boyd's generalisation of the US department of transportation culvert |
---|
| 34 | model |
---|
| 35 | |
---|
| 36 | The quantity of flow passing through a culvert is controlled by many factors |
---|
| 37 | It could be that the culvert is controlled by the inlet only, with it |
---|
| 38 | being unsubmerged this is effectively equivalent to the weir Equation |
---|
| 39 | Else the culvert could be controlled by the inlet, with it being |
---|
| 40 | submerged, this is effectively the Orifice Equation |
---|
| 41 | Else it may be controlled by down stream conditions where depending on |
---|
| 42 | the down stream depth, the momentum in the culvert etc. flow is controlled |
---|
[5436] | 43 | """ |
---|
| 44 | |
---|
| 45 | from anuga.utilities.system_tools import log_to_file |
---|
| 46 | from anuga.config import velocity_protection |
---|
| 47 | from anuga.utilities.numerical_tools import safe_acos as acos |
---|
| 48 | |
---|
[6533] | 49 | |
---|
[6689] | 50 | if inlet_depth > 0.1: #this value was 0.01: |
---|
[6553] | 51 | # Water has risen above inlet |
---|
| 52 | |
---|
| 53 | if log_filename is not None: |
---|
| 54 | s = 'Specific energy = %f m' % inlet_specific_energy |
---|
[6128] | 55 | log_to_file(log_filename, s) |
---|
[5436] | 56 | |
---|
[6553] | 57 | msg = 'Specific energy at inlet is negative' |
---|
| 58 | assert inlet_specific_energy >= 0.0, msg |
---|
[5436] | 59 | |
---|
| 60 | |
---|
[6553] | 61 | if culvert_type == 'circle': |
---|
| 62 | # Round culvert (use width as diameter) |
---|
| 63 | diameter = culvert_width |
---|
| 64 | |
---|
[5436] | 65 | # Calculate flows for inlet control |
---|
[6553] | 66 | Q_inlet_unsubmerged = 0.421*g**0.5*diameter**0.87*inlet_specific_energy**1.63 # Inlet Ctrl Inlet Unsubmerged |
---|
| 67 | Q_inlet_submerged = 0.530*g**0.5*diameter**1.87*inlet_specific_energy**0.63 # Inlet Ctrl Inlet Submerged |
---|
[5436] | 68 | |
---|
[6553] | 69 | if log_filename is not None: |
---|
| 70 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' % (Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
[6128] | 71 | log_to_file(log_filename, s) |
---|
[5436] | 72 | |
---|
[6553] | 73 | |
---|
| 74 | # FIXME(Ole): Are these functions really for inlet control? |
---|
[5436] | 75 | if Q_inlet_unsubmerged < Q_inlet_submerged: |
---|
| 76 | Q = Q_inlet_unsubmerged |
---|
[6553] | 77 | alpha = acos(1 - inlet_depth/diameter) |
---|
[5436] | 78 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
[6553] | 79 | outlet_culvert_depth = inlet_depth |
---|
[5436] | 80 | case = 'Inlet unsubmerged' |
---|
| 81 | else: |
---|
| 82 | Q = Q_inlet_submerged |
---|
| 83 | flow_area = (diameter/2)**2 * pi |
---|
| 84 | outlet_culvert_depth = diameter |
---|
| 85 | case = 'Inlet submerged' |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | |
---|
[6553] | 89 | if delta_total_energy < inlet_specific_energy: |
---|
[5436] | 90 | # Calculate flows for outlet control |
---|
[6553] | 91 | |
---|
[5436] | 92 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
[6553] | 93 | if outlet_depth > diameter: # The Outlet is Submerged |
---|
[5436] | 94 | outlet_culvert_depth=diameter |
---|
| 95 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
| 96 | perimeter = diameter * pi |
---|
| 97 | case = 'Outlet submerged' |
---|
[6553] | 98 | elif outlet_depth==0.0: |
---|
| 99 | outlet_culvert_depth=inlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
| 100 | alpha = acos(1 - inlet_depth/diameter) |
---|
[5436] | 101 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
| 102 | perimeter = alpha*diameter |
---|
| 103 | |
---|
| 104 | case = 'Outlet depth is zero' |
---|
| 105 | else: # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
[6553] | 106 | outlet_culvert_depth=outlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
| 107 | alpha = acos(1 - outlet_depth/diameter) |
---|
[5436] | 108 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
| 109 | perimeter = alpha*diameter |
---|
| 110 | case = 'Outlet is open channel flow' |
---|
| 111 | |
---|
[5437] | 112 | hyd_rad = flow_area/perimeter |
---|
[6128] | 113 | |
---|
[6553] | 114 | if log_filename is not None: |
---|
[6128] | 115 | s = 'hydraulic radius at outlet = %f' %hyd_rad |
---|
| 116 | log_to_file(log_filename, s) |
---|
[5436] | 117 | |
---|
[5437] | 118 | # Outlet control velocity using tail water |
---|
[6689] | 119 | culvert_velocity = sqrt(delta_total_energy/((sum_loss/2/g)+(manning**2*culvert_length)/hyd_rad**1.33333)) |
---|
[5437] | 120 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
[6128] | 121 | |
---|
[6553] | 122 | if log_filename is not None: |
---|
[6128] | 123 | s = 'Q_outlet_tailwater = %.6f' %Q_outlet_tailwater |
---|
| 124 | log_to_file(log_filename, s) |
---|
| 125 | |
---|
[5437] | 126 | Q = min(Q, Q_outlet_tailwater) |
---|
[6128] | 127 | else: |
---|
| 128 | pass |
---|
| 129 | #FIXME(Ole): What about inlet control? |
---|
[5437] | 130 | |
---|
| 131 | |
---|
[5436] | 132 | else: |
---|
| 133 | # Box culvert (rectangle or square) |
---|
| 134 | |
---|
| 135 | # Calculate flows for inlet control |
---|
[6553] | 136 | height = culvert_height |
---|
| 137 | width = culvert_width |
---|
[5436] | 138 | |
---|
[6553] | 139 | Q_inlet_unsubmerged = 0.540*g**0.5*width*inlet_specific_energy**1.50 # Flow based on Inlet Ctrl Inlet Unsubmerged |
---|
| 140 | Q_inlet_submerged = 0.702*g**0.5*width*height**0.89*inlet_specific_energy**0.61 # Flow based on Inlet Ctrl Inlet Submerged |
---|
[5436] | 141 | |
---|
[6553] | 142 | if log_filename is not None: |
---|
[6128] | 143 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' %(Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
| 144 | log_to_file(log_filename, s) |
---|
[5436] | 145 | |
---|
[6553] | 146 | |
---|
| 147 | # FIXME(Ole): Are these functions really for inlet control? |
---|
[5436] | 148 | if Q_inlet_unsubmerged < Q_inlet_submerged: |
---|
| 149 | Q = Q_inlet_unsubmerged |
---|
[6553] | 150 | flow_area = width*inlet_depth |
---|
| 151 | outlet_culvert_depth = inlet_depth |
---|
[5436] | 152 | case = 'Inlet unsubmerged' |
---|
| 153 | else: |
---|
| 154 | Q = Q_inlet_submerged |
---|
| 155 | flow_area = width*height |
---|
| 156 | outlet_culvert_depth = height |
---|
| 157 | case = 'Inlet submerged' |
---|
| 158 | |
---|
[6553] | 159 | if delta_total_energy < inlet_specific_energy: |
---|
[5436] | 160 | # Calculate flows for outlet control |
---|
[6553] | 161 | |
---|
[5436] | 162 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
[6553] | 163 | if outlet_depth > height: # The Outlet is Submerged |
---|
[5436] | 164 | outlet_culvert_depth=height |
---|
| 165 | flow_area=width*height # Cross sectional area of flow in the culvert |
---|
| 166 | perimeter=2.0*(width+height) |
---|
| 167 | case = 'Outlet submerged' |
---|
[6553] | 168 | elif outlet_depth==0.0: |
---|
| 169 | outlet_culvert_depth=inlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
| 170 | flow_area=width*inlet_depth |
---|
| 171 | perimeter=(width+2.0*inlet_depth) |
---|
[5436] | 172 | case = 'Outlet depth is zero' |
---|
| 173 | else: # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
[6553] | 174 | outlet_culvert_depth=outlet_depth |
---|
| 175 | flow_area=width*outlet_depth |
---|
| 176 | perimeter=(width+2.0*outlet_depth) |
---|
[5436] | 177 | case = 'Outlet is open channel flow' |
---|
| 178 | |
---|
[5437] | 179 | hyd_rad = flow_area/perimeter |
---|
[6128] | 180 | |
---|
[6553] | 181 | if log_filename is not None: |
---|
| 182 | s = 'hydraulic radius at outlet = %f' % hyd_rad |
---|
[6128] | 183 | log_to_file(log_filename, s) |
---|
[5436] | 184 | |
---|
[5437] | 185 | # Outlet control velocity using tail water |
---|
[6689] | 186 | culvert_velocity = sqrt(delta_total_energy/((sum_loss/2/g)+(manning**2*culvert_length)/hyd_rad**1.33333)) |
---|
[5437] | 187 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
[5436] | 188 | |
---|
[6553] | 189 | if log_filename is not None: |
---|
| 190 | s = 'Q_outlet_tailwater = %.6f' % Q_outlet_tailwater |
---|
[6128] | 191 | log_to_file(log_filename, s) |
---|
[5437] | 192 | Q = min(Q, Q_outlet_tailwater) |
---|
[6128] | 193 | else: |
---|
| 194 | pass |
---|
| 195 | #FIXME(Ole): What about inlet control? |
---|
[5436] | 196 | |
---|
[6553] | 197 | |
---|
[5437] | 198 | # Common code for circle and square geometries |
---|
[6553] | 199 | if log_filename is not None: |
---|
| 200 | log_to_file(log_filename, 'Case: "%s"' % case) |
---|
[6128] | 201 | |
---|
[6553] | 202 | if log_filename is not None: |
---|
| 203 | s = 'Flow Rate Control = %f' % Q |
---|
[6128] | 204 | log_to_file(log_filename, s) |
---|
[5436] | 205 | |
---|
[6533] | 206 | |
---|
[6553] | 207 | culv_froude=sqrt(Q**2*width/(g*flow_area**3)) |
---|
[6128] | 208 | |
---|
[6553] | 209 | if log_filename is not None: |
---|
| 210 | s = 'Froude in Culvert = %f' % culv_froude |
---|
[6128] | 211 | log_to_file(log_filename, s) |
---|
[5436] | 212 | |
---|
| 213 | # Determine momentum at the outlet |
---|
| 214 | barrel_velocity = Q/(flow_area + velocity_protection/flow_area) |
---|
[5437] | 215 | |
---|
| 216 | |
---|
[6553] | 217 | else: # inlet_depth < 0.01: |
---|
[5436] | 218 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
[6902] | 219 | |
---|
[6689] | 220 | # Temporary flow limit |
---|
| 221 | if barrel_velocity > max_velocity: |
---|
| 222 | if log_filename is not None: |
---|
| 223 | s = 'Barrel velocity was reduced from = %f m/s to %f m/s' % (barrel_velocity, max_velocity) |
---|
| 224 | log_to_file(log_filename, s) |
---|
[5436] | 225 | |
---|
[6689] | 226 | barrel_velocity = max_velocity |
---|
| 227 | Q = flow_area * barrel_velocity |
---|
| 228 | |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | |
---|
[5436] | 232 | return Q, barrel_velocity, outlet_culvert_depth |
---|
| 233 | |
---|
| 234 | |
---|