1 | """Collection of culvert routines for use with Culvert_flow in culvert_class |
---|
2 | |
---|
3 | Usage: |
---|
4 | |
---|
5 | |
---|
6 | |
---|
7 | """ |
---|
8 | |
---|
9 | #NOTE: |
---|
10 | # Inlet control: Delta_total_energy > inlet_specific_energy |
---|
11 | # Outlet control: Delta_total_energy < inlet_specific_energy |
---|
12 | # where total energy is (w + 0.5*v^2/g) and |
---|
13 | # specific energy is (h + 0.5*v^2/g) |
---|
14 | |
---|
15 | |
---|
16 | from math import pi, sqrt, sin, cos |
---|
17 | |
---|
18 | |
---|
19 | def boyd_generalised_culvert_model(inlet_depth, |
---|
20 | outlet_depth, |
---|
21 | inlet_specific_energy, |
---|
22 | delta_total_energy, |
---|
23 | g, |
---|
24 | culvert_length=0.0, |
---|
25 | culvert_width=0.0, |
---|
26 | culvert_height=0.0, |
---|
27 | culvert_type='box', |
---|
28 | manning=0.0, |
---|
29 | sum_loss=0.0, |
---|
30 | max_velocity=10.0, |
---|
31 | log_filename=None): |
---|
32 | |
---|
33 | """Boyd's generalisation of the US department of transportation culvert |
---|
34 | model |
---|
35 | |
---|
36 | The quantity of flow passing through a culvert is controlled by many factors |
---|
37 | It could be that the culvert is controlled by the inlet only, with it |
---|
38 | being unsubmerged this is effectively equivalent to the weir Equation |
---|
39 | Else the culvert could be controlled by the inlet, with it being |
---|
40 | submerged, this is effectively the Orifice Equation |
---|
41 | Else it may be controlled by down stream conditions where depending on |
---|
42 | the down stream depth, the momentum in the culvert etc. flow is controlled |
---|
43 | """ |
---|
44 | |
---|
45 | from anuga.utilities.system_tools import log_to_file |
---|
46 | from anuga.config import velocity_protection |
---|
47 | from anuga.utilities.numerical_tools import safe_acos as acos |
---|
48 | |
---|
49 | |
---|
50 | if inlet_depth > 0.1: #this value was 0.01: |
---|
51 | # Water has risen above inlet |
---|
52 | |
---|
53 | if log_filename is not None: |
---|
54 | s = 'Specific energy = %f m' % inlet_specific_energy |
---|
55 | log_to_file(log_filename, s) |
---|
56 | |
---|
57 | msg = 'Specific energy at inlet is negative' |
---|
58 | assert inlet_specific_energy >= 0.0, msg |
---|
59 | |
---|
60 | |
---|
61 | if culvert_type == 'circle': |
---|
62 | # Round culvert (use width as diameter) |
---|
63 | diameter = culvert_width |
---|
64 | |
---|
65 | # Calculate flows for inlet control |
---|
66 | Q_inlet_unsubmerged = 0.421*g**0.5*diameter**0.87*inlet_specific_energy**1.63 # Inlet Ctrl Inlet Unsubmerged |
---|
67 | Q_inlet_submerged = 0.530*g**0.5*diameter**1.87*inlet_specific_energy**0.63 # Inlet Ctrl Inlet Submerged |
---|
68 | |
---|
69 | if log_filename is not None: |
---|
70 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' % (Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
71 | log_to_file(log_filename, s) |
---|
72 | |
---|
73 | |
---|
74 | # FIXME(Ole): Are these functions really for inlet control? |
---|
75 | if Q_inlet_unsubmerged < Q_inlet_submerged: |
---|
76 | Q = Q_inlet_unsubmerged |
---|
77 | alpha = acos(1 - inlet_depth/diameter) |
---|
78 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
79 | outlet_culvert_depth = inlet_depth |
---|
80 | case = 'Inlet unsubmerged' |
---|
81 | else: |
---|
82 | Q = Q_inlet_submerged |
---|
83 | flow_area = (diameter/2)**2 * pi |
---|
84 | outlet_culvert_depth = diameter |
---|
85 | case = 'Inlet submerged' |
---|
86 | |
---|
87 | |
---|
88 | |
---|
89 | if delta_total_energy < inlet_specific_energy: |
---|
90 | # Calculate flows for outlet control |
---|
91 | |
---|
92 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
93 | if outlet_depth > diameter: # The Outlet is Submerged |
---|
94 | outlet_culvert_depth=diameter |
---|
95 | flow_area = (diameter/2)**2 * pi # Cross sectional area of flow in the culvert |
---|
96 | perimeter = diameter * pi |
---|
97 | case = 'Outlet submerged' |
---|
98 | elif outlet_depth==0.0: |
---|
99 | outlet_culvert_depth=inlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
100 | alpha = acos(1 - inlet_depth/diameter) |
---|
101 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
102 | perimeter = alpha*diameter |
---|
103 | |
---|
104 | case = 'Outlet depth is zero' |
---|
105 | else: # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
106 | outlet_culvert_depth=outlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
107 | alpha = acos(1 - outlet_depth/diameter) |
---|
108 | flow_area = diameter**2 * (alpha - sin(alpha)*cos(alpha)) |
---|
109 | perimeter = alpha*diameter |
---|
110 | case = 'Outlet is open channel flow' |
---|
111 | |
---|
112 | hyd_rad = flow_area/perimeter |
---|
113 | |
---|
114 | if log_filename is not None: |
---|
115 | s = 'hydraulic radius at outlet = %f' %hyd_rad |
---|
116 | log_to_file(log_filename, s) |
---|
117 | |
---|
118 | # Outlet control velocity using tail water |
---|
119 | culvert_velocity = sqrt(delta_total_energy/((sum_loss/2/g)+(manning**2*culvert_length)/hyd_rad**1.33333)) |
---|
120 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
121 | |
---|
122 | if log_filename is not None: |
---|
123 | s = 'Q_outlet_tailwater = %.6f' %Q_outlet_tailwater |
---|
124 | log_to_file(log_filename, s) |
---|
125 | |
---|
126 | Q = min(Q, Q_outlet_tailwater) |
---|
127 | else: |
---|
128 | pass |
---|
129 | #FIXME(Ole): What about inlet control? |
---|
130 | |
---|
131 | |
---|
132 | else: |
---|
133 | # Box culvert (rectangle or square) |
---|
134 | |
---|
135 | # Calculate flows for inlet control |
---|
136 | height = culvert_height |
---|
137 | width = culvert_width |
---|
138 | |
---|
139 | Q_inlet_unsubmerged = 0.540*g**0.5*width*inlet_specific_energy**1.50 # Flow based on Inlet Ctrl Inlet Unsubmerged |
---|
140 | Q_inlet_submerged = 0.702*g**0.5*width*height**0.89*inlet_specific_energy**0.61 # Flow based on Inlet Ctrl Inlet Submerged |
---|
141 | |
---|
142 | if log_filename is not None: |
---|
143 | s = 'Q_inlet_unsubmerged = %.6f, Q_inlet_submerged = %.6f' %(Q_inlet_unsubmerged, Q_inlet_submerged) |
---|
144 | log_to_file(log_filename, s) |
---|
145 | |
---|
146 | |
---|
147 | # FIXME(Ole): Are these functions really for inlet control? |
---|
148 | if Q_inlet_unsubmerged < Q_inlet_submerged: |
---|
149 | Q = Q_inlet_unsubmerged |
---|
150 | flow_area = width*inlet_depth |
---|
151 | outlet_culvert_depth = inlet_depth |
---|
152 | case = 'Inlet unsubmerged' |
---|
153 | else: |
---|
154 | Q = Q_inlet_submerged |
---|
155 | flow_area = width*height |
---|
156 | outlet_culvert_depth = height |
---|
157 | case = 'Inlet submerged' |
---|
158 | |
---|
159 | if delta_total_energy < inlet_specific_energy: |
---|
160 | # Calculate flows for outlet control |
---|
161 | |
---|
162 | # Determine the depth at the outlet relative to the depth of flow in the Culvert |
---|
163 | if outlet_depth > height: # The Outlet is Submerged |
---|
164 | outlet_culvert_depth=height |
---|
165 | flow_area=width*height # Cross sectional area of flow in the culvert |
---|
166 | perimeter=2.0*(width+height) |
---|
167 | case = 'Outlet submerged' |
---|
168 | elif outlet_depth==0.0: |
---|
169 | outlet_culvert_depth=inlet_depth # For purpose of calculation assume the outlet depth = the inlet depth |
---|
170 | flow_area=width*inlet_depth |
---|
171 | perimeter=(width+2.0*inlet_depth) |
---|
172 | case = 'Outlet depth is zero' |
---|
173 | else: # Here really should use the Culvert Slope to calculate Actual Culvert Depth & Velocity |
---|
174 | outlet_culvert_depth=outlet_depth |
---|
175 | flow_area=width*outlet_depth |
---|
176 | perimeter=(width+2.0*outlet_depth) |
---|
177 | case = 'Outlet is open channel flow' |
---|
178 | |
---|
179 | hyd_rad = flow_area/perimeter |
---|
180 | |
---|
181 | if log_filename is not None: |
---|
182 | s = 'hydraulic radius at outlet = %f' % hyd_rad |
---|
183 | log_to_file(log_filename, s) |
---|
184 | |
---|
185 | # Outlet control velocity using tail water |
---|
186 | culvert_velocity = sqrt(delta_total_energy/((sum_loss/2/g)+(manning**2*culvert_length)/hyd_rad**1.33333)) |
---|
187 | Q_outlet_tailwater = flow_area * culvert_velocity |
---|
188 | |
---|
189 | if log_filename is not None: |
---|
190 | s = 'Q_outlet_tailwater = %.6f' % Q_outlet_tailwater |
---|
191 | log_to_file(log_filename, s) |
---|
192 | Q = min(Q, Q_outlet_tailwater) |
---|
193 | else: |
---|
194 | pass |
---|
195 | #FIXME(Ole): What about inlet control? |
---|
196 | |
---|
197 | |
---|
198 | # Common code for circle and square geometries |
---|
199 | if log_filename is not None: |
---|
200 | log_to_file(log_filename, 'Case: "%s"' % case) |
---|
201 | |
---|
202 | if log_filename is not None: |
---|
203 | s = 'Flow Rate Control = %f' % Q |
---|
204 | log_to_file(log_filename, s) |
---|
205 | |
---|
206 | |
---|
207 | culv_froude=sqrt(Q**2*width/(g*flow_area**3)) |
---|
208 | |
---|
209 | if log_filename is not None: |
---|
210 | s = 'Froude in Culvert = %f' % culv_froude |
---|
211 | log_to_file(log_filename, s) |
---|
212 | |
---|
213 | # Determine momentum at the outlet |
---|
214 | barrel_velocity = Q/(flow_area + velocity_protection/flow_area) |
---|
215 | |
---|
216 | |
---|
217 | else: # inlet_depth < 0.01: |
---|
218 | Q = barrel_velocity = outlet_culvert_depth = 0.0 |
---|
219 | # Temporary flow limit |
---|
220 | if barrel_velocity > max_velocity: |
---|
221 | if log_filename is not None: |
---|
222 | s = 'Barrel velocity was reduced from = %f m/s to %f m/s' % (barrel_velocity, max_velocity) |
---|
223 | log_to_file(log_filename, s) |
---|
224 | |
---|
225 | barrel_velocity = max_velocity |
---|
226 | Q = flow_area * barrel_velocity |
---|
227 | |
---|
228 | |
---|
229 | |
---|
230 | |
---|
231 | return Q, barrel_velocity, outlet_culvert_depth |
---|
232 | |
---|
233 | |
---|