[6076] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | import unittest |
---|
| 5 | import os.path |
---|
[6104] | 6 | import sys |
---|
[6076] | 7 | |
---|
[6102] | 8 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
| 9 | from anuga.utilities.polygon import Polygon_function |
---|
| 10 | |
---|
[6076] | 11 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
[6102] | 12 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
[6076] | 13 | |
---|
| 14 | from anuga.shallow_water import Domain, Reflective_boundary,\ |
---|
| 15 | Dirichlet_boundary,\ |
---|
| 16 | Transmissive_boundary, Time_boundary |
---|
| 17 | |
---|
[6123] | 18 | from anuga.culvert_flows.culvert_class import Culvert_flow, Culvert_flow_rating, Culvert_flow_energy |
---|
[6076] | 19 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
| 20 | |
---|
| 21 | from math import pi,pow,sqrt |
---|
| 22 | |
---|
[6304] | 23 | import numpy as num |
---|
[6076] | 24 | |
---|
| 25 | |
---|
| 26 | class Test_Culvert(unittest.TestCase): |
---|
| 27 | def setUp(self): |
---|
| 28 | pass |
---|
| 29 | |
---|
| 30 | def tearDown(self): |
---|
| 31 | pass |
---|
| 32 | |
---|
| 33 | |
---|
[6103] | 34 | def test_that_culvert_runs_rating(self): |
---|
| 35 | """test_that_culvert_runs_rating |
---|
[6076] | 36 | |
---|
[6103] | 37 | This test exercises the culvert and checks values outside rating curve |
---|
| 38 | are dealt with |
---|
[6076] | 39 | """ |
---|
| 40 | |
---|
| 41 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
| 42 | |
---|
| 43 | length = 40. |
---|
| 44 | width = 5. |
---|
| 45 | |
---|
| 46 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
| 47 | |
---|
| 48 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 49 | int(width/dy), |
---|
| 50 | len1=length, |
---|
| 51 | len2=width) |
---|
| 52 | domain = Domain(points, vertices, boundary) |
---|
| 53 | domain.set_name('Test_culvert') # Output name |
---|
| 54 | domain.set_default_order(2) |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | #---------------------------------------------------------------------- |
---|
| 58 | # Setup initial conditions |
---|
| 59 | #---------------------------------------------------------------------- |
---|
| 60 | |
---|
| 61 | def topography(x, y): |
---|
| 62 | """Set up a weir |
---|
| 63 | |
---|
| 64 | A culvert will connect either side |
---|
| 65 | """ |
---|
| 66 | # General Slope of Topography |
---|
| 67 | z=-x/1000 |
---|
| 68 | |
---|
| 69 | N = len(x) |
---|
| 70 | for i in range(N): |
---|
| 71 | |
---|
| 72 | # Sloping Embankment Across Channel |
---|
| 73 | if 5.0 < x[i] < 10.1: |
---|
[6144] | 74 | # Cut Out Segment for Culvert face |
---|
[6076] | 75 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
| 76 | z[i]=z[i] |
---|
| 77 | else: |
---|
| 78 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
| 79 | if 10.0 < x[i] < 12.1: |
---|
| 80 | z[i] += 2.5 # Flat Crest of Embankment |
---|
| 81 | if 12.0 < x[i] < 14.5: |
---|
[6144] | 82 | # Cut Out Segment for Culvert face |
---|
[6076] | 83 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
| 84 | z[i]=z[i] |
---|
| 85 | else: |
---|
| 86 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | return z |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | domain.set_quantity('elevation', topography) |
---|
| 93 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 94 | domain.set_quantity('stage', |
---|
| 95 | expression='elevation') # Dry initial condition |
---|
| 96 | |
---|
| 97 | filename=os.path.join(path, 'example_rating_curve.csv') |
---|
[6123] | 98 | culvert = Culvert_flow(domain, |
---|
[6076] | 99 | culvert_description_filename=filename, |
---|
| 100 | end_point0=[9.0, 2.5], |
---|
| 101 | end_point1=[13.0, 2.5], |
---|
[6128] | 102 | use_velocity_head=True, |
---|
[6076] | 103 | verbose=False) |
---|
| 104 | |
---|
| 105 | domain.forcing_terms.append(culvert) |
---|
| 106 | |
---|
| 107 | |
---|
| 108 | #----------------------------------------------------------------------- |
---|
| 109 | # Setup boundary conditions |
---|
| 110 | #----------------------------------------------------------------------- |
---|
| 111 | |
---|
| 112 | # Inflow based on Flow Depth and Approaching Momentum |
---|
| 113 | Bi = Dirichlet_boundary([0.0, 0.0, 0.0]) |
---|
| 114 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 115 | Bo = Dirichlet_boundary([-5, 0, 0]) # Outflow |
---|
[6103] | 116 | |
---|
| 117 | # Upstream and downstream conditions that will exceed the rating curve |
---|
| 118 | # I.e produce delta_h outside the range [0, 10] specified in the the |
---|
| 119 | # file example_rating_curve.csv |
---|
[6150] | 120 | Btus = Time_boundary(domain, lambda t: [100*num.sin(2*pi*(t-4)/10), 0.0, 0.0]) |
---|
| 121 | Btds = Time_boundary(domain, lambda t: [-5*(num.cos(2*pi*(t-4)/20)), 0.0, 0.0]) |
---|
[6076] | 122 | domain.set_boundary({'left': Btus, 'right': Btds, 'top': Br, 'bottom': Br}) |
---|
| 123 | |
---|
| 124 | |
---|
| 125 | #----------------------------------------------------------------------- |
---|
| 126 | # Evolve system through time |
---|
| 127 | #----------------------------------------------------------------------- |
---|
| 128 | |
---|
[6104] | 129 | min_delta_w = sys.maxint |
---|
| 130 | max_delta_w = -min_delta_w |
---|
[6076] | 131 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
[6104] | 132 | delta_w = culvert.inlet.stage - culvert.outlet.stage |
---|
| 133 | |
---|
| 134 | if delta_w > max_delta_w: max_delta_w = delta_w |
---|
| 135 | if delta_w < min_delta_w: min_delta_w = delta_w |
---|
| 136 | |
---|
[6076] | 137 | #print domain.timestepping_statistics() |
---|
| 138 | pass |
---|
| 139 | |
---|
[6104] | 140 | # Check that extreme values in rating curve have been exceeded |
---|
| 141 | # so that we know that condition has been exercised |
---|
| 142 | assert min_delta_w < 0 |
---|
| 143 | assert max_delta_w > 10 |
---|
| 144 | |
---|
[6076] | 145 | |
---|
[6121] | 146 | def test_that_culvert_dry_bed_rating_does_not_produce_flow(self): |
---|
[6076] | 147 | """test_that_culvert_in_dry_bed_does_not_produce_flow(self): |
---|
| 148 | |
---|
| 149 | Test that culvert on a sloping dry bed doesn't produce flows |
---|
| 150 | although there will be a 'pressure' head due to delta_w > 0 |
---|
[6079] | 151 | |
---|
| 152 | This one is using the rating curve variant |
---|
[6076] | 153 | """ |
---|
| 154 | |
---|
| 155 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
| 156 | |
---|
| 157 | length = 40. |
---|
| 158 | width = 5. |
---|
| 159 | |
---|
| 160 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
| 161 | |
---|
| 162 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 163 | int(width/dy), |
---|
| 164 | len1=length, |
---|
| 165 | len2=width) |
---|
| 166 | domain = Domain(points, vertices, boundary) |
---|
| 167 | domain.set_name('Test_culvert_dry') # Output name |
---|
| 168 | domain.set_default_order(2) |
---|
| 169 | |
---|
| 170 | |
---|
| 171 | #---------------------------------------------------------------------- |
---|
| 172 | # Setup initial conditions |
---|
| 173 | #---------------------------------------------------------------------- |
---|
| 174 | |
---|
| 175 | def topography(x, y): |
---|
| 176 | """Set up a weir |
---|
| 177 | |
---|
| 178 | A culvert will connect either side |
---|
| 179 | """ |
---|
| 180 | # General Slope of Topography |
---|
| 181 | z=-x/1000 |
---|
| 182 | |
---|
| 183 | N = len(x) |
---|
| 184 | for i in range(N): |
---|
| 185 | |
---|
| 186 | # Sloping Embankment Across Channel |
---|
| 187 | if 5.0 < x[i] < 10.1: |
---|
[6144] | 188 | # Cut Out Segment for Culvert face |
---|
[6076] | 189 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
| 190 | z[i]=z[i] |
---|
| 191 | else: |
---|
| 192 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
| 193 | if 10.0 < x[i] < 12.1: |
---|
| 194 | z[i] += 2.5 # Flat Crest of Embankment |
---|
| 195 | if 12.0 < x[i] < 14.5: |
---|
[6144] | 196 | # Cut Out Segment for Culvert face |
---|
[6076] | 197 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
| 198 | z[i]=z[i] |
---|
| 199 | else: |
---|
| 200 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | return z |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | domain.set_quantity('elevation', topography) |
---|
| 207 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 208 | domain.set_quantity('stage', |
---|
| 209 | expression='elevation') # Dry initial condition |
---|
| 210 | |
---|
| 211 | |
---|
| 212 | filename = os.path.join(path, 'example_rating_curve.csv') |
---|
[6123] | 213 | culvert = Culvert_flow(domain, |
---|
[6076] | 214 | culvert_description_filename=filename, |
---|
| 215 | end_point0=[9.0, 2.5], |
---|
| 216 | end_point1=[13.0, 2.5], |
---|
| 217 | verbose=False) |
---|
| 218 | |
---|
| 219 | domain.forcing_terms.append(culvert) |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | #----------------------------------------------------------------------- |
---|
| 223 | # Setup boundary conditions |
---|
| 224 | #----------------------------------------------------------------------- |
---|
| 225 | |
---|
| 226 | # Inflow based on Flow Depth and Approaching Momentum |
---|
| 227 | |
---|
| 228 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 229 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | #----------------------------------------------------------------------- |
---|
| 233 | # Evolve system through time |
---|
| 234 | #----------------------------------------------------------------------- |
---|
| 235 | |
---|
| 236 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
| 237 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
[6079] | 238 | #print domain.timestepping_statistics() |
---|
[6076] | 239 | new_volume = domain.get_quantity('stage').get_integral() |
---|
| 240 | |
---|
| 241 | msg = 'Total volume has changed' |
---|
[6150] | 242 | assert num.allclose(new_volume, ref_volume), msg |
---|
[6076] | 243 | pass |
---|
| 244 | |
---|
| 245 | |
---|
[6121] | 246 | |
---|
[6128] | 247 | def test_that_culvert_rating_limits_flow_in_shallow_inlet_condition(self): |
---|
[6121] | 248 | """test_that_culvert_rating_limits_flow_in_shallow_inlet_condition |
---|
| 249 | |
---|
| 250 | Test that culvert on a sloping dry bed limits flows when very little water |
---|
| 251 | is present at inlet |
---|
[6079] | 252 | |
---|
[6121] | 253 | This one is using the rating curve variant |
---|
| 254 | """ |
---|
| 255 | |
---|
| 256 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
[6079] | 257 | |
---|
[6121] | 258 | length = 40. |
---|
| 259 | width = 5. |
---|
| 260 | |
---|
| 261 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
| 262 | |
---|
| 263 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 264 | int(width/dy), |
---|
| 265 | len1=length, |
---|
| 266 | len2=width) |
---|
| 267 | domain = Domain(points, vertices, boundary) |
---|
| 268 | domain.set_name('Test_culvert_shallow') # Output name |
---|
| 269 | domain.set_default_order(2) |
---|
| 270 | |
---|
| 271 | |
---|
| 272 | #---------------------------------------------------------------------- |
---|
| 273 | # Setup initial conditions |
---|
| 274 | #---------------------------------------------------------------------- |
---|
| 275 | |
---|
| 276 | def topography(x, y): |
---|
| 277 | """Set up a weir |
---|
| 278 | |
---|
| 279 | A culvert will connect either side |
---|
| 280 | """ |
---|
| 281 | # General Slope of Topography |
---|
| 282 | z=-x/1000 |
---|
| 283 | |
---|
| 284 | N = len(x) |
---|
| 285 | for i in range(N): |
---|
| 286 | |
---|
| 287 | # Sloping Embankment Across Channel |
---|
| 288 | if 5.0 < x[i] < 10.1: |
---|
[6144] | 289 | # Cut Out Segment for Culvert face |
---|
[6121] | 290 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
| 291 | z[i]=z[i] |
---|
| 292 | else: |
---|
| 293 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
| 294 | if 10.0 < x[i] < 12.1: |
---|
| 295 | z[i] += 2.5 # Flat Crest of Embankment |
---|
| 296 | if 12.0 < x[i] < 14.5: |
---|
[6144] | 297 | # Cut Out Segment for Culvert face |
---|
[6121] | 298 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
| 299 | z[i]=z[i] |
---|
| 300 | else: |
---|
| 301 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | return z |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | domain.set_quantity('elevation', topography) |
---|
| 308 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 309 | domain.set_quantity('stage', |
---|
[6144] | 310 | expression='elevation + 0.1') # Shallow initial condition |
---|
[6121] | 311 | |
---|
| 312 | |
---|
| 313 | filename = os.path.join(path, 'example_rating_curve.csv') |
---|
[6123] | 314 | culvert = Culvert_flow(domain, |
---|
| 315 | culvert_description_filename=filename, |
---|
| 316 | end_point0=[9.0, 2.5], |
---|
| 317 | end_point1=[13.0, 2.5], |
---|
[6142] | 318 | trigger_depth=0.01, |
---|
[6123] | 319 | verbose=False) |
---|
[6121] | 320 | |
---|
| 321 | domain.forcing_terms.append(culvert) |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | #----------------------------------------------------------------------- |
---|
| 325 | # Setup boundary conditions |
---|
| 326 | #----------------------------------------------------------------------- |
---|
| 327 | |
---|
| 328 | # Inflow based on Flow Depth and Approaching Momentum |
---|
| 329 | |
---|
| 330 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 331 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
| 332 | |
---|
| 333 | |
---|
[6144] | 334 | |
---|
[6121] | 335 | #----------------------------------------------------------------------- |
---|
| 336 | # Evolve system through time |
---|
| 337 | #----------------------------------------------------------------------- |
---|
| 338 | |
---|
| 339 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
[6128] | 340 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
| 341 | #print domain.timestepping_statistics() |
---|
[6121] | 342 | new_volume = domain.get_quantity('stage').get_integral() |
---|
| 343 | |
---|
| 344 | msg = 'Total volume has changed: Is %.2f m^3 should have been %.2f m^3'\ |
---|
| 345 | % (new_volume, ref_volume) |
---|
[6150] | 346 | if not num.allclose(new_volume, ref_volume): |
---|
[6142] | 347 | print msg |
---|
[6150] | 348 | assert num.allclose(new_volume, ref_volume), msg |
---|
[6144] | 349 | |
---|
| 350 | |
---|
| 351 | |
---|
| 352 | # Now try this for a range of other depths |
---|
| 353 | for depth in [1.0, 0.5, 0.2, 0.1, 0.05]: |
---|
| 354 | domain.set_time(0.0) |
---|
| 355 | |
---|
| 356 | domain.set_quantity('stage', |
---|
| 357 | expression='elevation + %f' % depth) |
---|
| 358 | |
---|
| 359 | |
---|
| 360 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
| 361 | for t in domain.evolve(yieldstep = 0.1, finaltime = 25): |
---|
| 362 | #print domain.timestepping_statistics() |
---|
| 363 | new_volume = domain.get_quantity('stage').get_integral() |
---|
| 364 | |
---|
| 365 | #print new_volume, ref_volume, new_volume-ref_volume |
---|
| 366 | msg = 'Total volume has changed: Is %.2f m^3 should have been %.2f m^3'\ |
---|
| 367 | % (new_volume, ref_volume) |
---|
| 368 | |
---|
[6150] | 369 | assert num.allclose(new_volume, ref_volume), msg |
---|
[6121] | 370 | |
---|
| 371 | |
---|
| 372 | |
---|
| 373 | def test_that_culvert_dry_bed_boyd_does_not_produce_flow(self): |
---|
| 374 | """test_that_culvert_in_dry_bed_boyd_does_not_produce_flow(self): |
---|
| 375 | |
---|
[6079] | 376 | Test that culvert on a sloping dry bed doesn't produce flows |
---|
| 377 | although there will be a 'pressure' head due to delta_w > 0 |
---|
| 378 | |
---|
| 379 | This one is using the 'Boyd' variant |
---|
| 380 | """ |
---|
| 381 | |
---|
| 382 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
| 383 | |
---|
| 384 | length = 40. |
---|
| 385 | width = 5. |
---|
| 386 | |
---|
| 387 | dx = dy = 1 # Resolution: Length of subdivisions on both axes |
---|
| 388 | |
---|
| 389 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 390 | int(width/dy), |
---|
| 391 | len1=length, |
---|
| 392 | len2=width) |
---|
| 393 | domain = Domain(points, vertices, boundary) |
---|
| 394 | domain.set_name('Test_culvert_dry') # Output name |
---|
| 395 | domain.set_default_order(2) |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | #---------------------------------------------------------------------- |
---|
| 399 | # Setup initial conditions |
---|
| 400 | #---------------------------------------------------------------------- |
---|
| 401 | |
---|
| 402 | def topography(x, y): |
---|
| 403 | """Set up a weir |
---|
| 404 | |
---|
| 405 | A culvert will connect either side |
---|
| 406 | """ |
---|
| 407 | # General Slope of Topography |
---|
| 408 | z=-x/1000 |
---|
| 409 | |
---|
| 410 | N = len(x) |
---|
| 411 | for i in range(N): |
---|
| 412 | |
---|
| 413 | # Sloping Embankment Across Channel |
---|
| 414 | if 5.0 < x[i] < 10.1: |
---|
[6144] | 415 | # Cut Out Segment for Culvert face |
---|
[6079] | 416 | if 1.0+(x[i]-5.0)/5.0 < y[i] < 4.0 - (x[i]-5.0)/5.0: |
---|
| 417 | z[i]=z[i] |
---|
| 418 | else: |
---|
| 419 | z[i] += 0.5*(x[i] -5.0) # Sloping Segment U/S Face |
---|
| 420 | if 10.0 < x[i] < 12.1: |
---|
| 421 | z[i] += 2.5 # Flat Crest of Embankment |
---|
| 422 | if 12.0 < x[i] < 14.5: |
---|
[6144] | 423 | # Cut Out Segment for Culvert face |
---|
[6079] | 424 | if 2.0-(x[i]-12.0)/2.5 < y[i] < 3.0 + (x[i]-12.0)/2.5: |
---|
| 425 | z[i]=z[i] |
---|
| 426 | else: |
---|
| 427 | z[i] += 2.5-1.0*(x[i] -12.0) # Sloping D/S Face |
---|
| 428 | |
---|
| 429 | |
---|
| 430 | return z |
---|
| 431 | |
---|
| 432 | |
---|
| 433 | domain.set_quantity('elevation', topography) |
---|
| 434 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 435 | domain.set_quantity('stage', |
---|
| 436 | expression='elevation') # Dry initial condition |
---|
| 437 | |
---|
| 438 | |
---|
| 439 | filename = os.path.join(path, 'example_rating_curve.csv') |
---|
| 440 | |
---|
| 441 | |
---|
[6123] | 442 | culvert = Culvert_flow(domain, |
---|
| 443 | label='Culvert No. 1', |
---|
| 444 | description='This culvert is a test unit 1.2m Wide by 0.75m High', |
---|
| 445 | end_point0=[9.0, 2.5], |
---|
| 446 | end_point1=[13.0, 2.5], |
---|
| 447 | width=1.20,height=0.75, |
---|
| 448 | culvert_routine=boyd_generalised_culvert_model, |
---|
| 449 | number_of_barrels=1, |
---|
| 450 | update_interval=2, |
---|
| 451 | verbose=True) |
---|
[6079] | 452 | |
---|
| 453 | domain.forcing_terms.append(culvert) |
---|
| 454 | |
---|
| 455 | |
---|
| 456 | #----------------------------------------------------------------------- |
---|
| 457 | # Setup boundary conditions |
---|
| 458 | #----------------------------------------------------------------------- |
---|
| 459 | |
---|
| 460 | # Inflow based on Flow Depth and Approaching Momentum |
---|
| 461 | |
---|
| 462 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
| 463 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
| 464 | |
---|
| 465 | |
---|
| 466 | #----------------------------------------------------------------------- |
---|
| 467 | # Evolve system through time |
---|
| 468 | #----------------------------------------------------------------------- |
---|
| 469 | |
---|
| 470 | ref_volume = domain.get_quantity('stage').get_integral() |
---|
| 471 | for t in domain.evolve(yieldstep = 1, finaltime = 25): |
---|
[6304] | 472 | |
---|
[6079] | 473 | #print domain.timestepping_statistics() |
---|
| 474 | new_volume = domain.get_quantity('stage').get_integral() |
---|
[6304] | 475 | |
---|
[6079] | 476 | msg = 'Total volume has changed' |
---|
[6150] | 477 | assert num.allclose(new_volume, ref_volume), msg |
---|
[6079] | 478 | pass |
---|
[6076] | 479 | |
---|
[6079] | 480 | |
---|
| 481 | |
---|
[6102] | 482 | |
---|
| 483 | |
---|
[6128] | 484 | def test_predicted_boyd_flow(self): |
---|
[6111] | 485 | """test_predicted_boyd_flow |
---|
[6102] | 486 | |
---|
[6111] | 487 | Test that flows predicted by the boyd method are consistent with what what |
---|
[6102] | 488 | is calculated in engineering codes. |
---|
| 489 | The data was supplied by Petar Milevski |
---|
| 490 | """ |
---|
| 491 | |
---|
[6128] | 492 | # FIXME(Ole) this is nowhere near finished |
---|
[6102] | 493 | path = get_pathname_from_package('anuga.culvert_flows') |
---|
| 494 | |
---|
| 495 | length = 12. |
---|
| 496 | width = 5. |
---|
| 497 | |
---|
| 498 | dx = dy = 0.5 # Resolution: Length of subdivisions on both axes |
---|
| 499 | |
---|
| 500 | points, vertices, boundary = rectangular_cross(int(length/dx), |
---|
| 501 | int(width/dy), |
---|
| 502 | len1=length, |
---|
| 503 | len2=width) |
---|
| 504 | domain = Domain(points, vertices, boundary) |
---|
| 505 | |
---|
| 506 | domain.set_name('test_culvert') # Output name |
---|
| 507 | domain.set_default_order(2) |
---|
| 508 | |
---|
| 509 | |
---|
| 510 | #---------------------------------------------------------------------- |
---|
| 511 | # Setup initial conditions |
---|
| 512 | #---------------------------------------------------------------------- |
---|
| 513 | |
---|
| 514 | def topography(x, y): |
---|
| 515 | # General Slope of Topography |
---|
| 516 | z=-x/10 |
---|
| 517 | |
---|
| 518 | return z |
---|
| 519 | |
---|
| 520 | |
---|
| 521 | domain.set_quantity('elevation', topography) |
---|
| 522 | domain.set_quantity('friction', 0.01) # Constant friction |
---|
| 523 | domain.set_quantity('stage', expression='elevation') |
---|
| 524 | |
---|
| 525 | |
---|
| 526 | Q0 = domain.get_quantity('stage') |
---|
| 527 | Q1 = Quantity(domain) |
---|
| 528 | |
---|
| 529 | # Add depths to stage |
---|
| 530 | head_water_depth = 0.169 |
---|
| 531 | tail_water_depth = 0.089 |
---|
| 532 | |
---|
| 533 | inlet_poly = [[0,0], [6,0], [6,5], [0,5]] |
---|
| 534 | outlet_poly = [[6,0], [12,0], [12,5], [6,5]] |
---|
| 535 | |
---|
| 536 | Q1.set_values(Polygon_function([(inlet_poly, head_water_depth), |
---|
| 537 | (outlet_poly, tail_water_depth)])) |
---|
| 538 | |
---|
| 539 | domain.set_quantity('stage', Q0 + Q1) |
---|
| 540 | |
---|
| 541 | |
---|
[6111] | 542 | |
---|
[6123] | 543 | culvert = Culvert_flow(domain, |
---|
| 544 | label='Test culvert', |
---|
| 545 | description='4 m test culvert', |
---|
| 546 | end_point0=[4.0, 2.5], |
---|
| 547 | end_point1=[8.0, 2.5], |
---|
| 548 | width=1.20, |
---|
| 549 | height=0.75, |
---|
| 550 | culvert_routine=boyd_generalised_culvert_model, |
---|
| 551 | number_of_barrels=1, |
---|
| 552 | verbose=True) |
---|
[6102] | 553 | |
---|
[6123] | 554 | |
---|
[6102] | 555 | domain.forcing_terms.append(culvert) |
---|
| 556 | |
---|
| 557 | # Call |
---|
| 558 | culvert(domain) |
---|
| 559 | |
---|
| 560 | #print 'Inlet flow', culvert.inlet.rate |
---|
| 561 | #print 'Outlet flow', culvert.outlet.rate |
---|
| 562 | |
---|
| 563 | |
---|
[6076] | 564 | |
---|
| 565 | #------------------------------------------------------------- |
---|
| 566 | if __name__ == "__main__": |
---|
[6123] | 567 | suite = unittest.makeSuite(Test_Culvert, 'test') |
---|
[6304] | 568 | runner = unittest.TextTestRunner() #verbosity=2) |
---|
[6076] | 569 | runner.run(suite) |
---|
| 570 | |
---|