1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | import unittest |
---|
5 | import os.path |
---|
6 | import sys |
---|
7 | |
---|
8 | from anuga.utilities.system_tools import get_pathname_from_package |
---|
9 | from anuga.culvert_flows.culvert_routines import boyd_generalised_culvert_model |
---|
10 | import numpy as num |
---|
11 | |
---|
12 | |
---|
13 | class Test_culvert_routines(unittest.TestCase): |
---|
14 | def setUp(self): |
---|
15 | pass |
---|
16 | |
---|
17 | def tearDown(self): |
---|
18 | pass |
---|
19 | |
---|
20 | |
---|
21 | def test_boyd_0(self): |
---|
22 | """test_boyd_0 |
---|
23 | |
---|
24 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
25 | This test is the only one that passed in late February 2009 |
---|
26 | """ |
---|
27 | |
---|
28 | g=9.81 |
---|
29 | culvert_slope=0.1 # Downward |
---|
30 | |
---|
31 | inlet_depth=2.0 |
---|
32 | outlet_depth=0.0 |
---|
33 | |
---|
34 | culvert_length=4.0 |
---|
35 | culvert_width=1.2 |
---|
36 | culvert_height=0.75 |
---|
37 | |
---|
38 | culvert_type='box' |
---|
39 | manning=0.013 |
---|
40 | sum_loss=0.0 |
---|
41 | |
---|
42 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
43 | z_in = 0.0 |
---|
44 | z_out = -culvert_length*culvert_slope/100 |
---|
45 | E_in = z_in+inlet_depth # + |
---|
46 | E_out = z_out+outlet_depth # + |
---|
47 | delta_total_energy = E_in-E_out |
---|
48 | |
---|
49 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
50 | outlet_depth, |
---|
51 | inlet_specific_energy, |
---|
52 | delta_total_energy, |
---|
53 | g, |
---|
54 | culvert_length, |
---|
55 | culvert_width, |
---|
56 | culvert_height, |
---|
57 | culvert_type, |
---|
58 | manning, |
---|
59 | sum_loss) |
---|
60 | |
---|
61 | #print Q, v, d |
---|
62 | assert num.allclose(Q, 3.118, rtol=1.0e-3) |
---|
63 | |
---|
64 | |
---|
65 | #assert num.allclose(v, 0.93) |
---|
66 | #assert num.allclose(d, 0.0) |
---|
67 | |
---|
68 | |
---|
69 | def Xtest_boyd_00(self): |
---|
70 | """test_boyd_00 |
---|
71 | |
---|
72 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
73 | """ |
---|
74 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
75 | |
---|
76 | g=9.81 |
---|
77 | culvert_slope=0.1 # Downward |
---|
78 | |
---|
79 | inlet_depth=0.2 |
---|
80 | outlet_depth=0.0 |
---|
81 | |
---|
82 | culvert_length=4.0 |
---|
83 | culvert_width=1.2 |
---|
84 | culvert_height=0.75 |
---|
85 | |
---|
86 | culvert_type='box' |
---|
87 | manning=0.013 |
---|
88 | sum_loss=0.0 |
---|
89 | |
---|
90 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
91 | z_in = 0.0 |
---|
92 | z_out = -culvert_length*culvert_slope/100 |
---|
93 | E_in = z_in+inlet_depth # + |
---|
94 | E_out = z_out+outlet_depth # + |
---|
95 | delta_total_energy = E_in-E_out |
---|
96 | |
---|
97 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
98 | outlet_depth, |
---|
99 | inlet_specific_energy, |
---|
100 | delta_total_energy, |
---|
101 | g, |
---|
102 | culvert_length, |
---|
103 | culvert_width, |
---|
104 | culvert_height, |
---|
105 | culvert_type, |
---|
106 | manning, |
---|
107 | sum_loss) |
---|
108 | |
---|
109 | #print Q, v, d |
---|
110 | assert num.allclose(Q, 0.185, rtol=1.0e-3) |
---|
111 | #assert num.allclose(v, 0.93) |
---|
112 | #assert num.allclose(d, 0.0) |
---|
113 | |
---|
114 | def Xtest_boyd_1(self): |
---|
115 | """test_boyd_1 |
---|
116 | |
---|
117 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
118 | """ |
---|
119 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
120 | |
---|
121 | g=9.81 |
---|
122 | culvert_slope=0.01 # Downward |
---|
123 | |
---|
124 | inlet_depth=0.263 |
---|
125 | outlet_depth=0.0 |
---|
126 | |
---|
127 | culvert_length=4.0 |
---|
128 | culvert_width=0.75 |
---|
129 | culvert_height=0.75 |
---|
130 | |
---|
131 | culvert_type='pipe' |
---|
132 | manning=0.013 |
---|
133 | sum_loss=1.5 |
---|
134 | |
---|
135 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
136 | z_in = 0.0 |
---|
137 | z_out = -culvert_length*culvert_slope/100 |
---|
138 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
139 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
140 | delta_total_energy = E_in-E_out |
---|
141 | |
---|
142 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
143 | outlet_depth, |
---|
144 | inlet_specific_energy, |
---|
145 | delta_total_energy, |
---|
146 | g, |
---|
147 | culvert_length, |
---|
148 | culvert_width, |
---|
149 | culvert_height, |
---|
150 | culvert_type, |
---|
151 | manning, |
---|
152 | sum_loss) |
---|
153 | |
---|
154 | print Q, v, d |
---|
155 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
156 | assert num.allclose(v, 1.13, rtol=1.0e-2) #outflow velocity |
---|
157 | assert num.allclose(d, 0.15, rtol=1.0e-2) #depth at outlet used to calc v |
---|
158 | |
---|
159 | def Xtest_boyd_2(self): |
---|
160 | """test_boyd_2 |
---|
161 | |
---|
162 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
163 | """ |
---|
164 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
165 | |
---|
166 | g=9.81 |
---|
167 | culvert_slope=0.01 # Downward |
---|
168 | |
---|
169 | inlet_depth=1.135 |
---|
170 | outlet_depth=0.0 |
---|
171 | |
---|
172 | culvert_length=4.0 |
---|
173 | culvert_width=0.75 |
---|
174 | culvert_height=0.75 |
---|
175 | |
---|
176 | culvert_type='pipe' |
---|
177 | manning=0.013 |
---|
178 | sum_loss=1.5 |
---|
179 | |
---|
180 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
181 | z_in = 0.0 |
---|
182 | z_out = -culvert_length*culvert_slope/100 |
---|
183 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
184 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
185 | delta_total_energy = E_in-E_out |
---|
186 | |
---|
187 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
188 | outlet_depth, |
---|
189 | inlet_specific_energy, |
---|
190 | delta_total_energy, |
---|
191 | g, |
---|
192 | culvert_length, |
---|
193 | culvert_width, |
---|
194 | culvert_height, |
---|
195 | culvert_type, |
---|
196 | manning, |
---|
197 | sum_loss) |
---|
198 | |
---|
199 | print Q, v, d |
---|
200 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
201 | assert num.allclose(v, 2.59, rtol=1.0e-2) #outflow velocity |
---|
202 | assert num.allclose(d, 0.563, rtol=1.0e-2) #depth at outlet used to calc v |
---|
203 | |
---|
204 | def Xtest_boyd_3(self): |
---|
205 | """test_boyd_3 |
---|
206 | |
---|
207 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
208 | """ |
---|
209 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
210 | |
---|
211 | g=9.81 |
---|
212 | culvert_slope=0.01 # Downward |
---|
213 | |
---|
214 | inlet_depth=12.747 |
---|
215 | outlet_depth=0.0 |
---|
216 | |
---|
217 | culvert_length=4.0 |
---|
218 | culvert_width=0.75 |
---|
219 | culvert_height=0.75 |
---|
220 | |
---|
221 | culvert_type='pipe' |
---|
222 | manning=0.013 |
---|
223 | sum_loss=1.5 |
---|
224 | |
---|
225 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
226 | z_in = 0.0 |
---|
227 | z_out = -culvert_length*culvert_slope/100 |
---|
228 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
229 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
230 | delta_total_energy = E_in-E_out |
---|
231 | |
---|
232 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
233 | outlet_depth, |
---|
234 | inlet_specific_energy, |
---|
235 | delta_total_energy, |
---|
236 | g, |
---|
237 | culvert_length, |
---|
238 | culvert_width, |
---|
239 | culvert_height, |
---|
240 | culvert_type, |
---|
241 | manning, |
---|
242 | sum_loss) |
---|
243 | |
---|
244 | print Q, v, d |
---|
245 | assert num.allclose(Q, 5.00, rtol=1.0e-2) #inflow |
---|
246 | assert num.allclose(v, 11.022, rtol=1.0e-2) #outflow velocity |
---|
247 | assert num.allclose(d, 0.72, rtol=1.0e-2) #depth at outlet used to calc v |
---|
248 | |
---|
249 | def Xtest_boyd_4(self): |
---|
250 | """test_boyd_4 |
---|
251 | |
---|
252 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
253 | """ |
---|
254 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
255 | |
---|
256 | g=9.81 |
---|
257 | culvert_slope=0.01 # Downward |
---|
258 | |
---|
259 | inlet_depth=1.004 |
---|
260 | outlet_depth=1.00 |
---|
261 | |
---|
262 | culvert_length=4.0 |
---|
263 | culvert_width=0.75 |
---|
264 | culvert_height=0.75 |
---|
265 | |
---|
266 | culvert_type='pipe' |
---|
267 | manning=0.013 |
---|
268 | sum_loss=1.5 |
---|
269 | |
---|
270 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
271 | z_in = 0.0 |
---|
272 | z_out = -culvert_length*culvert_slope/100 |
---|
273 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
274 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
275 | delta_total_energy = E_in-E_out |
---|
276 | |
---|
277 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
278 | outlet_depth, |
---|
279 | inlet_specific_energy, |
---|
280 | delta_total_energy, |
---|
281 | g, |
---|
282 | culvert_length, |
---|
283 | culvert_width, |
---|
284 | culvert_height, |
---|
285 | culvert_type, |
---|
286 | manning, |
---|
287 | sum_loss) |
---|
288 | |
---|
289 | print Q, v, d |
---|
290 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
291 | assert num.allclose(v, 0.22, rtol=1.0e-2) #outflow velocity |
---|
292 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
293 | |
---|
294 | def Xtest_boyd_5(self): |
---|
295 | """test_boyd_5 |
---|
296 | |
---|
297 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
298 | """ |
---|
299 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
300 | |
---|
301 | g=9.81 |
---|
302 | culvert_slope=0.01 # Downward |
---|
303 | |
---|
304 | inlet_depth=1.401 |
---|
305 | outlet_depth=1.00 |
---|
306 | |
---|
307 | culvert_length=4.0 |
---|
308 | culvert_width=0.75 |
---|
309 | culvert_height=0.75 |
---|
310 | |
---|
311 | culvert_type='pipe' |
---|
312 | manning=0.013 |
---|
313 | sum_loss=1.5 |
---|
314 | |
---|
315 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
316 | z_in = 0.0 |
---|
317 | z_out = -culvert_length*culvert_slope/100 |
---|
318 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
319 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
320 | delta_total_energy = E_in-E_out |
---|
321 | |
---|
322 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
323 | outlet_depth, |
---|
324 | inlet_specific_energy, |
---|
325 | delta_total_energy, |
---|
326 | g, |
---|
327 | culvert_length, |
---|
328 | culvert_width, |
---|
329 | culvert_height, |
---|
330 | culvert_type, |
---|
331 | manning, |
---|
332 | sum_loss) |
---|
333 | |
---|
334 | print Q, v, d |
---|
335 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
336 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
337 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
338 | |
---|
339 | |
---|
340 | def Xtest_boyd_6(self): |
---|
341 | """test_boyd_5 |
---|
342 | |
---|
343 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
344 | """ |
---|
345 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
346 | |
---|
347 | g=9.81 |
---|
348 | culvert_slope=0.01 # Downward |
---|
349 | |
---|
350 | inlet_depth=12.747 |
---|
351 | outlet_depth=1.00 |
---|
352 | |
---|
353 | culvert_length=4.0 |
---|
354 | culvert_width=0.75 |
---|
355 | culvert_height=0.75 |
---|
356 | |
---|
357 | culvert_type='pipe' |
---|
358 | manning=0.013 |
---|
359 | sum_loss=1.5 |
---|
360 | |
---|
361 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
362 | z_in = 0.0 |
---|
363 | z_out = -culvert_length*culvert_slope/100 |
---|
364 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
365 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
366 | delta_total_energy = E_in-E_out |
---|
367 | |
---|
368 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
369 | outlet_depth, |
---|
370 | inlet_specific_energy, |
---|
371 | delta_total_energy, |
---|
372 | g, |
---|
373 | culvert_length, |
---|
374 | culvert_width, |
---|
375 | culvert_height, |
---|
376 | culvert_type, |
---|
377 | manning, |
---|
378 | sum_loss) |
---|
379 | |
---|
380 | print Q, v, d |
---|
381 | assert num.allclose(Q, 5.00, rtol=1.0e-2) #inflow |
---|
382 | assert num.allclose(v, 11.022, rtol=1.0e-2) #outflow velocity |
---|
383 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
384 | |
---|
385 | |
---|
386 | def Xtest_boyd_7(self): |
---|
387 | """test_boyd_7 |
---|
388 | |
---|
389 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
390 | """ |
---|
391 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
392 | |
---|
393 | g=9.81 |
---|
394 | culvert_slope=0.1 # Downward |
---|
395 | |
---|
396 | inlet_depth=0.303 |
---|
397 | outlet_depth=0.00 |
---|
398 | |
---|
399 | culvert_length=4.0 |
---|
400 | culvert_width=0.75 |
---|
401 | culvert_height=0.75 |
---|
402 | |
---|
403 | culvert_type='pipe' |
---|
404 | manning=0.013 |
---|
405 | sum_loss=1.5 |
---|
406 | |
---|
407 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
408 | z_in = 0.0 |
---|
409 | z_out = -culvert_length*culvert_slope/100 |
---|
410 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
411 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
412 | delta_total_energy = E_in-E_out |
---|
413 | |
---|
414 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
415 | outlet_depth, |
---|
416 | inlet_specific_energy, |
---|
417 | delta_total_energy, |
---|
418 | g, |
---|
419 | culvert_length, |
---|
420 | culvert_width, |
---|
421 | culvert_height, |
---|
422 | culvert_type, |
---|
423 | manning, |
---|
424 | sum_loss) |
---|
425 | |
---|
426 | print Q, v, d |
---|
427 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
428 | assert num.allclose(v, 1.13, rtol=1.0e-2) #outflow velocity |
---|
429 | assert num.allclose(d, 0.19, rtol=1.0e-2) #depth at outlet used to calc v |
---|
430 | |
---|
431 | |
---|
432 | def Xtest_boyd_8(self): |
---|
433 | """test_boyd_8 |
---|
434 | |
---|
435 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
436 | """ |
---|
437 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
438 | |
---|
439 | g=9.81 |
---|
440 | culvert_slope=0.1 # Downward |
---|
441 | |
---|
442 | inlet_depth=1.135 |
---|
443 | outlet_depth=0.00 |
---|
444 | |
---|
445 | culvert_length=4.0 |
---|
446 | culvert_width=0.75 |
---|
447 | culvert_height=0.75 |
---|
448 | |
---|
449 | culvert_type='pipe' |
---|
450 | manning=0.013 |
---|
451 | sum_loss=1.5 |
---|
452 | |
---|
453 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
454 | z_in = 0.0 |
---|
455 | z_out = -culvert_length*culvert_slope/100 |
---|
456 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
457 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
458 | delta_total_energy = E_in-E_out |
---|
459 | |
---|
460 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
461 | outlet_depth, |
---|
462 | inlet_specific_energy, |
---|
463 | delta_total_energy, |
---|
464 | g, |
---|
465 | culvert_length, |
---|
466 | culvert_width, |
---|
467 | culvert_height, |
---|
468 | culvert_type, |
---|
469 | manning, |
---|
470 | sum_loss) |
---|
471 | |
---|
472 | print Q, v, d |
---|
473 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
474 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
475 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
476 | |
---|
477 | def Xtest_boyd_9(self): |
---|
478 | """test_boyd_9 |
---|
479 | |
---|
480 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
481 | """ |
---|
482 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
483 | |
---|
484 | g=9.81 |
---|
485 | culvert_slope=0.1 # Downward |
---|
486 | |
---|
487 | inlet_depth=1.1504 |
---|
488 | outlet_depth=1.5 |
---|
489 | |
---|
490 | culvert_length=4.0 |
---|
491 | culvert_width=0.75 |
---|
492 | culvert_height=0.75 |
---|
493 | |
---|
494 | culvert_type='pipe' |
---|
495 | manning=0.013 |
---|
496 | sum_loss=1.5 |
---|
497 | |
---|
498 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
499 | z_in = 0.0 |
---|
500 | z_out = -culvert_length*culvert_slope/100 |
---|
501 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
502 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
503 | delta_total_energy = E_in-E_out |
---|
504 | |
---|
505 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
506 | outlet_depth, |
---|
507 | inlet_specific_energy, |
---|
508 | delta_total_energy, |
---|
509 | g, |
---|
510 | culvert_length, |
---|
511 | culvert_width, |
---|
512 | culvert_height, |
---|
513 | culvert_type, |
---|
514 | manning, |
---|
515 | sum_loss) |
---|
516 | |
---|
517 | print Q, v, d |
---|
518 | assert num.allclose(Q, 0.10, rtol=1.0e-2) #inflow |
---|
519 | assert num.allclose(v, 0.22, rtol=1.0e-2) #outflow velocity |
---|
520 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
521 | |
---|
522 | |
---|
523 | def Xtest_boyd_10(self): |
---|
524 | """test_boyd_9 |
---|
525 | |
---|
526 | This tests the Boyd routine with data obtained from ??? by Petar Milevski |
---|
527 | """ |
---|
528 | # FIXME(Ole): This test fails (20 Feb 2009) |
---|
529 | |
---|
530 | g=9.81 |
---|
531 | culvert_slope=0.1 # Downward |
---|
532 | |
---|
533 | inlet_depth=1.901 |
---|
534 | outlet_depth=1.5 |
---|
535 | |
---|
536 | culvert_length=4.0 |
---|
537 | culvert_width=0.75 |
---|
538 | culvert_height=0.75 |
---|
539 | |
---|
540 | culvert_type='pipe' |
---|
541 | manning=0.013 |
---|
542 | sum_loss=1.5 |
---|
543 | |
---|
544 | inlet_specific_energy=inlet_depth #+0.5*v**2/g |
---|
545 | z_in = 0.0 |
---|
546 | z_out = -culvert_length*culvert_slope/100 |
---|
547 | E_in = z_in+inlet_depth #+ 0.5*v**2/g |
---|
548 | E_out = z_out+outlet_depth #+ 0.5*v**2/g |
---|
549 | delta_total_energy = E_in-E_out |
---|
550 | |
---|
551 | Q, v, d = boyd_generalised_culvert_model(inlet_depth, |
---|
552 | outlet_depth, |
---|
553 | inlet_specific_energy, |
---|
554 | delta_total_energy, |
---|
555 | g, |
---|
556 | culvert_length, |
---|
557 | culvert_width, |
---|
558 | culvert_height, |
---|
559 | culvert_type, |
---|
560 | manning, |
---|
561 | sum_loss) |
---|
562 | |
---|
563 | print Q, v, d |
---|
564 | assert num.allclose(Q, 1.00, rtol=1.0e-2) #inflow |
---|
565 | assert num.allclose(v, 2.204, rtol=1.0e-2) #outflow velocity |
---|
566 | assert num.allclose(d, 0.76, rtol=1.0e-2) #depth at outlet used to calc v |
---|
567 | |
---|
568 | |
---|
569 | #------------------------------------------------------------- |
---|
570 | if __name__ == "__main__": |
---|
571 | suite = unittest.makeSuite(Test_culvert_routines, 'test') |
---|
572 | runner = unittest.TextTestRunner() |
---|
573 | runner.run(suite) |
---|
574 | |
---|