[4320] | 1 | # |
---|
| 2 | # earthquake_tsunami function |
---|
| 3 | # |
---|
| 4 | |
---|
| 5 | """This function returns a callable object representing an initial water |
---|
| 6 | displacement generated by a submarine earthqauke. |
---|
| 7 | |
---|
| 8 | Using input parameters: |
---|
| 9 | |
---|
| 10 | Required |
---|
| 11 | length along-stike length of rupture area |
---|
| 12 | width down-dip width of rupture area |
---|
| 13 | strike azimuth (degrees, measured from north) of fault axis |
---|
| 14 | dip angle of fault dip in degrees w.r.t. horizontal |
---|
| 15 | depth depth to base of rupture area |
---|
| 16 | |
---|
| 17 | Optional |
---|
| 18 | x0 x origin (0) |
---|
| 19 | y0 y origin (0) |
---|
| 20 | slip metres of fault slip (1) |
---|
| 21 | rake angle of slip (w.r.t. horizontal) in fault plane (90 degrees) |
---|
| 22 | |
---|
| 23 | The returned object is a callable okada function that represents |
---|
| 24 | the initial water displacement generated by a submarine earthuake. |
---|
| 25 | |
---|
| 26 | """ |
---|
| 27 | |
---|
[6304] | 28 | import numpy as num |
---|
| 29 | |
---|
| 30 | |
---|
[4320] | 31 | def earthquake_tsunami(length, width, strike, depth, \ |
---|
| 32 | dip, x0=0.0, y0=0.0, slip=1.0, rake=90.,\ |
---|
| 33 | domain=None, verbose=False): |
---|
| 34 | |
---|
| 35 | from math import sin, radians |
---|
| 36 | |
---|
| 37 | if domain is not None: |
---|
| 38 | xllcorner = domain.geo_reference.get_xllcorner() |
---|
| 39 | yllcorner = domain.geo_reference.get_yllcorner() |
---|
| 40 | x0 = x0 - xllcorner # fault origin (relative) |
---|
| 41 | y0 = y0 - yllcorner |
---|
| 42 | |
---|
| 43 | #a few temporary print statements |
---|
| 44 | if verbose is True: |
---|
| 45 | print '\nThe Earthquake ...' |
---|
| 46 | print '\tLength: ', length |
---|
| 47 | print '\tDepth: ', depth |
---|
| 48 | print '\tStrike: ', strike |
---|
| 49 | print '\tWidth: ', width |
---|
| 50 | print '\tDip: ', dip |
---|
| 51 | print '\tSlip: ', slip |
---|
| 52 | print '\tx0: ', x0 |
---|
| 53 | print '\ty0: ', y0 |
---|
| 54 | |
---|
| 55 | # warning state |
---|
[4436] | 56 | # test = width*1000.0*sin(radians(dip)) - depth |
---|
| 57 | test = width*1000.0*sin(radians(dip)) - depth*1000 |
---|
[4320] | 58 | |
---|
| 59 | if test > 0.0: |
---|
| 60 | msg = 'Earthquake source not located below seafloor - check depth' |
---|
| 61 | raise Exception, msg |
---|
| 62 | |
---|
| 63 | return Okada_func(length=length, width=width, dip=dip, \ |
---|
| 64 | x0=x0, y0=y0, strike=strike, depth=depth, \ |
---|
| 65 | slip=slip, rake=rake) |
---|
| 66 | |
---|
| 67 | # |
---|
| 68 | # Okada class |
---|
| 69 | # |
---|
| 70 | |
---|
| 71 | """This is a callable class representing the initial water displacment |
---|
| 72 | generated by an earthquake. |
---|
| 73 | |
---|
| 74 | Using input parameters: |
---|
| 75 | |
---|
| 76 | Required |
---|
| 77 | length along-stike length of rupture area |
---|
| 78 | width down-dip width of rupture area |
---|
| 79 | strike azimuth (degrees, measured from north) of fault axis |
---|
| 80 | dip angle of fault dip in degrees w.r.t. horizontal |
---|
| 81 | depth depth to base of rupture area |
---|
| 82 | |
---|
| 83 | Optional |
---|
| 84 | x0 x origin (0) |
---|
| 85 | y0 y origin (0) |
---|
| 86 | slip metres of fault slip (1) |
---|
| 87 | rake angle of slip (w.r.t. horizontal) in fault plane (90 degrees) |
---|
| 88 | |
---|
| 89 | """ |
---|
| 90 | |
---|
| 91 | class Okada_func: |
---|
| 92 | |
---|
| 93 | def __init__(self, length, width, dip, x0, y0, strike, \ |
---|
| 94 | depth, slip, rake): |
---|
| 95 | self.dip = dip |
---|
| 96 | self.length = length |
---|
| 97 | self.width = width |
---|
| 98 | self.x0 = x0 |
---|
| 99 | self.y0 = y0 |
---|
| 100 | self.strike = strike |
---|
| 101 | self.depth = depth |
---|
| 102 | self.slip = slip |
---|
| 103 | self.rake = rake |
---|
| 104 | |
---|
| 105 | |
---|
| 106 | def __call__(self, x, y): |
---|
| 107 | """Make Okada_func a callable object. |
---|
| 108 | |
---|
| 109 | If called as a function, this object returns z values representing |
---|
| 110 | the initial 3D distribution of water heights at the points (x,y) |
---|
| 111 | produced by a submarine mass failure. |
---|
| 112 | """ |
---|
| 113 | |
---|
| 114 | from math import sin, cos, radians, exp, cosh |
---|
| 115 | #from okada import okadatest |
---|
| 116 | |
---|
| 117 | #ensure vectors x and y have the same length |
---|
| 118 | N = len(x) |
---|
| 119 | assert N == len(y) |
---|
| 120 | |
---|
| 121 | depth = self.depth |
---|
| 122 | dip = self.dip |
---|
| 123 | length = self.length |
---|
| 124 | width = self.width |
---|
| 125 | x0 = self.x0 |
---|
| 126 | y0 = self.y0 |
---|
| 127 | strike = self.strike |
---|
| 128 | dip = self.dip |
---|
| 129 | rake = self.rake |
---|
| 130 | slip = self.slip |
---|
| 131 | |
---|
| 132 | #double Gaussian calculation assumes water displacement is oriented |
---|
| 133 | #E-W, so, for displacement at some angle alpha clockwise from the E-W |
---|
| 134 | #direction, rotate (x,y) coordinates anti-clockwise by alpha |
---|
| 135 | |
---|
| 136 | cosa = cos(radians(strike)) |
---|
| 137 | sina = sin(radians(strike)) |
---|
| 138 | |
---|
| 139 | xr = ( (x-x0) * sina + (y-y0) * cosa) |
---|
| 140 | yr = (-(x-x0) * cosa + (y-y0) * sina) |
---|
| 141 | |
---|
| 142 | # works on nautilus when have already done |
---|
| 143 | # f2py -c okada.f -m okada |
---|
| 144 | #z1 = okada(xr,yr,depth,length,width,dip,rake,slip) |
---|
| 145 | |
---|
[6304] | 146 | z2 = num.zeros(N, num.float) |
---|
[4320] | 147 | alp = 0.5 |
---|
| 148 | disl3 = 0.0 |
---|
| 149 | zero = 0.0 |
---|
| 150 | disl1 = slip*cos(radians(rake)) |
---|
| 151 | disl2 = slip*sin(radians(rake)) |
---|
| 152 | cd = cos(radians(dip)) |
---|
| 153 | sd = sin(radians(dip)) |
---|
| 154 | |
---|
| 155 | for i in range(N-1): |
---|
| 156 | self.SRECTF(alp,xr[i]*.001,yr[i]*.001,depth*.001,zero,length,\ |
---|
| 157 | zero,width,sd,cd,disl1,disl2,disl3) |
---|
| 158 | |
---|
| 159 | z2[i] = self.U3 |
---|
| 160 | |
---|
| 161 | return z2 |
---|
| 162 | |
---|
| 163 | def SRECTF(self,ALP,X,Y,DEP,AL1,AL2,AW1,AW2,SD,CD,DISL1,DISL2,DISL3): |
---|
| 164 | """ SURFACE DISPLACEMENT,STRAIN,TILT DUE TO RECTANGULAR FAULT |
---|
| 165 | IN A HALF-SPACE. CODED BY Y.OKADA ... JAN 1985 |
---|
| 166 | |
---|
| 167 | |
---|
| 168 | INPUT |
---|
| 169 | ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
| 170 | X,Y : COORDINATE OF STATION |
---|
| 171 | DEP : SOURCE DEPTH |
---|
| 172 | AL1,AL2 : FAULT LENGTH RANGE |
---|
| 173 | AW1,AW2 : FAULT WIDTH RANGE |
---|
| 174 | SD,CD : SIN,COS OF DIP-ANGLE |
---|
| 175 | (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
| 176 | DISL1,DISL2,DISL3 : STRIKE-, DIP- AND TENSILE-DISLOCATION |
---|
| 177 | |
---|
| 178 | OUTPUT |
---|
| 179 | U1, U2, U3 : DISPLACEMENT ( UNIT= UNIT OF DISL ) |
---|
| 180 | U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF DISL / |
---|
| 181 | U31,U32 : TILT UNIT OF X,Y,,,AW ) |
---|
| 182 | |
---|
| 183 | SUBROUTINE USED...SRECTG |
---|
| 184 | """ |
---|
| 185 | |
---|
[6304] | 186 | U = num.zeros(9, num.float) |
---|
| 187 | DU = num.zeros(9, num.float) |
---|
[4320] | 188 | |
---|
| 189 | F0 = 0.0 |
---|
| 190 | F1 = 1.0 |
---|
| 191 | |
---|
| 192 | P = Y*CD + DEP*SD |
---|
| 193 | Q = Y*SD - DEP*CD |
---|
| 194 | |
---|
| 195 | KVEC = [1,2] |
---|
| 196 | JVEC = [1,2] |
---|
| 197 | for K in KVEC: |
---|
| 198 | if K == 1: ET=P-AW1 |
---|
| 199 | if K == 2: ET=P-AW2 |
---|
| 200 | for J in JVEC: |
---|
| 201 | if J == 1: XI=X-AL1 |
---|
| 202 | if J == 2: XI=X-AL2 |
---|
| 203 | JK=J+K |
---|
| 204 | if JK <> 3: |
---|
| 205 | SIGN= F1 |
---|
| 206 | else: |
---|
| 207 | SIGN=-F1 |
---|
| 208 | |
---|
| 209 | self.SRECTG(ALP,XI,ET,Q,SD,CD,DISL1,DISL2,DISL3) |
---|
| 210 | |
---|
| 211 | DU[0] = self.DU1 |
---|
| 212 | DU[1] = self.DU2 |
---|
| 213 | DU[2] = self.DU3 |
---|
| 214 | DU[3] = self.DU11 |
---|
| 215 | DU[4] = self.DU12 |
---|
| 216 | DU[5] = self.DU21 |
---|
| 217 | DU[6] = self.DU22 |
---|
| 218 | DU[7] = self.DU31 |
---|
| 219 | DU[8] = self.DU32 |
---|
| 220 | |
---|
| 221 | for i in range(len(U)): |
---|
| 222 | U[i]=U[i]+SIGN*DU[i] |
---|
| 223 | |
---|
| 224 | U1 =U[0] |
---|
| 225 | U2 =U[1] |
---|
| 226 | U3 =U[2] |
---|
| 227 | U11=U[3] |
---|
| 228 | U12=U[4] |
---|
| 229 | U21=U[5] |
---|
| 230 | U22=U[6] |
---|
| 231 | U31=U[7] |
---|
| 232 | U32=U[8] |
---|
| 233 | |
---|
| 234 | self.U3 = U3 |
---|
| 235 | |
---|
| 236 | def SRECTG(self,ALP,XI,ET,Q,SD,CD,DISL1,DISL2,DISL3): |
---|
| 237 | """ |
---|
| 238 | C |
---|
| 239 | C********************************************************************* |
---|
| 240 | C***** ***** |
---|
| 241 | C***** INDEFINITE INTEGRAL OF SURFACE DISPLACEMENT,STRAIN,TILT ***** |
---|
| 242 | C***** DUE TO RECTANGULAR FAULT IN A HALF-SPACE ***** |
---|
| 243 | C***** CODED BY Y.OKADA ... JAN 1985 ***** |
---|
| 244 | C***** ***** |
---|
| 245 | C********************************************************************* |
---|
| 246 | C |
---|
| 247 | C***** INPUT |
---|
| 248 | C***** ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
| 249 | C***** XI,ET,Q : FAULT COORDINATE |
---|
| 250 | C***** SD,CD : SIN,COS OF DIP-ANGLE |
---|
| 251 | C***** (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
| 252 | C***** DISL1,DISL2,DISL3 : STRIKE-, DIP- AND TENSILE-DISLOCATION |
---|
| 253 | C |
---|
| 254 | C***** OUTPUT |
---|
| 255 | C***** U1, U2, U3 : DISPLACEMENT ( UNIT= UNIT OF DISL ) |
---|
| 256 | C***** U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF DISL / |
---|
| 257 | C***** U31,U32 : TILT UNIT OF XI,ET,Q ) |
---|
| 258 | C |
---|
| 259 | """ |
---|
| 260 | |
---|
| 261 | from math import sqrt, atan, log, radians |
---|
| 262 | F0 = 0.0 |
---|
| 263 | F1 = 1.0 |
---|
| 264 | F2 = 2.0 |
---|
| 265 | PI2=6.283185307179586 |
---|
| 266 | |
---|
| 267 | XI2=XI*XI |
---|
| 268 | ET2=ET*ET |
---|
| 269 | Q2=Q*Q |
---|
| 270 | R2=XI2+ET2+Q2 |
---|
| 271 | R =sqrt(R2) |
---|
| 272 | R3=R*R2 |
---|
| 273 | D =ET*SD-Q*CD |
---|
| 274 | Y =ET*CD+Q*SD |
---|
| 275 | RET=R+ET |
---|
| 276 | if RET < F0: RET=F0 |
---|
| 277 | RD =R+D |
---|
| 278 | RRD=F1/(R*RD) |
---|
| 279 | |
---|
| 280 | if Q <> F0: |
---|
| 281 | TT = atan( radians( XI*ET/(Q*R) )) |
---|
| 282 | else: |
---|
| 283 | TT = F0 |
---|
| 284 | |
---|
| 285 | if RET <> F0: |
---|
| 286 | RE = F1/RET |
---|
| 287 | DLE= log(RET) |
---|
| 288 | else: |
---|
| 289 | RE = F0 |
---|
| 290 | DLE=-log(R-ET) |
---|
| 291 | |
---|
| 292 | RRX=F1/(R*(R+XI)) |
---|
| 293 | RRE=RE/R |
---|
| 294 | AXI=(F2*R+XI)*RRX*RRX/R |
---|
| 295 | AET=(F2*R+ET)*RRE*RRE/R |
---|
| 296 | |
---|
| 297 | if CD == 0: |
---|
| 298 | #C============================== |
---|
| 299 | #C===== INCLINED FAULT ===== |
---|
| 300 | #C============================== |
---|
| 301 | RD2=RD*RD |
---|
| 302 | A1=-ALP/F2*XI*Q/RD2 |
---|
| 303 | A3= ALP/F2*( ET/RD + Y*Q/RD2 - DLE ) |
---|
| 304 | A4=-ALP*Q/RD |
---|
| 305 | A5=-ALP*XI*SD/RD |
---|
| 306 | B1= ALP/F2* Q /RD2*(F2*XI2*RRD - F1) |
---|
| 307 | B2= ALP/F2*XI*SD/RD2*(F2*Q2 *RRD - F1) |
---|
| 308 | C1= ALP*XI*Q*RRD/RD |
---|
| 309 | C3= ALP*SD/RD*(XI2*RRD - F1) |
---|
| 310 | else: |
---|
| 311 | #C============================== |
---|
| 312 | #C===== VERTICAL FAULT ===== |
---|
| 313 | #C============================== |
---|
| 314 | TD=SD/CD |
---|
| 315 | X =sqrt(XI2+Q2) |
---|
| 316 | if XI == F0: |
---|
| 317 | A5=F0 |
---|
| 318 | else: |
---|
| 319 | A5= ALP*F2/CD*atan( radians((ET*(X+Q*CD)+X*(R+X)*SD) / (XI*(R+X)*CD) )) |
---|
| 320 | A4= ALP/CD*( log(RD) - SD*DLE ) |
---|
| 321 | A3= ALP*(Y/RD/CD - DLE) + TD*A4 |
---|
| 322 | A1=-ALP/CD*XI/RD - TD*A5 |
---|
| 323 | C1= ALP/CD*XI*(RRD - SD*RRE) |
---|
| 324 | C3= ALP/CD*(Q*RRE - Y*RRD) |
---|
| 325 | B1= ALP/CD*(XI2*RRD - F1)/RD - TD*C3 |
---|
| 326 | B2= ALP/CD*XI*Y*RRD/RD - TD*C1 |
---|
| 327 | |
---|
| 328 | A2=-ALP*DLE - A3 |
---|
| 329 | B3=-ALP*XI*RRE - B2 |
---|
| 330 | B4=-ALP*( CD/R + Q*SD*RRE ) - B1 |
---|
| 331 | C2= ALP*(-SD/R + Q*CD*RRE ) - C3 |
---|
| 332 | |
---|
| 333 | U1 =F0 |
---|
| 334 | U2 =F0 |
---|
| 335 | U3 =F0 |
---|
| 336 | U11=F0 |
---|
| 337 | U12=F0 |
---|
| 338 | U21=F0 |
---|
| 339 | U22=F0 |
---|
| 340 | U31=F0 |
---|
| 341 | U32=F0 |
---|
| 342 | |
---|
| 343 | if DISL1 <> F0: |
---|
| 344 | #C====================================== |
---|
| 345 | #C===== STRIKE-SLIP CONTRIBUTION ===== |
---|
| 346 | #C====================================== |
---|
| 347 | UN=DISL1/PI2 |
---|
| 348 | REQ=RRE*Q |
---|
| 349 | U1 =U1 - UN*( REQ*XI + TT + A1*SD ) |
---|
| 350 | U2 =U2 - UN*( REQ*Y + Q*CD*RE + A2*SD ) |
---|
| 351 | U3 =U3 - UN*( REQ*D + Q*SD*RE + A4*SD ) |
---|
| 352 | U11=U11+ UN*( XI2*Q*AET - B1*SD ) |
---|
| 353 | U12=U12+ UN*( XI2*XI*( D/(ET2+Q2)/R3 - AET*SD ) - B2*SD ) |
---|
| 354 | U21=U21+ UN*( XI*Q/R3*CD + (XI*Q2*AET - B2)*SD ) |
---|
| 355 | U22=U22+ UN*( Y *Q/R3*CD + (Q*SD*(Q2*AET-F2*RRE) -(XI2+ET2)/R3*CD - B4)*SD ) |
---|
| 356 | U31=U31+ UN*(-XI*Q2*AET*CD + (XI*Q/R3 - C1)*SD ) |
---|
| 357 | U32=U32+ UN*( D*Q/R3*CD + (XI2*Q*AET*CD - SD/R + Y*Q/R3 - C2)*SD ) |
---|
| 358 | |
---|
| 359 | if DISL2 <> F0: |
---|
| 360 | #C=================================== |
---|
| 361 | #C===== DIP-SLIP CONTRIBUTION ===== |
---|
| 362 | #C=================================== |
---|
| 363 | UN=DISL2/PI2 |
---|
| 364 | SDCD=SD*CD |
---|
| 365 | U1 =U1 - UN*( Q/R - A3*SDCD ) |
---|
| 366 | U2 =U2 - UN*( Y*Q*RRX + CD*TT - A1*SDCD ) |
---|
| 367 | U3 =U3 - UN*( D*Q*RRX + SD*TT - A5*SDCD ) |
---|
| 368 | U11=U11+ UN*( XI*Q/R3 + B3*SDCD ) |
---|
| 369 | U12=U12+ UN*( Y *Q/R3 - SD/R + B1*SDCD ) |
---|
| 370 | U21=U21+ UN*( Y *Q/R3 + Q*CD*RRE + B1*SDCD ) |
---|
| 371 | U22=U22+ UN*( Y*Y*Q*AXI - (F2*Y*RRX + XI*CD*RRE)*SD + B2*SDCD ) |
---|
| 372 | U31=U31+ UN*( D *Q/R3 + Q*SD*RRE + C3*SDCD ) |
---|
| 373 | U32=U32+ UN*( Y*D*Q*AXI - (F2*D*RRX + XI*SD*RRE)*SD + C1*SDCD ) |
---|
| 374 | |
---|
| 375 | if DISL3 <> F0: |
---|
| 376 | #C======================================== |
---|
| 377 | #C===== TENSILE-FAULT CONTRIBUTION ===== |
---|
| 378 | #C======================================== |
---|
| 379 | UN=DISL3/PI2 |
---|
| 380 | SDSD=SD*SD |
---|
| 381 | U1 =U1 + UN*( Q2*RRE - A3*SDSD ) |
---|
| 382 | U2 =U2 + UN*(-D*Q*RRX - SD*(XI*Q*RRE - TT) - A1*SDSD ) |
---|
| 383 | U3 =U3 + UN*( Y*Q*RRX + CD*(XI*Q*RRE - TT) - A5*SDSD ) |
---|
| 384 | U11=U11- UN*( XI*Q2*AET + B3*SDSD ) |
---|
| 385 | U12=U12- UN*(-D*Q/R3 - XI2*Q*AET*SD + B1*SDSD ) |
---|
| 386 | U21=U21- UN*( Q2*(CD/R3 + Q*AET*SD) + B1*SDSD ) |
---|
| 387 | U22=U22- UN*((Y*CD-D*SD)*Q2*AXI - F2*Q*SD*CD*RRX - (XI*Q2*AET - B2)*SDSD ) |
---|
| 388 | U31=U31- UN*( Q2*(SD/R3 - Q*AET*CD) + C3*SDSD ) |
---|
| 389 | U32=U32- UN*((Y*SD+D*CD)*Q2*AXI + XI*Q2*AET*SD*CD - (F2*Q*RRX - C1)*SDSD ) |
---|
| 390 | |
---|
| 391 | self.DU1 = U1 |
---|
| 392 | self.DU2 = U2 |
---|
| 393 | self.DU3 = U3 |
---|
| 394 | |
---|
| 395 | self.DU11 = U11 |
---|
| 396 | self.DU12 = U12 |
---|
| 397 | |
---|
| 398 | self.DU21 = U21 |
---|
| 399 | self.DU22 = U22 |
---|
| 400 | |
---|
| 401 | self.DU31 = U31 |
---|
| 402 | self.DU32 = U32 |
---|
| 403 | |
---|
| 404 | def spoint(self,alp,x,y,dep,sd,cd,pot1,pot2,pot3): |
---|
| 405 | """ Calculate surface displacement, strain, tilt due to buried point |
---|
| 406 | source in a semiinfinite medium. Y. Okada Jan 1985 |
---|
| 407 | |
---|
| 408 | Input: |
---|
| 409 | |
---|
| 410 | ALP : MEDIUM CONSTANT MYU/(LAMDA+MYU)=1./((VP/VS)**2-1) |
---|
| 411 | X,Y : COORDINATE OF STATION |
---|
| 412 | DEP : SOURCE DEPTH |
---|
| 413 | SD,CD : SIN,COS OF DIP-ANGLE |
---|
| 414 | (CD=0.D0, SD=+/-1.D0 SHOULD BE GIVEN FOR VERTICAL FAULT) |
---|
| 415 | POT1,POT2,POT3 : STRIKE-, DIP- AND TENSILE-POTENCY |
---|
| 416 | POTENCY=( MOMENT OF DOUBLE-COUPLE )/MYU FOR POT1,2 |
---|
| 417 | POTENCY=(INTENSITY OF ISOTROPIC PART)/LAMDA FOR POT3 |
---|
| 418 | |
---|
| 419 | Output: |
---|
| 420 | |
---|
| 421 | U1, U2, U3 : DISPLACEMENT ( UNIT=(UNIT OF POTENCY) / |
---|
| 422 | : (UNIT OF X,Y,D)**2 ) |
---|
| 423 | U11,U12,U21,U22 : STRAIN ( UNIT= UNIT OF POTENCY) / |
---|
| 424 | U31,U32 : TILT (UNIT OF X,Y,D)**3 ) |
---|
| 425 | """ |
---|
| 426 | |
---|
| 427 | from math import sqrt |
---|
| 428 | |
---|
| 429 | F0 = 0.0 |
---|
| 430 | F1 = 1.0 |
---|
| 431 | F2 = 2.0 |
---|
| 432 | F3 = 3.0 |
---|
| 433 | F4 = 4.0 |
---|
| 434 | F5 = 5.0 |
---|
| 435 | F8 = 8.0 |
---|
| 436 | F9 = 9.0 |
---|
| 437 | PI2 = 6.283185307179586 |
---|
| 438 | |
---|
| 439 | D =DEP |
---|
| 440 | P =Y*CD + D*SD |
---|
| 441 | Q =Y*SD - D*CD |
---|
| 442 | S =P*SD + Q*CD |
---|
| 443 | X2=X*X |
---|
| 444 | Y2=Y*Y |
---|
| 445 | XY=X*Y |
---|
| 446 | D2=D*D |
---|
| 447 | R2=X2 + Y2 + D2 |
---|
| 448 | R =sqrt(R2) |
---|
| 449 | R3=R *R2 |
---|
[4371] | 450 | R5=R3*R2 |
---|
| 451 | QR=F3*Q/R5 |
---|
[4320] | 452 | XR =F5*X2/R2 |
---|
| 453 | YR =F5*Y2/R2 |
---|
| 454 | XYR=F5*XY/R2 |
---|
| 455 | DR =F5*D /R2 |
---|
| 456 | RD =R + D |
---|
| 457 | R12=F1/(R*RD*RD) |
---|
| 458 | R32=R12*(F2*R + D)/ R2 |
---|
| 459 | R33=R12*(F3*R + D)/(R2*RD) |
---|
| 460 | R53=R12*(F8*R2 + F9*R*D + F3*D2)/(R2*R2*RD) |
---|
| 461 | R54=R12*(F5*R2 + F4*R*D + D2)/R3*R12 |
---|
| 462 | |
---|
| 463 | A1= ALP*Y*(R12-X2*R33) |
---|
| 464 | A2= ALP*X*(R12-Y2*R33) |
---|
| 465 | A3= ALP*X/R3 - A2 |
---|
| 466 | A4=-ALP*XY*R32 |
---|
| 467 | A5= ALP*( F1/(R*RD) - X2*R32 ) |
---|
| 468 | B1= ALP*(-F3*XY*R33 + F3*X2*XY*R54) |
---|
| 469 | B2= ALP*( F1/R3 - F3*R12 + F3*X2*Y2*R54) |
---|
| 470 | B3= ALP*( F1/R3 - F3*X2/R5) - B2 |
---|
| 471 | B4=-ALP*F3*XY/R5 - B1 |
---|
| 472 | C1=-ALP*Y*(R32 - X2*R53) |
---|
| 473 | C2=-ALP*X*(R32 - Y2*R53) |
---|
| 474 | C3=-ALP*F3*X*D/R5 - C2 |
---|
| 475 | |
---|
| 476 | U1 =F0 |
---|
| 477 | U2 =F0 |
---|
| 478 | U3 =F0 |
---|
| 479 | U11=F0 |
---|
| 480 | U12=F0 |
---|
| 481 | U21=F0 |
---|
| 482 | U22=F0 |
---|
| 483 | U31=F0 |
---|
| 484 | U32=F0 |
---|
| 485 | |
---|
| 486 | #====================================== |
---|
| 487 | #===== STRIKE-SLIP CONTRIBUTION ===== |
---|
| 488 | #====================================== |
---|
| 489 | |
---|
| 490 | if POT1 <> F0: |
---|
| 491 | UN=POT1/PI2 |
---|
| 492 | QRX=QR*X |
---|
| 493 | FX=F3*X/R5*SD |
---|
| 494 | U1 =U1 - UN*( QRX*X + A1*SD ) |
---|
| 495 | U2 =U2 - UN*( QRX*Y + A2*SD ) |
---|
| 496 | U3 =U3 - UN*( QRX*D + A4*SD ) |
---|
| 497 | |
---|
| 498 | U11=U11- UN*( QRX* (F2-XR) + B1*SD ) |
---|
| 499 | U12=U12- UN*(-QRX*XYR + FX*X + B2*SD ) |
---|
| 500 | U21=U21- UN*( QR*Y*(F1-XR) + B2*SD ) |
---|
| 501 | U22=U22- UN*( QRX *(F1-YR) + FX*Y + B4*SD ) |
---|
| 502 | U31=U31- UN*( QR*D*(F1-XR) + C1*SD ) |
---|
| 503 | U32=U32- UN*(-QRX*DR*Y + FX*D + C2*SD ) |
---|
| 504 | |
---|
| 505 | #====================================== |
---|
| 506 | #===== DIP-SLIP CONTRIBUTION ===== |
---|
| 507 | #====================================== |
---|
| 508 | |
---|
| 509 | if POT2 <> F0: |
---|
| 510 | UN=POT2/PI2 |
---|
| 511 | SDCD=SD*CD |
---|
| 512 | QRP=QR*P |
---|
| 513 | FS=F3*S/R5 |
---|
| 514 | U1 =U1 - UN*( QRP*X - A3*SDCD ) |
---|
| 515 | U2 =U2 - UN*( QRP*Y - A1*SDCD ) |
---|
| 516 | U3 =U3 - UN*( QRP*D - A5*SDCD ) |
---|
| 517 | U11=U11- UN*( QRP*(F1-XR) - B3*SDCD ) |
---|
| 518 | U12=U12- UN*(-QRP*XYR + FS*X - B1*SDCD ) |
---|
| 519 | U21=U21- UN*(-QRP*XYR - B1*SDCD ) |
---|
| 520 | U22=U22- UN*( QRP*(F1-YR) + FS*Y - B2*SDCD ) |
---|
| 521 | U31=U31- UN*(-QRP*DR*X - C3*SDCD ) |
---|
| 522 | U32=U32- UN*(-QRP*DR*Y + FS*D - C1*SDCD ) |
---|
| 523 | |
---|
| 524 | #======================================== |
---|
| 525 | #===== TENSILE-FAULT CONTRIBUTION ===== |
---|
| 526 | #======================================== |
---|
| 527 | |
---|
| 528 | if POT3 <> F0: |
---|
| 529 | UN=POT3/PI2 |
---|
| 530 | SDSD=SD*SD |
---|
| 531 | QRQ=QR*Q |
---|
| 532 | FQ=F2*QR*SD |
---|
| 533 | U1 =U1 + UN*( QRQ*X - A3*SDSD ) |
---|
| 534 | U2 =U2 + UN*( QRQ*Y - A1*SDSD ) |
---|
| 535 | U3 =U3 + UN*( QRQ*D - A5*SDSD ) |
---|
| 536 | U11=U11+ UN*( QRQ*(F1-XR) - B3*SDSD ) |
---|
| 537 | U12=U12+ UN*(-QRQ*XYR + FQ*X - B1*SDSD ) |
---|
| 538 | U21=U21+ UN*(-QRQ*XYR - B1*SDSD ) |
---|
| 539 | U22=U22+ UN*( QRQ*(F1-YR) + FQ*Y - B2*SDSD ) |
---|
| 540 | U31=U31+ UN*(-QRQ*DR*X - C3*SDSD ) |
---|
| 541 | U32=U32+ UN*(-QRQ*DR*Y + FQ*D - C1*SDSD ) |
---|
| 542 | |
---|