[6410] | 1 | """ |
---|
| 2 | Finite-volume computations of the shallow water wave equation. |
---|
[4004] | 3 | |
---|
[4005] | 4 | Title: ANGUA shallow_water_domain - 2D triangular domains for finite-volume |
---|
| 5 | computations of the shallow water wave equation. |
---|
[3804] | 6 | |
---|
| 7 | |
---|
[5186] | 8 | Author: Ole Nielsen, Ole.Nielsen@ga.gov.au |
---|
| 9 | Stephen Roberts, Stephen.Roberts@anu.edu.au |
---|
| 10 | Duncan Gray, Duncan.Gray@ga.gov.au |
---|
[4004] | 11 | |
---|
| 12 | CreationDate: 2004 |
---|
| 13 | |
---|
| 14 | Description: |
---|
[4005] | 15 | This module contains a specialisation of class Domain from |
---|
| 16 | module domain.py consisting of methods specific to the |
---|
| 17 | Shallow Water Wave Equation |
---|
[4004] | 18 | |
---|
[4005] | 19 | U_t + E_x + G_y = S |
---|
[3804] | 20 | |
---|
[4005] | 21 | where |
---|
[3804] | 22 | |
---|
[4005] | 23 | U = [w, uh, vh] |
---|
| 24 | E = [uh, u^2h + gh^2/2, uvh] |
---|
| 25 | G = [vh, uvh, v^2h + gh^2/2] |
---|
| 26 | S represents source terms forcing the system |
---|
| 27 | (e.g. gravity, friction, wind stress, ...) |
---|
[3804] | 28 | |
---|
[4005] | 29 | and _t, _x, _y denote the derivative with respect to t, x and y |
---|
| 30 | respectively. |
---|
[3804] | 31 | |
---|
| 32 | |
---|
[4005] | 33 | The quantities are |
---|
[3804] | 34 | |
---|
[4005] | 35 | symbol variable name explanation |
---|
| 36 | x x horizontal distance from origin [m] |
---|
| 37 | y y vertical distance from origin [m] |
---|
| 38 | z elevation elevation of bed on which flow is modelled [m] |
---|
| 39 | h height water height above z [m] |
---|
| 40 | w stage absolute water level, w = z+h [m] |
---|
| 41 | u speed in the x direction [m/s] |
---|
| 42 | v speed in the y direction [m/s] |
---|
| 43 | uh xmomentum momentum in the x direction [m^2/s] |
---|
| 44 | vh ymomentum momentum in the y direction [m^2/s] |
---|
[3804] | 45 | |
---|
[4005] | 46 | eta mannings friction coefficient [to appear] |
---|
| 47 | nu wind stress coefficient [to appear] |
---|
[3804] | 48 | |
---|
[4005] | 49 | The conserved quantities are w, uh, vh |
---|
[3804] | 50 | |
---|
[4004] | 51 | Reference: |
---|
[4005] | 52 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
| 53 | Christopher Zoppou and Stephen Roberts, |
---|
| 54 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
[3804] | 55 | |
---|
[6410] | 56 | Hydrodynamic modelling of coastal inundation. |
---|
[4005] | 57 | Nielsen, O., S. Roberts, D. Gray, A. McPherson and A. Hitchman |
---|
| 58 | In Zerger, A. and Argent, R.M. (eds) MODSIM 2005 International Congress on |
---|
| 59 | Modelling and Simulation. Modelling and Simulation Society of Australia and |
---|
| 60 | New Zealand, December 2005, pp. 518-523. ISBN: 0-9758400-2-9. |
---|
| 61 | http://www.mssanz.org.au/modsim05/papers/nielsen.pdf |
---|
[3804] | 62 | |
---|
| 63 | |
---|
[4005] | 64 | SeeAlso: |
---|
| 65 | TRAC administration of ANUGA (User Manuals etc) at |
---|
| 66 | https://datamining.anu.edu.au/anuga and Subversion repository at |
---|
| 67 | $HeadURL: branches/numpy/anuga/shallow_water/shallow_water_domain.py $ |
---|
[3804] | 68 | |
---|
[4004] | 69 | Constraints: See GPL license in the user guide |
---|
| 70 | Version: 1.0 ($Revision: 6410 $) |
---|
| 71 | ModifiedBy: |
---|
[4005] | 72 | $Author: rwilson $ |
---|
| 73 | $Date: 2009-02-24 22:37:22 +0000 (Tue, 24 Feb 2009) $ |
---|
[3804] | 74 | """ |
---|
| 75 | |
---|
[4769] | 76 | # Subversion keywords: |
---|
[3804] | 77 | # |
---|
[4769] | 78 | # $LastChangedDate: 2009-02-24 22:37:22 +0000 (Tue, 24 Feb 2009) $ |
---|
| 79 | # $LastChangedRevision: 6410 $ |
---|
| 80 | # $LastChangedBy: rwilson $ |
---|
[3804] | 81 | |
---|
[6410] | 82 | |
---|
[6304] | 83 | import numpy as num |
---|
[3804] | 84 | |
---|
[5729] | 85 | from anuga.abstract_2d_finite_volumes.neighbour_mesh import segment_midpoints |
---|
[3804] | 86 | from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_Domain |
---|
| 87 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
| 88 | import Boundary |
---|
| 89 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
| 90 | import File_boundary |
---|
| 91 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
| 92 | import Dirichlet_boundary |
---|
| 93 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
| 94 | import Time_boundary |
---|
| 95 | from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ |
---|
| 96 | import Transmissive_boundary |
---|
[6178] | 97 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
[5294] | 98 | from anuga.utilities.numerical_tools import gradient, mean, ensure_numeric |
---|
[5730] | 99 | from anuga.geospatial_data.geospatial_data import ensure_geospatial |
---|
| 100 | |
---|
[3804] | 101 | from anuga.config import minimum_storable_height |
---|
| 102 | from anuga.config import minimum_allowed_height, maximum_allowed_speed |
---|
[5442] | 103 | from anuga.config import g, epsilon, beta_w, beta_w_dry,\ |
---|
[4631] | 104 | beta_uh, beta_uh_dry, beta_vh, beta_vh_dry, tight_slope_limiters |
---|
[3876] | 105 | from anuga.config import alpha_balance |
---|
[4685] | 106 | from anuga.config import optimise_dry_cells |
---|
[5162] | 107 | from anuga.config import optimised_gradient_limiter |
---|
[5175] | 108 | from anuga.config import use_edge_limiter |
---|
[5290] | 109 | from anuga.config import use_centroid_velocities |
---|
[6086] | 110 | from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a |
---|
[3804] | 111 | |
---|
[6410] | 112 | from anuga.fit_interpolate.interpolate import Modeltime_too_late, \ |
---|
| 113 | Modeltime_too_early |
---|
[5290] | 114 | |
---|
[6410] | 115 | from anuga.utilities.polygon import inside_polygon, polygon_area, \ |
---|
| 116 | is_inside_polygon |
---|
[5294] | 117 | |
---|
[5873] | 118 | from types import IntType, FloatType |
---|
[5874] | 119 | from warnings import warn |
---|
[5294] | 120 | |
---|
| 121 | |
---|
[6410] | 122 | ################################################################################ |
---|
| 123 | # Shallow water domain |
---|
| 124 | ################################################################################ |
---|
[6178] | 125 | |
---|
[6410] | 126 | ## |
---|
| 127 | # @brief Class for a shallow water domain. |
---|
[3804] | 128 | class Domain(Generic_Domain): |
---|
| 129 | |
---|
[4454] | 130 | conserved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 131 | other_quantities = ['elevation', 'friction'] |
---|
[6410] | 132 | |
---|
| 133 | ## |
---|
| 134 | # @brief Instantiate a shallow water domain. |
---|
| 135 | # @param coordinates |
---|
| 136 | # @param vertices |
---|
| 137 | # @param boundary |
---|
| 138 | # @param tagged_elements |
---|
| 139 | # @param geo_reference |
---|
| 140 | # @param use_inscribed_circle |
---|
| 141 | # @param mesh_filename |
---|
| 142 | # @param use_cache |
---|
| 143 | # @param verbose |
---|
| 144 | # @param full_send_dict |
---|
| 145 | # @param ghost_recv_dict |
---|
| 146 | # @param processor |
---|
| 147 | # @param numproc |
---|
| 148 | # @param number_of_full_nodes |
---|
| 149 | # @param number_of_full_triangles |
---|
[3804] | 150 | def __init__(self, |
---|
| 151 | coordinates=None, |
---|
| 152 | vertices=None, |
---|
| 153 | boundary=None, |
---|
| 154 | tagged_elements=None, |
---|
| 155 | geo_reference=None, |
---|
| 156 | use_inscribed_circle=False, |
---|
| 157 | mesh_filename=None, |
---|
| 158 | use_cache=False, |
---|
| 159 | verbose=False, |
---|
| 160 | full_send_dict=None, |
---|
| 161 | ghost_recv_dict=None, |
---|
| 162 | processor=0, |
---|
[3926] | 163 | numproc=1, |
---|
[3928] | 164 | number_of_full_nodes=None, |
---|
| 165 | number_of_full_triangles=None): |
---|
[3804] | 166 | |
---|
| 167 | other_quantities = ['elevation', 'friction'] |
---|
| 168 | Generic_Domain.__init__(self, |
---|
| 169 | coordinates, |
---|
| 170 | vertices, |
---|
| 171 | boundary, |
---|
[4454] | 172 | Domain.conserved_quantities, |
---|
| 173 | Domain.other_quantities, |
---|
[3804] | 174 | tagged_elements, |
---|
| 175 | geo_reference, |
---|
| 176 | use_inscribed_circle, |
---|
| 177 | mesh_filename, |
---|
| 178 | use_cache, |
---|
| 179 | verbose, |
---|
| 180 | full_send_dict, |
---|
| 181 | ghost_recv_dict, |
---|
| 182 | processor, |
---|
[3926] | 183 | numproc, |
---|
| 184 | number_of_full_nodes=number_of_full_nodes, |
---|
[6410] | 185 | number_of_full_triangles=number_of_full_triangles) |
---|
[3804] | 186 | |
---|
[6410] | 187 | self.set_minimum_allowed_height(minimum_allowed_height) |
---|
[4769] | 188 | |
---|
[3804] | 189 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
| 190 | self.g = g |
---|
[6410] | 191 | self.beta_w = beta_w |
---|
| 192 | self.beta_w_dry = beta_w_dry |
---|
| 193 | self.beta_uh = beta_uh |
---|
[3804] | 194 | self.beta_uh_dry = beta_uh_dry |
---|
[6410] | 195 | self.beta_vh = beta_vh |
---|
[3804] | 196 | self.beta_vh_dry = beta_vh_dry |
---|
[3876] | 197 | self.alpha_balance = alpha_balance |
---|
[3804] | 198 | |
---|
[4631] | 199 | self.tight_slope_limiters = tight_slope_limiters |
---|
[4685] | 200 | self.optimise_dry_cells = optimise_dry_cells |
---|
[4239] | 201 | |
---|
[4769] | 202 | self.forcing_terms.append(manning_friction_implicit) |
---|
[3804] | 203 | self.forcing_terms.append(gravity) |
---|
| 204 | |
---|
[4701] | 205 | # Stored output |
---|
[3804] | 206 | self.store = True |
---|
| 207 | self.format = 'sww' |
---|
| 208 | self.set_store_vertices_uniquely(False) |
---|
| 209 | self.minimum_storable_height = minimum_storable_height |
---|
[6410] | 210 | self.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
[5162] | 211 | |
---|
| 212 | # Limiters |
---|
[5175] | 213 | self.use_edge_limiter = use_edge_limiter |
---|
[5162] | 214 | self.optimised_gradient_limiter = optimised_gradient_limiter |
---|
[5290] | 215 | self.use_centroid_velocities = use_centroid_velocities |
---|
[3804] | 216 | |
---|
[6410] | 217 | ## |
---|
| 218 | # @brief |
---|
| 219 | # @param beta |
---|
[3848] | 220 | def set_all_limiters(self, beta): |
---|
[6410] | 221 | """Shorthand to assign one constant value [0,1] to all limiters. |
---|
[3847] | 222 | 0 Corresponds to first order, where as larger values make use of |
---|
[6410] | 223 | the second order scheme. |
---|
[3847] | 224 | """ |
---|
[3804] | 225 | |
---|
[6410] | 226 | self.beta_w = beta |
---|
| 227 | self.beta_w_dry = beta |
---|
[5162] | 228 | self.quantities['stage'].beta = beta |
---|
[6410] | 229 | |
---|
| 230 | self.beta_uh = beta |
---|
[3847] | 231 | self.beta_uh_dry = beta |
---|
[5162] | 232 | self.quantities['xmomentum'].beta = beta |
---|
[6410] | 233 | |
---|
| 234 | self.beta_vh = beta |
---|
[3847] | 235 | self.beta_vh_dry = beta |
---|
[5162] | 236 | self.quantities['ymomentum'].beta = beta |
---|
[3847] | 237 | |
---|
[6410] | 238 | ## |
---|
| 239 | # @brief |
---|
| 240 | # @param flag |
---|
| 241 | # @param reduction |
---|
[3804] | 242 | def set_store_vertices_uniquely(self, flag, reduction=None): |
---|
| 243 | """Decide whether vertex values should be stored uniquely as |
---|
| 244 | computed in the model or whether they should be reduced to one |
---|
| 245 | value per vertex using self.reduction. |
---|
| 246 | """ |
---|
[3954] | 247 | |
---|
| 248 | # FIXME (Ole): how about using the word continuous vertex values? |
---|
[3804] | 249 | self.smooth = not flag |
---|
| 250 | |
---|
[4733] | 251 | # Reduction operation for get_vertex_values |
---|
[3804] | 252 | if reduction is None: |
---|
| 253 | self.reduction = mean |
---|
| 254 | #self.reduction = min #Looks better near steep slopes |
---|
| 255 | |
---|
[6410] | 256 | ## |
---|
| 257 | # @brief Set the minimum depth that will be written to an SWW file. |
---|
| 258 | # @param minimum_storable_height The minimum stored height (in m). |
---|
[3804] | 259 | def set_minimum_storable_height(self, minimum_storable_height): |
---|
[6410] | 260 | """Set the minimum depth that will be recognised when writing |
---|
[3804] | 261 | to an sww file. This is useful for removing thin water layers |
---|
| 262 | that seems to be caused by friction creep. |
---|
| 263 | |
---|
| 264 | The minimum allowed sww depth is in meters. |
---|
| 265 | """ |
---|
[6410] | 266 | |
---|
[3804] | 267 | self.minimum_storable_height = minimum_storable_height |
---|
[4258] | 268 | |
---|
[6410] | 269 | ## |
---|
| 270 | # @brief |
---|
| 271 | # @param minimum_allowed_height |
---|
[4258] | 272 | def set_minimum_allowed_height(self, minimum_allowed_height): |
---|
[6410] | 273 | """Set the minimum depth recognised in the numerical scheme. |
---|
[4258] | 274 | |
---|
| 275 | The minimum allowed depth is in meters. |
---|
| 276 | |
---|
| 277 | The parameter H0 (Minimal height for flux computation) |
---|
| 278 | is also set by this function |
---|
| 279 | """ |
---|
[4438] | 280 | |
---|
| 281 | #FIXME (Ole): rename H0 to minimum_allowed_height_in_flux_computation |
---|
[4701] | 282 | |
---|
| 283 | #FIXME (Ole): Maybe use histogram to identify isolated extreme speeds |
---|
| 284 | #and deal with them adaptively similarly to how we used to use 1 order |
---|
| 285 | #steps to recover. |
---|
[6410] | 286 | |
---|
[4258] | 287 | self.minimum_allowed_height = minimum_allowed_height |
---|
[6410] | 288 | self.H0 = minimum_allowed_height |
---|
[3804] | 289 | |
---|
[6410] | 290 | ## |
---|
| 291 | # @brief |
---|
| 292 | # @param maximum_allowed_speed |
---|
[3804] | 293 | def set_maximum_allowed_speed(self, maximum_allowed_speed): |
---|
[6410] | 294 | """Set the maximum particle speed that is allowed in water |
---|
[3804] | 295 | shallower than minimum_allowed_height. This is useful for |
---|
| 296 | controlling speeds in very thin layers of water and at the same time |
---|
| 297 | allow some movement avoiding pooling of water. |
---|
[6410] | 298 | """ |
---|
[3804] | 299 | |
---|
| 300 | self.maximum_allowed_speed = maximum_allowed_speed |
---|
| 301 | |
---|
[6410] | 302 | ## |
---|
| 303 | # @brief |
---|
| 304 | # @param points_file_block_line_size |
---|
| 305 | def set_points_file_block_line_size(self, points_file_block_line_size): |
---|
| 306 | """Set the minimum depth that will be recognised when writing |
---|
[4254] | 307 | to an sww file. This is useful for removing thin water layers |
---|
| 308 | that seems to be caused by friction creep. |
---|
| 309 | |
---|
| 310 | The minimum allowed sww depth is in meters. |
---|
| 311 | """ |
---|
| 312 | self.points_file_block_line_size = points_file_block_line_size |
---|
[6410] | 313 | |
---|
| 314 | ## |
---|
| 315 | # @brief Set the quantities that will be written to an SWW file. |
---|
| 316 | # @param q The quantities to be written. |
---|
| 317 | # @note Param 'q' may be None, single quantity or list of quantity strings. |
---|
| 318 | # @note If 'q' is None, no quantities will be stored in the SWW file. |
---|
[3804] | 319 | def set_quantities_to_be_stored(self, q): |
---|
| 320 | """Specify which quantities will be stored in the sww file. |
---|
| 321 | |
---|
| 322 | q must be either: |
---|
| 323 | - the name of a quantity |
---|
| 324 | - a list of quantity names |
---|
| 325 | - None |
---|
| 326 | |
---|
| 327 | In the two first cases, the named quantities will be stored at |
---|
| 328 | each yieldstep (This is in addition to the quantities elevation |
---|
| 329 | and friction) |
---|
[6410] | 330 | |
---|
[3804] | 331 | If q is None, storage will be switched off altogether. |
---|
| 332 | """ |
---|
| 333 | |
---|
| 334 | if q is None: |
---|
| 335 | self.quantities_to_be_stored = [] |
---|
| 336 | self.store = False |
---|
| 337 | return |
---|
| 338 | |
---|
| 339 | if isinstance(q, basestring): |
---|
| 340 | q = [q] # Turn argument into a list |
---|
| 341 | |
---|
[4701] | 342 | # Check correcness |
---|
[3804] | 343 | for quantity_name in q: |
---|
[6410] | 344 | msg = ('Quantity %s is not a valid conserved quantity' |
---|
| 345 | % quantity_name) |
---|
[3804] | 346 | assert quantity_name in self.conserved_quantities, msg |
---|
| 347 | |
---|
| 348 | self.quantities_to_be_stored = q |
---|
| 349 | |
---|
[6410] | 350 | ## |
---|
| 351 | # @brief |
---|
| 352 | # @param indices |
---|
[3804] | 353 | def get_wet_elements(self, indices=None): |
---|
| 354 | """Return indices for elements where h > minimum_allowed_height |
---|
| 355 | |
---|
| 356 | Optional argument: |
---|
| 357 | indices is the set of element ids that the operation applies to. |
---|
| 358 | |
---|
| 359 | Usage: |
---|
| 360 | indices = get_wet_elements() |
---|
| 361 | |
---|
[6410] | 362 | Note, centroid values are used for this operation |
---|
[3804] | 363 | """ |
---|
| 364 | |
---|
| 365 | # Water depth below which it is considered to be 0 in the model |
---|
| 366 | # FIXME (Ole): Allow this to be specified as a keyword argument as well |
---|
| 367 | from anuga.config import minimum_allowed_height |
---|
| 368 | |
---|
| 369 | elevation = self.get_quantity('elevation').\ |
---|
[6410] | 370 | get_values(location='centroids', indices=indices) |
---|
| 371 | stage = self.get_quantity('stage').\ |
---|
[3804] | 372 | get_values(location='centroids', indices=indices) |
---|
| 373 | depth = stage - elevation |
---|
| 374 | |
---|
| 375 | # Select indices for which depth > 0 |
---|
[6157] | 376 | wet_indices = num.compress(depth > minimum_allowed_height, |
---|
| 377 | num.arange(len(depth))) |
---|
[6410] | 378 | return wet_indices |
---|
[3804] | 379 | |
---|
[6410] | 380 | ## |
---|
| 381 | # @brief |
---|
| 382 | # @param indices |
---|
[3804] | 383 | def get_maximum_inundation_elevation(self, indices=None): |
---|
| 384 | """Return highest elevation where h > 0 |
---|
| 385 | |
---|
| 386 | Optional argument: |
---|
| 387 | indices is the set of element ids that the operation applies to. |
---|
| 388 | |
---|
| 389 | Usage: |
---|
| 390 | q = get_maximum_inundation_elevation() |
---|
| 391 | |
---|
[6410] | 392 | Note, centroid values are used for this operation |
---|
[3804] | 393 | """ |
---|
| 394 | |
---|
| 395 | wet_elements = self.get_wet_elements(indices) |
---|
| 396 | return self.get_quantity('elevation').\ |
---|
[6410] | 397 | get_maximum_value(indices=wet_elements) |
---|
[3804] | 398 | |
---|
[6410] | 399 | ## |
---|
| 400 | # @brief |
---|
| 401 | # @param indices |
---|
[3804] | 402 | def get_maximum_inundation_location(self, indices=None): |
---|
[4554] | 403 | """Return location of highest elevation where h > 0 |
---|
[3804] | 404 | |
---|
| 405 | Optional argument: |
---|
| 406 | indices is the set of element ids that the operation applies to. |
---|
| 407 | |
---|
| 408 | Usage: |
---|
[4554] | 409 | q = get_maximum_inundation_location() |
---|
[3804] | 410 | |
---|
[6410] | 411 | Note, centroid values are used for this operation |
---|
[3804] | 412 | """ |
---|
| 413 | |
---|
| 414 | wet_elements = self.get_wet_elements(indices) |
---|
| 415 | return self.get_quantity('elevation').\ |
---|
[6410] | 416 | get_maximum_location(indices=wet_elements) |
---|
| 417 | |
---|
| 418 | ## |
---|
| 419 | # @brief Get the total flow through an arbitrary poly line. |
---|
| 420 | # @param polyline Representation of desired cross section. |
---|
| 421 | # @param verbose True if this method is to be verbose. |
---|
| 422 | # @note 'polyline' may contain multiple sections allowing complex shapes. |
---|
| 423 | # @note Assume absolute UTM coordinates. |
---|
| 424 | def get_flow_through_cross_section(self, polyline, verbose=False): |
---|
| 425 | """Get the total flow through an arbitrary poly line. |
---|
| 426 | |
---|
| 427 | This is a run-time equivalent of the function with same name |
---|
[5736] | 428 | in data_manager.py |
---|
[6410] | 429 | |
---|
[5729] | 430 | Input: |
---|
[6410] | 431 | polyline: Representation of desired cross section - it may contain |
---|
| 432 | multiple sections allowing for complex shapes. Assume |
---|
[5729] | 433 | absolute UTM coordinates. |
---|
[6410] | 434 | Format [[x0, y0], [x1, y1], ...] |
---|
| 435 | |
---|
| 436 | Output: |
---|
[5729] | 437 | Q: Total flow [m^3/s] across given segments. |
---|
[6410] | 438 | """ |
---|
| 439 | |
---|
[5729] | 440 | # Find all intersections and associated triangles. |
---|
[6410] | 441 | segments = self.get_intersecting_segments(polyline, use_cache=True, |
---|
[5862] | 442 | verbose=verbose) |
---|
[3804] | 443 | |
---|
[5729] | 444 | # Get midpoints |
---|
[6410] | 445 | midpoints = segment_midpoints(segments) |
---|
| 446 | |
---|
[5730] | 447 | # Make midpoints Geospatial instances |
---|
[6410] | 448 | midpoints = ensure_geospatial(midpoints, self.geo_reference) |
---|
| 449 | |
---|
| 450 | # Compute flow |
---|
[5729] | 451 | if verbose: print 'Computing flow through specified cross section' |
---|
[6410] | 452 | |
---|
[5729] | 453 | # Get interpolated values |
---|
| 454 | xmomentum = self.get_quantity('xmomentum') |
---|
[6410] | 455 | ymomentum = self.get_quantity('ymomentum') |
---|
| 456 | |
---|
| 457 | uh = xmomentum.get_values(interpolation_points=midpoints, |
---|
| 458 | use_cache=True) |
---|
| 459 | vh = ymomentum.get_values(interpolation_points=midpoints, |
---|
| 460 | use_cache=True) |
---|
| 461 | |
---|
[5729] | 462 | # Compute and sum flows across each segment |
---|
[6410] | 463 | total_flow = 0 |
---|
[5729] | 464 | for i in range(len(uh)): |
---|
[6410] | 465 | # Inner product of momentum vector with segment normal [m^2/s] |
---|
[5729] | 466 | normal = segments[i].normal |
---|
[6410] | 467 | normal_momentum = uh[i]*normal[0] + vh[i]*normal[1] |
---|
| 468 | |
---|
[5729] | 469 | # Flow across this segment [m^3/s] |
---|
| 470 | segment_flow = normal_momentum*segments[i].length |
---|
| 471 | |
---|
| 472 | # Accumulate |
---|
| 473 | total_flow += segment_flow |
---|
[6410] | 474 | |
---|
[5729] | 475 | return total_flow |
---|
[5736] | 476 | |
---|
[6410] | 477 | ## |
---|
| 478 | # @brief |
---|
| 479 | # @param polyline Representation of desired cross section. |
---|
| 480 | # @param kind Select energy type to compute ('specific' or 'total'). |
---|
| 481 | # @param verbose True if this method is to be verbose. |
---|
| 482 | # @note 'polyline' may contain multiple sections allowing complex shapes. |
---|
| 483 | # @note Assume absolute UTM coordinates. |
---|
[5736] | 484 | def get_energy_through_cross_section(self, polyline, |
---|
[5773] | 485 | kind='total', |
---|
[6410] | 486 | verbose=False): |
---|
[5736] | 487 | """Obtain average energy head [m] across specified cross section. |
---|
[5729] | 488 | |
---|
[5736] | 489 | Inputs: |
---|
[6410] | 490 | polyline: Representation of desired cross section - it may contain |
---|
| 491 | multiple sections allowing for complex shapes. Assume |
---|
[5736] | 492 | absolute UTM coordinates. |
---|
| 493 | Format [[x0, y0], [x1, y1], ...] |
---|
[6410] | 494 | kind: Select which energy to compute. |
---|
[5736] | 495 | Options are 'specific' and 'total' (default) |
---|
| 496 | |
---|
| 497 | Output: |
---|
| 498 | E: Average energy [m] across given segments for all stored times. |
---|
| 499 | |
---|
[6410] | 500 | The average velocity is computed for each triangle intersected by |
---|
| 501 | the polyline and averaged weighted by segment lengths. |
---|
[5736] | 502 | |
---|
[6410] | 503 | The typical usage of this function would be to get average energy of |
---|
| 504 | flow in a channel, and the polyline would then be a cross section |
---|
[5736] | 505 | perpendicular to the flow. |
---|
| 506 | |
---|
[6410] | 507 | #FIXME (Ole) - need name for this energy reflecting that its dimension |
---|
[5736] | 508 | is [m]. |
---|
| 509 | """ |
---|
| 510 | |
---|
[6410] | 511 | from anuga.config import g, epsilon, velocity_protection as h0 |
---|
| 512 | |
---|
[5736] | 513 | # Find all intersections and associated triangles. |
---|
[6410] | 514 | segments = self.get_intersecting_segments(polyline, use_cache=True, |
---|
[5862] | 515 | verbose=verbose) |
---|
[5736] | 516 | |
---|
| 517 | # Get midpoints |
---|
[6410] | 518 | midpoints = segment_midpoints(segments) |
---|
| 519 | |
---|
[5736] | 520 | # Make midpoints Geospatial instances |
---|
[6410] | 521 | midpoints = ensure_geospatial(midpoints, self.geo_reference) |
---|
| 522 | |
---|
| 523 | # Compute energy |
---|
| 524 | if verbose: print 'Computing %s energy' %kind |
---|
| 525 | |
---|
[5736] | 526 | # Get interpolated values |
---|
[6410] | 527 | stage = self.get_quantity('stage') |
---|
| 528 | elevation = self.get_quantity('elevation') |
---|
[5736] | 529 | xmomentum = self.get_quantity('xmomentum') |
---|
[6410] | 530 | ymomentum = self.get_quantity('ymomentum') |
---|
[5736] | 531 | |
---|
[5866] | 532 | w = stage.get_values(interpolation_points=midpoints, use_cache=True) |
---|
[6410] | 533 | z = elevation.get_values(interpolation_points=midpoints, use_cache=True) |
---|
| 534 | uh = xmomentum.get_values(interpolation_points=midpoints, |
---|
| 535 | use_cache=True) |
---|
| 536 | vh = ymomentum.get_values(interpolation_points=midpoints, |
---|
| 537 | use_cache=True) |
---|
| 538 | h = w-z # Depth |
---|
| 539 | |
---|
[5736] | 540 | # Compute total length of polyline for use with weighted averages |
---|
| 541 | total_line_length = 0.0 |
---|
| 542 | for segment in segments: |
---|
| 543 | total_line_length += segment.length |
---|
[6410] | 544 | |
---|
[5736] | 545 | # Compute and sum flows across each segment |
---|
[6410] | 546 | average_energy = 0.0 |
---|
[5736] | 547 | for i in range(len(w)): |
---|
| 548 | # Average velocity across this segment |
---|
| 549 | if h[i] > epsilon: |
---|
| 550 | # Use protection against degenerate velocities |
---|
| 551 | u = uh[i]/(h[i] + h0/h[i]) |
---|
| 552 | v = vh[i]/(h[i] + h0/h[i]) |
---|
| 553 | else: |
---|
| 554 | u = v = 0.0 |
---|
[6410] | 555 | |
---|
| 556 | speed_squared = u*u + v*v |
---|
[5736] | 557 | kinetic_energy = 0.5*speed_squared/g |
---|
[6410] | 558 | |
---|
[5736] | 559 | if kind == 'specific': |
---|
| 560 | segment_energy = h[i] + kinetic_energy |
---|
| 561 | elif kind == 'total': |
---|
[6410] | 562 | segment_energy = w[i] + kinetic_energy |
---|
[5736] | 563 | else: |
---|
| 564 | msg = 'Energy kind must be either "specific" or "total".' |
---|
| 565 | msg += ' I got %s' %kind |
---|
| 566 | |
---|
| 567 | # Add to weighted average |
---|
| 568 | weigth = segments[i].length/total_line_length |
---|
| 569 | average_energy += segment_energy*weigth |
---|
[6410] | 570 | |
---|
[5736] | 571 | return average_energy |
---|
| 572 | |
---|
[6410] | 573 | ## |
---|
| 574 | # @brief Run integrity checks on shallow water domain. |
---|
[3804] | 575 | def check_integrity(self): |
---|
[6410] | 576 | Generic_Domain.check_integrity(self) # super integrity check |
---|
[3804] | 577 | |
---|
| 578 | #Check that we are solving the shallow water wave equation |
---|
| 579 | msg = 'First conserved quantity must be "stage"' |
---|
| 580 | assert self.conserved_quantities[0] == 'stage', msg |
---|
| 581 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
| 582 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
| 583 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
| 584 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
| 585 | |
---|
[6410] | 586 | ## |
---|
| 587 | # @brief |
---|
[3804] | 588 | def extrapolate_second_order_sw(self): |
---|
[6410] | 589 | #Call correct module function (either from this module or C-extension) |
---|
[3804] | 590 | extrapolate_second_order_sw(self) |
---|
| 591 | |
---|
[6410] | 592 | ## |
---|
| 593 | # @brief |
---|
[3804] | 594 | def compute_fluxes(self): |
---|
[6410] | 595 | #Call correct module function (either from this module or C-extension) |
---|
[3804] | 596 | compute_fluxes(self) |
---|
| 597 | |
---|
[6410] | 598 | ## |
---|
| 599 | # @brief |
---|
[3804] | 600 | def distribute_to_vertices_and_edges(self): |
---|
[4769] | 601 | # Call correct module function |
---|
[5176] | 602 | if self.use_edge_limiter: |
---|
[6410] | 603 | distribute_using_edge_limiter(self) |
---|
[5175] | 604 | else: |
---|
[5306] | 605 | distribute_using_vertex_limiter(self) |
---|
[3804] | 606 | |
---|
[6410] | 607 | ## |
---|
| 608 | # @brief Evolve the model by one step. |
---|
| 609 | # @param yieldstep |
---|
| 610 | # @param finaltime |
---|
| 611 | # @param duration |
---|
| 612 | # @param skip_initial_step |
---|
[3804] | 613 | def evolve(self, |
---|
[6410] | 614 | yieldstep=None, |
---|
| 615 | finaltime=None, |
---|
| 616 | duration=None, |
---|
| 617 | skip_initial_step=False): |
---|
| 618 | """Specialisation of basic evolve method from parent class""" |
---|
[3804] | 619 | |
---|
[4769] | 620 | # Call check integrity here rather than from user scripts |
---|
| 621 | # self.check_integrity() |
---|
[3804] | 622 | |
---|
[6410] | 623 | msg = 'Attribute self.beta_w must be in the interval [0, 2]' |
---|
[5162] | 624 | assert 0 <= self.beta_w <= 2.0, msg |
---|
[3804] | 625 | |
---|
[4769] | 626 | # Initial update of vertex and edge values before any STORAGE |
---|
[6410] | 627 | # and or visualisation. |
---|
[4769] | 628 | # This is done again in the initialisation of the Generic_Domain |
---|
[6410] | 629 | # evolve loop but we do it here to ensure the values are ok for storage. |
---|
[3804] | 630 | self.distribute_to_vertices_and_edges() |
---|
| 631 | |
---|
| 632 | if self.store is True and self.time == 0.0: |
---|
| 633 | self.initialise_storage() |
---|
| 634 | else: |
---|
| 635 | pass |
---|
[4769] | 636 | # print 'Results will not be stored.' |
---|
| 637 | # print 'To store results set domain.store = True' |
---|
| 638 | # FIXME: Diagnostic output should be controlled by |
---|
[3804] | 639 | # a 'verbose' flag living in domain (or in a parent class) |
---|
| 640 | |
---|
[4769] | 641 | # Call basic machinery from parent class |
---|
[6410] | 642 | for t in Generic_Domain.evolve(self, yieldstep=yieldstep, |
---|
| 643 | finaltime=finaltime, duration=duration, |
---|
[3804] | 644 | skip_initial_step=skip_initial_step): |
---|
[4769] | 645 | # Store model data, e.g. for subsequent visualisation |
---|
[3804] | 646 | if self.store is True: |
---|
| 647 | self.store_timestep(self.quantities_to_be_stored) |
---|
| 648 | |
---|
[4769] | 649 | # FIXME: Could maybe be taken from specified list |
---|
| 650 | # of 'store every step' quantities |
---|
[3804] | 651 | |
---|
[4769] | 652 | # Pass control on to outer loop for more specific actions |
---|
[3804] | 653 | yield(t) |
---|
| 654 | |
---|
[6410] | 655 | ## |
---|
| 656 | # @brief |
---|
[3804] | 657 | def initialise_storage(self): |
---|
| 658 | """Create and initialise self.writer object for storing data. |
---|
| 659 | Also, save x,y and bed elevation |
---|
| 660 | """ |
---|
| 661 | |
---|
| 662 | from anuga.shallow_water.data_manager import get_dataobject |
---|
| 663 | |
---|
[4769] | 664 | # Initialise writer |
---|
[6086] | 665 | self.writer = get_dataobject(self, mode=netcdf_mode_w) |
---|
[3804] | 666 | |
---|
[4769] | 667 | # Store vertices and connectivity |
---|
[3804] | 668 | self.writer.store_connectivity() |
---|
| 669 | |
---|
[6410] | 670 | ## |
---|
| 671 | # @brief |
---|
| 672 | # @param name |
---|
[3804] | 673 | def store_timestep(self, name): |
---|
| 674 | """Store named quantity and time. |
---|
| 675 | |
---|
| 676 | Precondition: |
---|
| 677 | self.write has been initialised |
---|
| 678 | """ |
---|
[6410] | 679 | |
---|
[3804] | 680 | self.writer.store_timestep(name) |
---|
| 681 | |
---|
[6410] | 682 | ## |
---|
| 683 | # @brief Get time stepping statistics string for printing. |
---|
| 684 | # @param track_speeds |
---|
| 685 | # @param triangle_id |
---|
[4836] | 686 | def timestepping_statistics(self, |
---|
| 687 | track_speeds=False, |
---|
[6410] | 688 | triangle_id=None): |
---|
[4827] | 689 | """Return string with time stepping statistics for printing or logging |
---|
[3804] | 690 | |
---|
[4827] | 691 | Optional boolean keyword track_speeds decides whether to report |
---|
| 692 | location of smallest timestep as well as a histogram and percentile |
---|
| 693 | report. |
---|
| 694 | """ |
---|
| 695 | |
---|
[6410] | 696 | from anuga.config import epsilon, g |
---|
[4827] | 697 | |
---|
| 698 | # Call basic machinery from parent class |
---|
[6410] | 699 | msg = Generic_Domain.timestepping_statistics(self, track_speeds, |
---|
[4836] | 700 | triangle_id) |
---|
[4827] | 701 | |
---|
| 702 | if track_speeds is True: |
---|
| 703 | # qwidth determines the text field used for quantities |
---|
| 704 | qwidth = self.qwidth |
---|
[6410] | 705 | |
---|
[4836] | 706 | # Selected triangle |
---|
[4827] | 707 | k = self.k |
---|
| 708 | |
---|
| 709 | # Report some derived quantities at vertices, edges and centroid |
---|
| 710 | # specific to the shallow water wave equation |
---|
| 711 | z = self.quantities['elevation'] |
---|
[6410] | 712 | w = self.quantities['stage'] |
---|
[4827] | 713 | |
---|
| 714 | Vw = w.get_values(location='vertices', indices=[k])[0] |
---|
| 715 | Ew = w.get_values(location='edges', indices=[k])[0] |
---|
| 716 | Cw = w.get_values(location='centroids', indices=[k]) |
---|
| 717 | |
---|
| 718 | Vz = z.get_values(location='vertices', indices=[k])[0] |
---|
| 719 | Ez = z.get_values(location='edges', indices=[k])[0] |
---|
[6410] | 720 | Cz = z.get_values(location='centroids', indices=[k]) |
---|
[4827] | 721 | |
---|
| 722 | name = 'depth' |
---|
| 723 | Vh = Vw-Vz |
---|
| 724 | Eh = Ew-Ez |
---|
| 725 | Ch = Cw-Cz |
---|
[6410] | 726 | |
---|
[4827] | 727 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 728 | %(name.ljust(qwidth), Vh[0], Vh[1], Vh[2]) |
---|
[6410] | 729 | |
---|
[4827] | 730 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 731 | %(name.ljust(qwidth), Eh[0], Eh[1], Eh[2]) |
---|
[6410] | 732 | |
---|
[4827] | 733 | s += ' %s: centroid_value = %.4f\n'\ |
---|
[6410] | 734 | %(name.ljust(qwidth), Ch[0]) |
---|
| 735 | |
---|
[4827] | 736 | msg += s |
---|
| 737 | |
---|
| 738 | uh = self.quantities['xmomentum'] |
---|
| 739 | vh = self.quantities['ymomentum'] |
---|
| 740 | |
---|
| 741 | Vuh = uh.get_values(location='vertices', indices=[k])[0] |
---|
| 742 | Euh = uh.get_values(location='edges', indices=[k])[0] |
---|
| 743 | Cuh = uh.get_values(location='centroids', indices=[k]) |
---|
[6410] | 744 | |
---|
[4827] | 745 | Vvh = vh.get_values(location='vertices', indices=[k])[0] |
---|
| 746 | Evh = vh.get_values(location='edges', indices=[k])[0] |
---|
| 747 | Cvh = vh.get_values(location='centroids', indices=[k]) |
---|
| 748 | |
---|
| 749 | # Speeds in each direction |
---|
| 750 | Vu = Vuh/(Vh + epsilon) |
---|
| 751 | Eu = Euh/(Eh + epsilon) |
---|
[6410] | 752 | Cu = Cuh/(Ch + epsilon) |
---|
[4827] | 753 | name = 'U' |
---|
| 754 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 755 | %(name.ljust(qwidth), Vu[0], Vu[1], Vu[2]) |
---|
[6410] | 756 | |
---|
[4827] | 757 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 758 | %(name.ljust(qwidth), Eu[0], Eu[1], Eu[2]) |
---|
[6410] | 759 | |
---|
[4827] | 760 | s += ' %s: centroid_value = %.4f\n'\ |
---|
[6410] | 761 | %(name.ljust(qwidth), Cu[0]) |
---|
| 762 | |
---|
[4827] | 763 | msg += s |
---|
| 764 | |
---|
| 765 | Vv = Vvh/(Vh + epsilon) |
---|
| 766 | Ev = Evh/(Eh + epsilon) |
---|
[6410] | 767 | Cv = Cvh/(Ch + epsilon) |
---|
[4827] | 768 | name = 'V' |
---|
| 769 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 770 | %(name.ljust(qwidth), Vv[0], Vv[1], Vv[2]) |
---|
[6410] | 771 | |
---|
[4827] | 772 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 773 | %(name.ljust(qwidth), Ev[0], Ev[1], Ev[2]) |
---|
[6410] | 774 | |
---|
[4827] | 775 | s += ' %s: centroid_value = %.4f\n'\ |
---|
[6410] | 776 | %(name.ljust(qwidth), Cv[0]) |
---|
| 777 | |
---|
[4827] | 778 | msg += s |
---|
| 779 | |
---|
| 780 | # Froude number in each direction |
---|
| 781 | name = 'Froude (x)' |
---|
[6157] | 782 | Vfx = Vu/(num.sqrt(g*Vh) + epsilon) |
---|
| 783 | Efx = Eu/(num.sqrt(g*Eh) + epsilon) |
---|
| 784 | Cfx = Cu/(num.sqrt(g*Ch) + epsilon) |
---|
[6410] | 785 | |
---|
[4827] | 786 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 787 | %(name.ljust(qwidth), Vfx[0], Vfx[1], Vfx[2]) |
---|
[6410] | 788 | |
---|
[4827] | 789 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 790 | %(name.ljust(qwidth), Efx[0], Efx[1], Efx[2]) |
---|
[6410] | 791 | |
---|
[4827] | 792 | s += ' %s: centroid_value = %.4f\n'\ |
---|
[6410] | 793 | %(name.ljust(qwidth), Cfx[0]) |
---|
| 794 | |
---|
[4827] | 795 | msg += s |
---|
| 796 | |
---|
| 797 | name = 'Froude (y)' |
---|
[6157] | 798 | Vfy = Vv/(num.sqrt(g*Vh) + epsilon) |
---|
| 799 | Efy = Ev/(num.sqrt(g*Eh) + epsilon) |
---|
| 800 | Cfy = Cv/(num.sqrt(g*Ch) + epsilon) |
---|
[6410] | 801 | |
---|
[4827] | 802 | s = ' %s: vertex_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 803 | %(name.ljust(qwidth), Vfy[0], Vfy[1], Vfy[2]) |
---|
[6410] | 804 | |
---|
[4827] | 805 | s += ' %s: edge_values = %.4f,\t %.4f,\t %.4f\n'\ |
---|
| 806 | %(name.ljust(qwidth), Efy[0], Efy[1], Efy[2]) |
---|
[6410] | 807 | |
---|
[4827] | 808 | s += ' %s: centroid_value = %.4f\n'\ |
---|
[6410] | 809 | %(name.ljust(qwidth), Cfy[0]) |
---|
[4827] | 810 | |
---|
[6410] | 811 | msg += s |
---|
[4827] | 812 | |
---|
| 813 | return msg |
---|
| 814 | |
---|
[6410] | 815 | ################################################################################ |
---|
| 816 | # End of class Shallow Water Domain |
---|
| 817 | ################################################################################ |
---|
[3804] | 818 | |
---|
[4769] | 819 | #----------------- |
---|
[3804] | 820 | # Flux computation |
---|
[4769] | 821 | #----------------- |
---|
[3804] | 822 | |
---|
[6410] | 823 | ## @brief Compute fluxes and timestep suitable for all volumes in domain. |
---|
| 824 | # @param domain The domain to calculate fluxes for. |
---|
[3804] | 825 | def compute_fluxes(domain): |
---|
[6410] | 826 | """Compute fluxes and timestep suitable for all volumes in domain. |
---|
[3804] | 827 | |
---|
| 828 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 829 | |
---|
| 830 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 831 | Resulting flux is then scaled by area and stored in |
---|
| 832 | explicit_update for each of the three conserved quantities |
---|
| 833 | stage, xmomentum and ymomentum |
---|
| 834 | |
---|
| 835 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 836 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 837 | those is computed as the next overall timestep. |
---|
| 838 | |
---|
| 839 | Post conditions: |
---|
| 840 | domain.explicit_update is reset to computed flux values |
---|
| 841 | domain.timestep is set to the largest step satisfying all volumes. |
---|
[4769] | 842 | |
---|
| 843 | This wrapper calls the underlying C version of compute fluxes |
---|
[3804] | 844 | """ |
---|
| 845 | |
---|
| 846 | import sys |
---|
[6410] | 847 | from shallow_water_ext import compute_fluxes_ext_central \ |
---|
| 848 | as compute_fluxes_ext |
---|
[3804] | 849 | |
---|
[6410] | 850 | N = len(domain) # number_of_triangles |
---|
[3804] | 851 | |
---|
[4769] | 852 | # Shortcuts |
---|
[3804] | 853 | Stage = domain.quantities['stage'] |
---|
| 854 | Xmom = domain.quantities['xmomentum'] |
---|
| 855 | Ymom = domain.quantities['ymomentum'] |
---|
| 856 | Bed = domain.quantities['elevation'] |
---|
| 857 | |
---|
| 858 | timestep = float(sys.maxint) |
---|
| 859 | |
---|
[4769] | 860 | flux_timestep = compute_fluxes_ext(timestep, |
---|
| 861 | domain.epsilon, |
---|
| 862 | domain.H0, |
---|
| 863 | domain.g, |
---|
| 864 | domain.neighbours, |
---|
| 865 | domain.neighbour_edges, |
---|
| 866 | domain.normals, |
---|
| 867 | domain.edgelengths, |
---|
| 868 | domain.radii, |
---|
| 869 | domain.areas, |
---|
| 870 | domain.tri_full_flag, |
---|
| 871 | Stage.edge_values, |
---|
| 872 | Xmom.edge_values, |
---|
| 873 | Ymom.edge_values, |
---|
| 874 | Bed.edge_values, |
---|
| 875 | Stage.boundary_values, |
---|
| 876 | Xmom.boundary_values, |
---|
| 877 | Ymom.boundary_values, |
---|
| 878 | Stage.explicit_update, |
---|
| 879 | Xmom.explicit_update, |
---|
| 880 | Ymom.explicit_update, |
---|
| 881 | domain.already_computed_flux, |
---|
| 882 | domain.max_speed, |
---|
| 883 | int(domain.optimise_dry_cells)) |
---|
[3804] | 884 | |
---|
[4769] | 885 | domain.flux_timestep = flux_timestep |
---|
[3804] | 886 | |
---|
[6410] | 887 | ################################################################################ |
---|
[4769] | 888 | # Module functions for gradient limiting |
---|
[6410] | 889 | ################################################################################ |
---|
[3804] | 890 | |
---|
[6410] | 891 | ## |
---|
| 892 | # @brief Wrapper for C version of extrapolate_second_order_sw. |
---|
| 893 | # @param domain The domain to operate on. |
---|
| 894 | # @note MH090605 The following method belongs to the shallow_water domain class |
---|
| 895 | # see comments in the corresponding method in shallow_water_ext.c |
---|
| 896 | def extrapolate_second_order_sw(domain): |
---|
| 897 | """Wrapper calling C version of extrapolate_second_order_sw""" |
---|
[3804] | 898 | |
---|
| 899 | import sys |
---|
[6410] | 900 | from shallow_water_ext import extrapolate_second_order_sw as extrapol2 |
---|
[3804] | 901 | |
---|
[3928] | 902 | N = len(domain) # number_of_triangles |
---|
[3804] | 903 | |
---|
[4710] | 904 | # Shortcuts |
---|
[3804] | 905 | Stage = domain.quantities['stage'] |
---|
| 906 | Xmom = domain.quantities['xmomentum'] |
---|
| 907 | Ymom = domain.quantities['ymomentum'] |
---|
| 908 | Elevation = domain.quantities['elevation'] |
---|
[4710] | 909 | |
---|
[4769] | 910 | extrapol2(domain, |
---|
| 911 | domain.surrogate_neighbours, |
---|
| 912 | domain.number_of_boundaries, |
---|
| 913 | domain.centroid_coordinates, |
---|
| 914 | Stage.centroid_values, |
---|
| 915 | Xmom.centroid_values, |
---|
| 916 | Ymom.centroid_values, |
---|
| 917 | Elevation.centroid_values, |
---|
| 918 | domain.vertex_coordinates, |
---|
| 919 | Stage.vertex_values, |
---|
| 920 | Xmom.vertex_values, |
---|
| 921 | Ymom.vertex_values, |
---|
| 922 | Elevation.vertex_values, |
---|
[5315] | 923 | int(domain.optimise_dry_cells)) |
---|
[3804] | 924 | |
---|
[6410] | 925 | ## |
---|
| 926 | # @brief Distribution from centroids to vertices specific to the SWW eqn. |
---|
| 927 | # @param domain The domain to operate on. |
---|
[5306] | 928 | def distribute_using_vertex_limiter(domain): |
---|
[6410] | 929 | """Distribution from centroids to vertices specific to the SWW equation. |
---|
[3804] | 930 | |
---|
| 931 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 932 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 933 | and deep cases. |
---|
| 934 | |
---|
| 935 | In addition, all conserved quantities get distributed as per either a |
---|
| 936 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 937 | |
---|
| 938 | FIXME: more explanation about removal of artificial variability etc |
---|
| 939 | |
---|
| 940 | Precondition: |
---|
| 941 | All quantities defined at centroids and bed elevation defined at |
---|
| 942 | vertices. |
---|
| 943 | |
---|
| 944 | Postcondition |
---|
| 945 | Conserved quantities defined at vertices |
---|
| 946 | """ |
---|
| 947 | |
---|
[4769] | 948 | # Remove very thin layers of water |
---|
[3804] | 949 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 950 | |
---|
[4769] | 951 | # Extrapolate all conserved quantities |
---|
[5162] | 952 | if domain.optimised_gradient_limiter: |
---|
[4769] | 953 | # MH090605 if second order, |
---|
| 954 | # perform the extrapolation and limiting on |
---|
| 955 | # all of the conserved quantities |
---|
[3804] | 956 | |
---|
| 957 | if (domain._order_ == 1): |
---|
| 958 | for name in domain.conserved_quantities: |
---|
| 959 | Q = domain.quantities[name] |
---|
| 960 | Q.extrapolate_first_order() |
---|
| 961 | elif domain._order_ == 2: |
---|
| 962 | domain.extrapolate_second_order_sw() |
---|
| 963 | else: |
---|
| 964 | raise 'Unknown order' |
---|
| 965 | else: |
---|
[4769] | 966 | # Old code: |
---|
[3804] | 967 | for name in domain.conserved_quantities: |
---|
| 968 | Q = domain.quantities[name] |
---|
[4701] | 969 | |
---|
[3804] | 970 | if domain._order_ == 1: |
---|
| 971 | Q.extrapolate_first_order() |
---|
| 972 | elif domain._order_ == 2: |
---|
[5306] | 973 | Q.extrapolate_second_order_and_limit_by_vertex() |
---|
[3804] | 974 | else: |
---|
| 975 | raise 'Unknown order' |
---|
| 976 | |
---|
[5290] | 977 | # Take bed elevation into account when water heights are small |
---|
[3804] | 978 | balance_deep_and_shallow(domain) |
---|
| 979 | |
---|
[5290] | 980 | # Compute edge values by interpolation |
---|
[3804] | 981 | for name in domain.conserved_quantities: |
---|
| 982 | Q = domain.quantities[name] |
---|
| 983 | Q.interpolate_from_vertices_to_edges() |
---|
| 984 | |
---|
[6410] | 985 | ## |
---|
| 986 | # @brief Distribution from centroids to edges specific to the SWW eqn. |
---|
| 987 | # @param domain The domain to operate on. |
---|
[5306] | 988 | def distribute_using_edge_limiter(domain): |
---|
[6410] | 989 | """Distribution from centroids to edges specific to the SWW eqn. |
---|
[5306] | 990 | |
---|
| 991 | It will ensure that h (w-z) is always non-negative even in the |
---|
| 992 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
| 993 | and deep cases. |
---|
| 994 | |
---|
| 995 | In addition, all conserved quantities get distributed as per either a |
---|
| 996 | constant (order==1) or a piecewise linear function (order==2). |
---|
| 997 | |
---|
| 998 | |
---|
| 999 | Precondition: |
---|
| 1000 | All quantities defined at centroids and bed elevation defined at |
---|
| 1001 | vertices. |
---|
| 1002 | |
---|
| 1003 | Postcondition |
---|
| 1004 | Conserved quantities defined at vertices |
---|
| 1005 | """ |
---|
| 1006 | |
---|
| 1007 | # Remove very thin layers of water |
---|
| 1008 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
| 1009 | |
---|
| 1010 | for name in domain.conserved_quantities: |
---|
| 1011 | Q = domain.quantities[name] |
---|
| 1012 | if domain._order_ == 1: |
---|
| 1013 | Q.extrapolate_first_order() |
---|
| 1014 | elif domain._order_ == 2: |
---|
| 1015 | Q.extrapolate_second_order_and_limit_by_edge() |
---|
| 1016 | else: |
---|
| 1017 | raise 'Unknown order' |
---|
| 1018 | |
---|
| 1019 | balance_deep_and_shallow(domain) |
---|
| 1020 | |
---|
| 1021 | # Compute edge values by interpolation |
---|
| 1022 | for name in domain.conserved_quantities: |
---|
| 1023 | Q = domain.quantities[name] |
---|
| 1024 | Q.interpolate_from_vertices_to_edges() |
---|
| 1025 | |
---|
[6410] | 1026 | ## |
---|
| 1027 | # @brief Protect against infinitesimal heights and associated high velocities. |
---|
| 1028 | # @param domain The domain to operate on. |
---|
[3804] | 1029 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
[6410] | 1030 | """Protect against infinitesimal heights and associated high velocities""" |
---|
[3804] | 1031 | |
---|
[6410] | 1032 | from shallow_water_ext import protect |
---|
| 1033 | |
---|
[4769] | 1034 | # Shortcuts |
---|
[3804] | 1035 | wc = domain.quantities['stage'].centroid_values |
---|
| 1036 | zc = domain.quantities['elevation'].centroid_values |
---|
| 1037 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 1038 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 1039 | |
---|
| 1040 | protect(domain.minimum_allowed_height, domain.maximum_allowed_speed, |
---|
| 1041 | domain.epsilon, wc, zc, xmomc, ymomc) |
---|
| 1042 | |
---|
[6410] | 1043 | ## |
---|
| 1044 | # @brief Wrapper for C function balance_deep_and_shallow_c(). |
---|
| 1045 | # @param domain The domain to operate on. |
---|
[3804] | 1046 | def balance_deep_and_shallow(domain): |
---|
| 1047 | """Compute linear combination between stage as computed by |
---|
| 1048 | gradient-limiters limiting using w, and stage computed by |
---|
| 1049 | gradient-limiters limiting using h (h-limiter). |
---|
| 1050 | The former takes precedence when heights are large compared to the |
---|
| 1051 | bed slope while the latter takes precedence when heights are |
---|
| 1052 | relatively small. Anything in between is computed as a balanced |
---|
| 1053 | linear combination in order to avoid numerical disturbances which |
---|
| 1054 | would otherwise appear as a result of hard switching between |
---|
| 1055 | modes. |
---|
| 1056 | |
---|
[4769] | 1057 | Wrapper for C implementation |
---|
[3804] | 1058 | """ |
---|
| 1059 | |
---|
[6410] | 1060 | from shallow_water_ext import balance_deep_and_shallow \ |
---|
| 1061 | as balance_deep_and_shallow_c |
---|
[5175] | 1062 | |
---|
[4733] | 1063 | # Shortcuts |
---|
[3804] | 1064 | wc = domain.quantities['stage'].centroid_values |
---|
| 1065 | zc = domain.quantities['elevation'].centroid_values |
---|
| 1066 | wv = domain.quantities['stage'].vertex_values |
---|
| 1067 | zv = domain.quantities['elevation'].vertex_values |
---|
| 1068 | |
---|
[4733] | 1069 | # Momentums at centroids |
---|
[3804] | 1070 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
| 1071 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
| 1072 | |
---|
[4733] | 1073 | # Momentums at vertices |
---|
[3804] | 1074 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
| 1075 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
| 1076 | |
---|
[5442] | 1077 | balance_deep_and_shallow_c(domain, |
---|
[6410] | 1078 | wc, zc, wv, zv, wc, |
---|
[5442] | 1079 | xmomc, ymomc, xmomv, ymomv) |
---|
[3804] | 1080 | |
---|
| 1081 | |
---|
[6410] | 1082 | ################################################################################ |
---|
| 1083 | # Boundary conditions - specific to the shallow water wave equation |
---|
| 1084 | ################################################################################ |
---|
[3804] | 1085 | |
---|
[6410] | 1086 | ## |
---|
| 1087 | # @brief Class for a reflective boundary. |
---|
| 1088 | # @note Inherits from Boundary. |
---|
[3804] | 1089 | class Reflective_boundary(Boundary): |
---|
| 1090 | """Reflective boundary returns same conserved quantities as |
---|
| 1091 | those present in its neighbour volume but reflected. |
---|
| 1092 | |
---|
| 1093 | This class is specific to the shallow water equation as it |
---|
| 1094 | works with the momentum quantities assumed to be the second |
---|
| 1095 | and third conserved quantities. |
---|
| 1096 | """ |
---|
| 1097 | |
---|
[6410] | 1098 | ## |
---|
| 1099 | # @brief Instantiate a Reflective_boundary. |
---|
| 1100 | # @param domain |
---|
| 1101 | def __init__(self, domain=None): |
---|
[3804] | 1102 | Boundary.__init__(self) |
---|
| 1103 | |
---|
| 1104 | if domain is None: |
---|
| 1105 | msg = 'Domain must be specified for reflective boundary' |
---|
[6410] | 1106 | raise Exception, msg |
---|
[3804] | 1107 | |
---|
[4769] | 1108 | # Handy shorthands |
---|
[6410] | 1109 | self.stage = domain.quantities['stage'].edge_values |
---|
| 1110 | self.xmom = domain.quantities['xmomentum'].edge_values |
---|
| 1111 | self.ymom = domain.quantities['ymomentum'].edge_values |
---|
[3804] | 1112 | self.normals = domain.normals |
---|
| 1113 | |
---|
[6304] | 1114 | self.conserved_quantities = num.zeros(3, num.float) |
---|
[3804] | 1115 | |
---|
[6410] | 1116 | ## |
---|
| 1117 | # @brief Return a representation of this instance. |
---|
[3804] | 1118 | def __repr__(self): |
---|
| 1119 | return 'Reflective_boundary' |
---|
| 1120 | |
---|
[6410] | 1121 | ## |
---|
| 1122 | # @brief Calculate reflections (reverse outward momentum). |
---|
| 1123 | # @param vol_id |
---|
| 1124 | # @param edge_id |
---|
[3804] | 1125 | def evaluate(self, vol_id, edge_id): |
---|
| 1126 | """Reflective boundaries reverses the outward momentum |
---|
| 1127 | of the volume they serve. |
---|
| 1128 | """ |
---|
| 1129 | |
---|
| 1130 | q = self.conserved_quantities |
---|
| 1131 | q[0] = self.stage[vol_id, edge_id] |
---|
| 1132 | q[1] = self.xmom[vol_id, edge_id] |
---|
| 1133 | q[2] = self.ymom[vol_id, edge_id] |
---|
| 1134 | |
---|
| 1135 | normal = self.normals[vol_id, 2*edge_id:2*edge_id+2] |
---|
| 1136 | |
---|
| 1137 | r = rotate(q, normal, direction = 1) |
---|
| 1138 | r[1] = -r[1] |
---|
| 1139 | q = rotate(r, normal, direction = -1) |
---|
| 1140 | |
---|
| 1141 | return q |
---|
| 1142 | |
---|
| 1143 | |
---|
[6410] | 1144 | ## |
---|
| 1145 | # @brief Class for a transmissive boundary. |
---|
| 1146 | # @note Inherits from Boundary. |
---|
[6045] | 1147 | class Transmissive_momentum_set_stage_boundary(Boundary): |
---|
[3804] | 1148 | """Returns same momentum conserved quantities as |
---|
| 1149 | those present in its neighbour volume. |
---|
| 1150 | Sets stage by specifying a function f of time which may either be a |
---|
| 1151 | vector function or a scalar function |
---|
| 1152 | |
---|
| 1153 | Example: |
---|
| 1154 | |
---|
[6410] | 1155 | def waveform(t): |
---|
[3804] | 1156 | return sea_level + normalized_amplitude/cosh(t-25)**2 |
---|
| 1157 | |
---|
[6045] | 1158 | Bts = Transmissive_momentum_set_stage_boundary(domain, waveform) |
---|
[3804] | 1159 | |
---|
| 1160 | Underlying domain must be specified when boundary is instantiated |
---|
| 1161 | """ |
---|
| 1162 | |
---|
[6410] | 1163 | ## |
---|
| 1164 | # @brief Instantiate a Reflective_boundary. |
---|
| 1165 | # @param domain |
---|
| 1166 | # @param function |
---|
| 1167 | def __init__(self, domain=None, function=None): |
---|
[3804] | 1168 | Boundary.__init__(self) |
---|
| 1169 | |
---|
| 1170 | if domain is None: |
---|
| 1171 | msg = 'Domain must be specified for this type boundary' |
---|
[6410] | 1172 | raise Exception, msg |
---|
[3804] | 1173 | |
---|
| 1174 | if function is None: |
---|
| 1175 | msg = 'Function must be specified for this type boundary' |
---|
[6410] | 1176 | raise Exception, msg |
---|
[3804] | 1177 | |
---|
[6410] | 1178 | self.domain = domain |
---|
[3804] | 1179 | self.function = function |
---|
| 1180 | |
---|
[6410] | 1181 | ## |
---|
| 1182 | # @brief Return a representation of this instance. |
---|
[3804] | 1183 | def __repr__(self): |
---|
[6045] | 1184 | return 'Transmissive_momentum_set_stage_boundary(%s)' %self.domain |
---|
[3804] | 1185 | |
---|
[6410] | 1186 | ## |
---|
| 1187 | # @brief Calculate transmissive results. |
---|
| 1188 | # @param vol_id |
---|
| 1189 | # @param edge_id |
---|
[3804] | 1190 | def evaluate(self, vol_id, edge_id): |
---|
[6045] | 1191 | """Transmissive momentum set stage boundaries return the edge momentum |
---|
[3804] | 1192 | values of the volume they serve. |
---|
| 1193 | """ |
---|
| 1194 | |
---|
| 1195 | q = self.domain.get_conserved_quantities(vol_id, edge = edge_id) |
---|
| 1196 | |
---|
[5991] | 1197 | t = self.domain.get_time() |
---|
[5081] | 1198 | |
---|
[5089] | 1199 | if hasattr(self.function, 'time'): |
---|
[6410] | 1200 | # Roll boundary over if time exceeds |
---|
[5089] | 1201 | while t > self.function.time[-1]: |
---|
[6410] | 1202 | msg = 'WARNING: domain time %.2f has exceeded' % t |
---|
[5089] | 1203 | msg += 'time provided in ' |
---|
| 1204 | msg += 'transmissive_momentum_set_stage boundary object.\n' |
---|
| 1205 | msg += 'I will continue, reusing the object from t==0' |
---|
| 1206 | print msg |
---|
| 1207 | t -= self.function.time[-1] |
---|
[5081] | 1208 | |
---|
| 1209 | value = self.function(t) |
---|
[3804] | 1210 | try: |
---|
| 1211 | x = float(value) |
---|
[5081] | 1212 | except: |
---|
[3804] | 1213 | x = float(value[0]) |
---|
[6410] | 1214 | |
---|
[3804] | 1215 | q[0] = x |
---|
| 1216 | return q |
---|
| 1217 | |
---|
[4769] | 1218 | # FIXME: Consider this (taken from File_boundary) to allow |
---|
| 1219 | # spatial variation |
---|
| 1220 | # if vol_id is not None and edge_id is not None: |
---|
| 1221 | # i = self.boundary_indices[ vol_id, edge_id ] |
---|
| 1222 | # return self.F(t, point_id = i) |
---|
| 1223 | # else: |
---|
| 1224 | # return self.F(t) |
---|
[3804] | 1225 | |
---|
| 1226 | |
---|
[6410] | 1227 | ## |
---|
| 1228 | # @brief Deprecated boundary class. |
---|
[6045] | 1229 | class Transmissive_Momentum_Set_Stage_boundary(Transmissive_momentum_set_stage_boundary): |
---|
| 1230 | pass |
---|
[3804] | 1231 | |
---|
[6045] | 1232 | |
---|
[6410] | 1233 | ## |
---|
| 1234 | # @brief A transmissive boundary, momentum set to zero. |
---|
| 1235 | # @note Inherits from Bouondary. |
---|
[6045] | 1236 | class Transmissive_stage_zero_momentum_boundary(Boundary): |
---|
[6410] | 1237 | """Return same stage as those present in its neighbour volume. |
---|
| 1238 | Set momentum to zero. |
---|
[6045] | 1239 | |
---|
| 1240 | Underlying domain must be specified when boundary is instantiated |
---|
[3804] | 1241 | """ |
---|
[6045] | 1242 | |
---|
[6410] | 1243 | ## |
---|
| 1244 | # @brief Instantiate a Transmissive (zero momentum) boundary. |
---|
| 1245 | # @param domain |
---|
[6045] | 1246 | def __init__(self, domain=None): |
---|
| 1247 | Boundary.__init__(self) |
---|
| 1248 | |
---|
| 1249 | if domain is None: |
---|
[6410] | 1250 | msg = ('Domain must be specified for ' |
---|
| 1251 | 'Transmissive_stage_zero_momentum boundary') |
---|
[6045] | 1252 | raise Exception, msg |
---|
| 1253 | |
---|
| 1254 | self.domain = domain |
---|
| 1255 | |
---|
[6410] | 1256 | ## |
---|
| 1257 | # @brief Return a representation of this instance. |
---|
[6045] | 1258 | def __repr__(self): |
---|
[6410] | 1259 | return 'Transmissive_stage_zero_momentum_boundary(%s)' % self.domain |
---|
[6045] | 1260 | |
---|
[6410] | 1261 | ## |
---|
| 1262 | # @brief Calculate transmissive (zero momentum) results. |
---|
| 1263 | # @param vol_id |
---|
| 1264 | # @param edge_id |
---|
[6045] | 1265 | def evaluate(self, vol_id, edge_id): |
---|
| 1266 | """Transmissive boundaries return the edge values |
---|
| 1267 | of the volume they serve. |
---|
| 1268 | """ |
---|
| 1269 | |
---|
| 1270 | q = self.domain.get_conserved_quantities(vol_id, edge=edge_id) |
---|
[6410] | 1271 | |
---|
[6045] | 1272 | q[1] = q[2] = 0.0 |
---|
| 1273 | return q |
---|
| 1274 | |
---|
| 1275 | |
---|
[6410] | 1276 | ## |
---|
| 1277 | # @brief Class for a Dirichlet discharge boundary. |
---|
| 1278 | # @note Inherits from Boundary. |
---|
[6045] | 1279 | class Dirichlet_discharge_boundary(Boundary): |
---|
| 1280 | """ |
---|
[3804] | 1281 | Sets stage (stage0) |
---|
| 1282 | Sets momentum (wh0) in the inward normal direction. |
---|
| 1283 | |
---|
| 1284 | Underlying domain must be specified when boundary is instantiated |
---|
| 1285 | """ |
---|
| 1286 | |
---|
[6410] | 1287 | ## |
---|
| 1288 | # @brief Instantiate a Dirichlet discharge boundary. |
---|
| 1289 | # @param domain |
---|
| 1290 | # @param stage0 |
---|
| 1291 | # @param wh0 |
---|
[6045] | 1292 | def __init__(self, domain=None, stage0=None, wh0=None): |
---|
[3804] | 1293 | Boundary.__init__(self) |
---|
| 1294 | |
---|
| 1295 | if domain is None: |
---|
[6410] | 1296 | msg = 'Domain must be specified for this type of boundary' |
---|
| 1297 | raise Exception, msg |
---|
[3804] | 1298 | |
---|
| 1299 | if stage0 is None: |
---|
[6410] | 1300 | raise Exception, 'Stage must be specified for this type of boundary' |
---|
[3804] | 1301 | |
---|
| 1302 | if wh0 is None: |
---|
| 1303 | wh0 = 0.0 |
---|
| 1304 | |
---|
[6410] | 1305 | self.domain = domain |
---|
| 1306 | self.stage0 = stage0 |
---|
[3804] | 1307 | self.wh0 = wh0 |
---|
| 1308 | |
---|
[6410] | 1309 | ## |
---|
| 1310 | # @brief Return a representation of this instance. |
---|
[3804] | 1311 | def __repr__(self): |
---|
[6410] | 1312 | return 'Dirichlet_Discharge_boundary(%s)' % self.domain |
---|
[3804] | 1313 | |
---|
[6410] | 1314 | ## |
---|
| 1315 | # @brief Calculate Dirichlet discharge boundary results. |
---|
| 1316 | # @param vol_id |
---|
| 1317 | # @param edge_id |
---|
[3804] | 1318 | def evaluate(self, vol_id, edge_id): |
---|
[6410] | 1319 | """Set discharge in the (inward) normal direction""" |
---|
[3804] | 1320 | |
---|
| 1321 | normal = self.domain.get_normal(vol_id,edge_id) |
---|
| 1322 | q = [self.stage0, -self.wh0*normal[0], -self.wh0*normal[1]] |
---|
| 1323 | return q |
---|
| 1324 | |
---|
[4769] | 1325 | # FIXME: Consider this (taken from File_boundary) to allow |
---|
| 1326 | # spatial variation |
---|
| 1327 | # if vol_id is not None and edge_id is not None: |
---|
| 1328 | # i = self.boundary_indices[ vol_id, edge_id ] |
---|
| 1329 | # return self.F(t, point_id = i) |
---|
| 1330 | # else: |
---|
| 1331 | # return self.F(t) |
---|
[3804] | 1332 | |
---|
| 1333 | |
---|
[6410] | 1334 | # Backward compatibility |
---|
[6045] | 1335 | # FIXME(Ole): Deprecate |
---|
[6410] | 1336 | ## |
---|
| 1337 | # @brief Deprecated |
---|
[6045] | 1338 | class Dirichlet_Discharge_boundary(Dirichlet_discharge_boundary): |
---|
| 1339 | pass |
---|
| 1340 | |
---|
[6410] | 1341 | |
---|
| 1342 | ## |
---|
| 1343 | # @brief A class for a 'field' boundary. |
---|
| 1344 | # @note Inherits from Boundary. |
---|
[4312] | 1345 | class Field_boundary(Boundary): |
---|
[6410] | 1346 | """Set boundary from given field represented in an sww file containing |
---|
| 1347 | values for stage, xmomentum and ymomentum. |
---|
[3804] | 1348 | |
---|
[6410] | 1349 | Optionally, the user can specify mean_stage to offset the stage provided |
---|
| 1350 | in the sww file. |
---|
| 1351 | |
---|
| 1352 | This function is a thin wrapper around the generic File_boundary. The |
---|
[4754] | 1353 | difference between the file_boundary and field_boundary is only that the |
---|
| 1354 | field_boundary will allow you to change the level of the stage height when |
---|
[6410] | 1355 | you read in the boundary condition. This is very useful when running |
---|
| 1356 | different tide heights in the same area as you need only to convert one |
---|
| 1357 | boundary condition to a SWW file, ideally for tide height of 0 m |
---|
[4754] | 1358 | (saving disk space). Then you can use field_boundary to read this SWW file |
---|
| 1359 | and change the stage height (tide) on the fly depending on the scenario. |
---|
[4312] | 1360 | """ |
---|
[3804] | 1361 | |
---|
[6410] | 1362 | ## |
---|
| 1363 | # @brief Construct an instance of a 'field' boundary. |
---|
| 1364 | # @param filename Name of SWW file containing stage, x and ymomentum. |
---|
| 1365 | # @param domain Shallow water domain for which the boundary applies. |
---|
| 1366 | # @param mean_stage Mean water level added to stage derived from SWW file. |
---|
| 1367 | # @param time_thinning Time step thinning factor. |
---|
| 1368 | # @param time_limit |
---|
| 1369 | # @param boundary_polygon |
---|
| 1370 | # @param default_boundary None or an instance of Boundary. |
---|
| 1371 | # @param use_cache True if caching is to be used. |
---|
| 1372 | # @param verbose True if this method is to be verbose. |
---|
| 1373 | def __init__(self, |
---|
| 1374 | filename, |
---|
| 1375 | domain, |
---|
[4312] | 1376 | mean_stage=0.0, |
---|
[5657] | 1377 | time_thinning=1, |
---|
[6173] | 1378 | time_limit=None, |
---|
[6410] | 1379 | boundary_polygon=None, |
---|
| 1380 | default_boundary=None, |
---|
[4312] | 1381 | use_cache=False, |
---|
[5657] | 1382 | verbose=False): |
---|
[4312] | 1383 | """Constructor |
---|
| 1384 | |
---|
| 1385 | filename: Name of sww file |
---|
| 1386 | domain: pointer to shallow water domain for which the boundary applies |
---|
[4754] | 1387 | mean_stage: The mean water level which will be added to stage derived |
---|
| 1388 | from the sww file |
---|
| 1389 | time_thinning: Will set how many time steps from the sww file read in |
---|
[6410] | 1390 | will be interpolated to the boundary. For example if |
---|
[4754] | 1391 | the sww file has 1 second time steps and is 24 hours |
---|
[6410] | 1392 | in length it has 86400 time steps. If you set |
---|
| 1393 | time_thinning to 1 it will read all these steps. |
---|
[4754] | 1394 | If you set it to 100 it will read every 100th step eg |
---|
| 1395 | only 864 step. This parameter is very useful to increase |
---|
[6410] | 1396 | the speed of a model run that you are setting up |
---|
[4754] | 1397 | and testing. |
---|
[6410] | 1398 | |
---|
| 1399 | default_boundary: Must be either None or an instance of a |
---|
[5657] | 1400 | class descending from class Boundary. |
---|
[6410] | 1401 | This will be used in case model time exceeds |
---|
[5657] | 1402 | that available in the underlying data. |
---|
[6410] | 1403 | |
---|
[4312] | 1404 | use_cache: |
---|
| 1405 | verbose: |
---|
| 1406 | """ |
---|
| 1407 | |
---|
| 1408 | # Create generic file_boundary object |
---|
[6410] | 1409 | self.file_boundary = File_boundary(filename, |
---|
| 1410 | domain, |
---|
[4312] | 1411 | time_thinning=time_thinning, |
---|
[6173] | 1412 | time_limit=time_limit, |
---|
[5657] | 1413 | boundary_polygon=boundary_polygon, |
---|
| 1414 | default_boundary=default_boundary, |
---|
[4312] | 1415 | use_cache=use_cache, |
---|
[5657] | 1416 | verbose=verbose) |
---|
| 1417 | |
---|
[4312] | 1418 | # Record information from File_boundary |
---|
| 1419 | self.F = self.file_boundary.F |
---|
| 1420 | self.domain = self.file_boundary.domain |
---|
[6410] | 1421 | |
---|
[4312] | 1422 | # Record mean stage |
---|
| 1423 | self.mean_stage = mean_stage |
---|
| 1424 | |
---|
[6410] | 1425 | ## |
---|
| 1426 | # @note Generate a string representation of this instance. |
---|
[4312] | 1427 | def __repr__(self): |
---|
| 1428 | return 'Field boundary' |
---|
| 1429 | |
---|
[6410] | 1430 | ## |
---|
| 1431 | # @brief Calculate 'field' boundary results. |
---|
| 1432 | # @param vol_id |
---|
| 1433 | # @param edge_id |
---|
[4312] | 1434 | def evaluate(self, vol_id=None, edge_id=None): |
---|
| 1435 | """Return linearly interpolated values based on domain.time |
---|
| 1436 | |
---|
| 1437 | vol_id and edge_id are ignored |
---|
| 1438 | """ |
---|
[6410] | 1439 | |
---|
[4312] | 1440 | # Evaluate file boundary |
---|
| 1441 | q = self.file_boundary.evaluate(vol_id, edge_id) |
---|
| 1442 | |
---|
| 1443 | # Adjust stage |
---|
| 1444 | for j, name in enumerate(self.domain.conserved_quantities): |
---|
| 1445 | if name == 'stage': |
---|
| 1446 | q[j] += self.mean_stage |
---|
| 1447 | return q |
---|
| 1448 | |
---|
| 1449 | |
---|
[6410] | 1450 | ################################################################################ |
---|
[4769] | 1451 | # Standard forcing terms |
---|
[6410] | 1452 | ################################################################################ |
---|
[4769] | 1453 | |
---|
[6410] | 1454 | ## |
---|
| 1455 | # @brief Apply gravitational pull in the presence of bed slope. |
---|
| 1456 | # @param domain The domain to apply gravity to. |
---|
| 1457 | # @note Wrapper for C function gravity_c(). |
---|
[3804] | 1458 | def gravity(domain): |
---|
| 1459 | """Apply gravitational pull in the presence of bed slope |
---|
[4769] | 1460 | Wrapper calls underlying C implementation |
---|
[3804] | 1461 | """ |
---|
| 1462 | |
---|
[6410] | 1463 | from shallow_water_ext import gravity as gravity_c |
---|
| 1464 | |
---|
[3804] | 1465 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
| 1466 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
| 1467 | |
---|
[4687] | 1468 | stage = domain.quantities['stage'] |
---|
| 1469 | elevation = domain.quantities['elevation'] |
---|
[3804] | 1470 | |
---|
[4687] | 1471 | h = stage.centroid_values - elevation.centroid_values |
---|
| 1472 | z = elevation.vertex_values |
---|
| 1473 | |
---|
[3804] | 1474 | x = domain.get_vertex_coordinates() |
---|
| 1475 | g = domain.g |
---|
| 1476 | |
---|
[6410] | 1477 | gravity_c(g, h, z, x, xmom, ymom) #, 1.0e-6) |
---|
[3804] | 1478 | |
---|
[6410] | 1479 | ## |
---|
| 1480 | # @brief Apply friction to a surface (implicit). |
---|
| 1481 | # @param domain The domain to apply Manning friction to. |
---|
| 1482 | # @note Wrapper for C function manning_friction_c(). |
---|
[4769] | 1483 | def manning_friction_implicit(domain): |
---|
[6410] | 1484 | """Apply (Manning) friction to water momentum |
---|
[4769] | 1485 | Wrapper for c version |
---|
[3804] | 1486 | """ |
---|
| 1487 | |
---|
[6410] | 1488 | from shallow_water_ext import manning_friction as manning_friction_c |
---|
[3804] | 1489 | |
---|
| 1490 | xmom = domain.quantities['xmomentum'] |
---|
| 1491 | ymom = domain.quantities['ymomentum'] |
---|
| 1492 | |
---|
| 1493 | w = domain.quantities['stage'].centroid_values |
---|
| 1494 | z = domain.quantities['elevation'].centroid_values |
---|
| 1495 | |
---|
| 1496 | uh = xmom.centroid_values |
---|
| 1497 | vh = ymom.centroid_values |
---|
| 1498 | eta = domain.quantities['friction'].centroid_values |
---|
| 1499 | |
---|
| 1500 | xmom_update = xmom.semi_implicit_update |
---|
| 1501 | ymom_update = ymom.semi_implicit_update |
---|
| 1502 | |
---|
[3928] | 1503 | N = len(domain) |
---|
[3804] | 1504 | eps = domain.minimum_allowed_height |
---|
| 1505 | g = domain.g |
---|
| 1506 | |
---|
[4769] | 1507 | manning_friction_c(g, eps, w, z, uh, vh, eta, xmom_update, ymom_update) |
---|
[3804] | 1508 | |
---|
[6410] | 1509 | ## |
---|
| 1510 | # @brief Apply friction to a surface (explicit). |
---|
| 1511 | # @param domain The domain to apply Manning friction to. |
---|
| 1512 | # @note Wrapper for C function manning_friction_c(). |
---|
[4769] | 1513 | def manning_friction_explicit(domain): |
---|
[6410] | 1514 | """Apply (Manning) friction to water momentum |
---|
[4769] | 1515 | Wrapper for c version |
---|
[3804] | 1516 | """ |
---|
| 1517 | |
---|
[6410] | 1518 | from shallow_water_ext import manning_friction as manning_friction_c |
---|
[3804] | 1519 | |
---|
| 1520 | xmom = domain.quantities['xmomentum'] |
---|
| 1521 | ymom = domain.quantities['ymomentum'] |
---|
| 1522 | |
---|
| 1523 | w = domain.quantities['stage'].centroid_values |
---|
| 1524 | z = domain.quantities['elevation'].centroid_values |
---|
| 1525 | |
---|
| 1526 | uh = xmom.centroid_values |
---|
| 1527 | vh = ymom.centroid_values |
---|
| 1528 | eta = domain.quantities['friction'].centroid_values |
---|
| 1529 | |
---|
| 1530 | xmom_update = xmom.explicit_update |
---|
| 1531 | ymom_update = ymom.explicit_update |
---|
| 1532 | |
---|
[3928] | 1533 | N = len(domain) |
---|
[3804] | 1534 | eps = domain.minimum_allowed_height |
---|
| 1535 | g = domain.g |
---|
| 1536 | |
---|
[4769] | 1537 | manning_friction_c(g, eps, w, z, uh, vh, eta, xmom_update, ymom_update) |
---|
[3804] | 1538 | |
---|
| 1539 | |
---|
[4769] | 1540 | # FIXME (Ole): This was implemented for use with one of the analytical solutions (Sampson?) |
---|
[6410] | 1541 | ## |
---|
| 1542 | # @brief Apply linear friction to a surface. |
---|
| 1543 | # @param domain The domain to apply Manning friction to. |
---|
| 1544 | # @note Is this still used (30 Oct 2007)? |
---|
[3804] | 1545 | def linear_friction(domain): |
---|
| 1546 | """Apply linear friction to water momentum |
---|
| 1547 | |
---|
| 1548 | Assumes quantity: 'linear_friction' to be present |
---|
| 1549 | """ |
---|
| 1550 | |
---|
| 1551 | from math import sqrt |
---|
| 1552 | |
---|
| 1553 | w = domain.quantities['stage'].centroid_values |
---|
| 1554 | z = domain.quantities['elevation'].centroid_values |
---|
| 1555 | h = w-z |
---|
| 1556 | |
---|
| 1557 | uh = domain.quantities['xmomentum'].centroid_values |
---|
| 1558 | vh = domain.quantities['ymomentum'].centroid_values |
---|
| 1559 | tau = domain.quantities['linear_friction'].centroid_values |
---|
| 1560 | |
---|
| 1561 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
| 1562 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
| 1563 | |
---|
[3928] | 1564 | N = len(domain) # number_of_triangles |
---|
[3804] | 1565 | eps = domain.minimum_allowed_height |
---|
| 1566 | g = domain.g #Not necessary? Why was this added? |
---|
| 1567 | |
---|
| 1568 | for k in range(N): |
---|
| 1569 | if tau[k] >= eps: |
---|
| 1570 | if h[k] >= eps: |
---|
| 1571 | S = -tau[k]/h[k] |
---|
| 1572 | |
---|
| 1573 | #Update momentum |
---|
| 1574 | xmom_update[k] += S*uh[k] |
---|
| 1575 | ymom_update[k] += S*vh[k] |
---|
| 1576 | |
---|
[6410] | 1577 | ################################################################################ |
---|
| 1578 | # Experimental auxiliary functions |
---|
| 1579 | ################################################################################ |
---|
[3804] | 1580 | |
---|
[6410] | 1581 | ## |
---|
| 1582 | # @brief Check forcefield parameter. |
---|
| 1583 | # @param f Object to check. |
---|
| 1584 | # @note 'f' may be a callable object or a scalar value. |
---|
[3804] | 1585 | def check_forcefield(f): |
---|
[6410] | 1586 | """Check that force object is as expected. |
---|
| 1587 | |
---|
| 1588 | Check that f is either: |
---|
[3804] | 1589 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
| 1590 | and that it returns an array or a list of same length |
---|
| 1591 | as x and y |
---|
| 1592 | 2: a scalar |
---|
| 1593 | """ |
---|
| 1594 | |
---|
| 1595 | if callable(f): |
---|
| 1596 | N = 3 |
---|
[6304] | 1597 | x = num.ones(3, num.float) |
---|
| 1598 | y = num.ones(3, num.float) |
---|
[3804] | 1599 | try: |
---|
| 1600 | q = f(1.0, x=x, y=y) |
---|
| 1601 | except Exception, e: |
---|
| 1602 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
[4769] | 1603 | # FIXME: Reconsider this semantics |
---|
[3804] | 1604 | raise msg |
---|
| 1605 | |
---|
| 1606 | try: |
---|
[6304] | 1607 | q = num.array(q, num.float) |
---|
[3804] | 1608 | except: |
---|
| 1609 | msg = 'Return value from vector function %s could ' %f |
---|
[6304] | 1610 | msg += 'not be converted into a numeric array of floats.\n' |
---|
[3804] | 1611 | msg += 'Specified function should return either list or array.' |
---|
[6410] | 1612 | raise Exception, msg |
---|
[3804] | 1613 | |
---|
[4769] | 1614 | # Is this really what we want? |
---|
[6410] | 1615 | msg = 'Function %s must return vector' % str(f) |
---|
| 1616 | assert hasattr(q, 'len'), msg |
---|
| 1617 | |
---|
| 1618 | msg = ('Return vector from function %s must have same ' |
---|
| 1619 | 'length as input vectors' % f) |
---|
[3804] | 1620 | assert len(q) == N, msg |
---|
| 1621 | else: |
---|
| 1622 | try: |
---|
| 1623 | f = float(f) |
---|
| 1624 | except: |
---|
[6410] | 1625 | msg = ('Force field %s must be either a vector function or a ' |
---|
| 1626 | 'scalar value (coercible to float).' % str(f)) |
---|
| 1627 | raise Exception, msg |
---|
| 1628 | |
---|
[3804] | 1629 | return f |
---|
| 1630 | |
---|
| 1631 | |
---|
[6410] | 1632 | ## |
---|
| 1633 | # Class to apply a wind stress to a domain. |
---|
[3804] | 1634 | class Wind_stress: |
---|
| 1635 | """Apply wind stress to water momentum in terms of |
---|
| 1636 | wind speed [m/s] and wind direction [degrees] |
---|
| 1637 | """ |
---|
| 1638 | |
---|
[6410] | 1639 | ## |
---|
| 1640 | # @brief Create an instance of Wind_stress. |
---|
| 1641 | # @param *args |
---|
| 1642 | # @param **kwargs |
---|
[3804] | 1643 | def __init__(self, *args, **kwargs): |
---|
| 1644 | """Initialise windfield from wind speed s [m/s] |
---|
| 1645 | and wind direction phi [degrees] |
---|
| 1646 | |
---|
| 1647 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
| 1648 | |
---|
| 1649 | W = Wind_stress(10, 178) |
---|
| 1650 | |
---|
| 1651 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
| 1652 | vector (1,0) has zero degrees. |
---|
| 1653 | We may need to convert from 'compass' degrees later on and also |
---|
| 1654 | map from True north to grid north. |
---|
| 1655 | |
---|
| 1656 | Arguments can also be Python functions of t,x,y as in |
---|
| 1657 | |
---|
| 1658 | def speed(t,x,y): |
---|
| 1659 | ... |
---|
| 1660 | return s |
---|
| 1661 | |
---|
| 1662 | def angle(t,x,y): |
---|
| 1663 | ... |
---|
| 1664 | return phi |
---|
| 1665 | |
---|
| 1666 | where x and y are vectors. |
---|
| 1667 | |
---|
| 1668 | and then pass the functions in |
---|
| 1669 | |
---|
| 1670 | W = Wind_stress(speed, angle) |
---|
| 1671 | |
---|
| 1672 | The instantiated object W can be appended to the list of |
---|
| 1673 | forcing_terms as in |
---|
| 1674 | |
---|
| 1675 | Alternatively, one vector valued function for (speed, angle) |
---|
| 1676 | can be applied, providing both quantities simultaneously. |
---|
| 1677 | As in |
---|
| 1678 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
| 1679 | |
---|
| 1680 | domain.forcing_terms.append(W) |
---|
| 1681 | """ |
---|
| 1682 | |
---|
| 1683 | from anuga.config import rho_a, rho_w, eta_w |
---|
| 1684 | |
---|
| 1685 | if len(args) == 2: |
---|
| 1686 | s = args[0] |
---|
| 1687 | phi = args[1] |
---|
| 1688 | elif len(args) == 1: |
---|
[4769] | 1689 | # Assume vector function returning (s, phi)(t,x,y) |
---|
[3804] | 1690 | vector_function = args[0] |
---|
| 1691 | s = lambda t,x,y: vector_function(t,x=x,y=y)[0] |
---|
| 1692 | phi = lambda t,x,y: vector_function(t,x=x,y=y)[1] |
---|
| 1693 | else: |
---|
[4769] | 1694 | # Assume info is in 2 keyword arguments |
---|
[3804] | 1695 | if len(kwargs) == 2: |
---|
| 1696 | s = kwargs['s'] |
---|
| 1697 | phi = kwargs['phi'] |
---|
| 1698 | else: |
---|
[6410] | 1699 | raise Exception, 'Assumes two keyword arguments: s=..., phi=....' |
---|
[3804] | 1700 | |
---|
| 1701 | self.speed = check_forcefield(s) |
---|
| 1702 | self.phi = check_forcefield(phi) |
---|
| 1703 | |
---|
| 1704 | self.const = eta_w*rho_a/rho_w |
---|
| 1705 | |
---|
[6410] | 1706 | ## |
---|
| 1707 | # @brief 'execute' this class instance. |
---|
| 1708 | # @param domain |
---|
[3804] | 1709 | def __call__(self, domain): |
---|
[6410] | 1710 | """Evaluate windfield based on values found in domain""" |
---|
[3804] | 1711 | |
---|
| 1712 | from math import pi, cos, sin, sqrt |
---|
| 1713 | |
---|
| 1714 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
| 1715 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
| 1716 | |
---|
[6410] | 1717 | N = len(domain) # number_of_triangles |
---|
[3804] | 1718 | t = domain.time |
---|
| 1719 | |
---|
| 1720 | if callable(self.speed): |
---|
| 1721 | xc = domain.get_centroid_coordinates() |
---|
| 1722 | s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
| 1723 | else: |
---|
[4769] | 1724 | # Assume s is a scalar |
---|
[3804] | 1725 | try: |
---|
[6304] | 1726 | s_vec = self.speed * num.ones(N, num.float) |
---|
[3804] | 1727 | except: |
---|
| 1728 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
| 1729 | raise msg |
---|
| 1730 | |
---|
| 1731 | if callable(self.phi): |
---|
| 1732 | xc = domain.get_centroid_coordinates() |
---|
| 1733 | phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
| 1734 | else: |
---|
[4769] | 1735 | # Assume phi is a scalar |
---|
[3804] | 1736 | |
---|
| 1737 | try: |
---|
[6304] | 1738 | phi_vec = self.phi * num.ones(N, num.float) |
---|
[3804] | 1739 | except: |
---|
| 1740 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
| 1741 | raise msg |
---|
| 1742 | |
---|
| 1743 | assign_windfield_values(xmom_update, ymom_update, |
---|
| 1744 | s_vec, phi_vec, self.const) |
---|
| 1745 | |
---|
| 1746 | |
---|
[6410] | 1747 | ## |
---|
| 1748 | # @brief Assign wind field values |
---|
| 1749 | # @param xmom_update |
---|
| 1750 | # @param ymom_update |
---|
| 1751 | # @param s_vec |
---|
| 1752 | # @param phi_vec |
---|
| 1753 | # @param const |
---|
[3804] | 1754 | def assign_windfield_values(xmom_update, ymom_update, |
---|
| 1755 | s_vec, phi_vec, const): |
---|
| 1756 | """Python version of assigning wind field to update vectors. |
---|
| 1757 | A c version also exists (for speed) |
---|
| 1758 | """ |
---|
[6410] | 1759 | |
---|
[3804] | 1760 | from math import pi, cos, sin, sqrt |
---|
| 1761 | |
---|
| 1762 | N = len(s_vec) |
---|
| 1763 | for k in range(N): |
---|
| 1764 | s = s_vec[k] |
---|
| 1765 | phi = phi_vec[k] |
---|
| 1766 | |
---|
[4769] | 1767 | # Convert to radians |
---|
[3804] | 1768 | phi = phi*pi/180 |
---|
| 1769 | |
---|
[4769] | 1770 | # Compute velocity vector (u, v) |
---|
[3804] | 1771 | u = s*cos(phi) |
---|
| 1772 | v = s*sin(phi) |
---|
| 1773 | |
---|
[4769] | 1774 | # Compute wind stress |
---|
[3804] | 1775 | S = const * sqrt(u**2 + v**2) |
---|
| 1776 | xmom_update[k] += S*u |
---|
| 1777 | ymom_update[k] += S*v |
---|
| 1778 | |
---|
| 1779 | |
---|
[6410] | 1780 | ## |
---|
| 1781 | # @brief A class for a general explicit forcing term. |
---|
[5294] | 1782 | class General_forcing: |
---|
[5736] | 1783 | """General explicit forcing term for update of quantity |
---|
[6410] | 1784 | |
---|
[5294] | 1785 | This is used by Inflow and Rainfall for instance |
---|
| 1786 | |
---|
[6410] | 1787 | |
---|
[5294] | 1788 | General_forcing(quantity_name, rate, center, radius, polygon) |
---|
| 1789 | |
---|
| 1790 | domain: ANUGA computational domain |
---|
[6410] | 1791 | quantity_name: Name of quantity to update. |
---|
[5736] | 1792 | It must be a known conserved quantity. |
---|
[6410] | 1793 | |
---|
| 1794 | rate [?/s]: Total rate of change over the specified area. |
---|
[5294] | 1795 | This parameter can be either a constant or a |
---|
[6410] | 1796 | function of time. Positive values indicate increases, |
---|
[5294] | 1797 | negative values indicate decreases. |
---|
| 1798 | Rate can be None at initialisation but must be specified |
---|
[5436] | 1799 | before forcing term is applied (i.e. simulation has started). |
---|
[5294] | 1800 | |
---|
| 1801 | center [m]: Coordinates at center of flow point |
---|
| 1802 | radius [m]: Size of circular area |
---|
[6002] | 1803 | polygon: Arbitrary polygon |
---|
[5873] | 1804 | default_rate: Rate to be used if rate fails (e.g. if model time exceeds its data) |
---|
| 1805 | Admissible types: None, constant number or function of t |
---|
[5294] | 1806 | |
---|
| 1807 | |
---|
| 1808 | Either center, radius or polygon can be specified but not both. |
---|
| 1809 | If neither are specified the entire domain gets updated. |
---|
[6410] | 1810 | All coordinates to be specified in absolute UTM coordinates (x, y) assuming the zone of domain. |
---|
| 1811 | |
---|
[6002] | 1812 | Inflow or Rainfall for examples of use |
---|
[5294] | 1813 | """ |
---|
| 1814 | |
---|
| 1815 | |
---|
| 1816 | # FIXME (AnyOne) : Add various methods to allow spatial variations |
---|
| 1817 | |
---|
[6410] | 1818 | ## |
---|
| 1819 | # @brief Create an instance of this forcing term. |
---|
| 1820 | # @param domain |
---|
| 1821 | # @param quantity_name |
---|
| 1822 | # @param rate |
---|
| 1823 | # @param center |
---|
| 1824 | # @param radius |
---|
| 1825 | # @param polygon |
---|
| 1826 | # @param default_rate |
---|
| 1827 | # @param verbose |
---|
[5294] | 1828 | def __init__(self, |
---|
| 1829 | domain, |
---|
| 1830 | quantity_name, |
---|
[5303] | 1831 | rate=0.0, |
---|
[6410] | 1832 | center=None, |
---|
| 1833 | radius=None, |
---|
[5294] | 1834 | polygon=None, |
---|
[5873] | 1835 | default_rate=None, |
---|
[5294] | 1836 | verbose=False): |
---|
[6410] | 1837 | |
---|
| 1838 | from math import pi, cos, sin |
---|
| 1839 | |
---|
[5450] | 1840 | if center is None: |
---|
[6410] | 1841 | msg = 'I got radius but no center.' |
---|
[5450] | 1842 | assert radius is None, msg |
---|
[6410] | 1843 | |
---|
[5450] | 1844 | if radius is None: |
---|
[6410] | 1845 | msg += 'I got center but no radius.' |
---|
[5450] | 1846 | assert center is None, msg |
---|
[5294] | 1847 | |
---|
| 1848 | self.domain = domain |
---|
| 1849 | self.quantity_name = quantity_name |
---|
| 1850 | self.rate = rate |
---|
| 1851 | self.center = ensure_numeric(center) |
---|
| 1852 | self.radius = radius |
---|
[6410] | 1853 | self.polygon = polygon |
---|
[5294] | 1854 | self.verbose = verbose |
---|
[6410] | 1855 | self.value = 0.0 # Can be used to remember value at |
---|
| 1856 | # previous timestep in order to obtain rate |
---|
[5294] | 1857 | |
---|
[6006] | 1858 | # Get boundary (in absolute coordinates) |
---|
| 1859 | bounding_polygon = domain.get_boundary_polygon() |
---|
[5570] | 1860 | |
---|
[5294] | 1861 | # Update area if applicable |
---|
[6410] | 1862 | self.exchange_area = None |
---|
[5294] | 1863 | if center is not None and radius is not None: |
---|
| 1864 | assert len(center) == 2 |
---|
| 1865 | msg = 'Polygon cannot be specified when center and radius are' |
---|
| 1866 | assert polygon is None, msg |
---|
| 1867 | |
---|
[5436] | 1868 | self.exchange_area = radius**2*pi |
---|
[5570] | 1869 | |
---|
| 1870 | # Check that circle center lies within the mesh. |
---|
[6410] | 1871 | msg = 'Center %s specified for forcing term did not' % str(center) |
---|
[5570] | 1872 | msg += 'fall within the domain boundary.' |
---|
| 1873 | assert is_inside_polygon(center, bounding_polygon), msg |
---|
| 1874 | |
---|
| 1875 | # Check that circle periphery lies within the mesh. |
---|
| 1876 | N = 100 |
---|
| 1877 | periphery_points = [] |
---|
| 1878 | for i in range(N): |
---|
[6410] | 1879 | theta = 2*pi*i/100 |
---|
[5570] | 1880 | |
---|
| 1881 | x = center[0] + radius*cos(theta) |
---|
| 1882 | y = center[1] + radius*sin(theta) |
---|
| 1883 | |
---|
| 1884 | periphery_points.append([x,y]) |
---|
| 1885 | |
---|
| 1886 | for point in periphery_points: |
---|
[6410] | 1887 | msg = 'Point %s on periphery for forcing term' % str(point) |
---|
[5736] | 1888 | msg += ' did not fall within the domain boundary.' |
---|
[5570] | 1889 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
| 1890 | |
---|
[5294] | 1891 | if polygon is not None: |
---|
[5570] | 1892 | # Check that polygon lies within the mesh. |
---|
| 1893 | for point in self.polygon: |
---|
[6410] | 1894 | msg = 'Point %s in polygon for forcing term' % str(point) |
---|
[5736] | 1895 | msg += ' did not fall within the domain boundary.' |
---|
[5570] | 1896 | assert is_inside_polygon(point, bounding_polygon), msg |
---|
[6410] | 1897 | |
---|
| 1898 | # Compute area and check that it is greater than 0 |
---|
[6006] | 1899 | self.exchange_area = polygon_area(self.polygon) |
---|
[5294] | 1900 | |
---|
[6410] | 1901 | msg = 'Polygon %s in forcing term' % str(self.polygon) |
---|
| 1902 | msg += ' has area = %f' % self.exchange_area |
---|
| 1903 | assert self.exchange_area > 0.0 |
---|
| 1904 | |
---|
[5294] | 1905 | # Pointer to update vector |
---|
[5736] | 1906 | self.update = domain.quantities[self.quantity_name].explicit_update |
---|
[5294] | 1907 | |
---|
| 1908 | # Determine indices in flow area |
---|
[6410] | 1909 | N = len(domain) |
---|
[5294] | 1910 | points = domain.get_centroid_coordinates(absolute=True) |
---|
| 1911 | |
---|
[5436] | 1912 | # Calculate indices in exchange area for this forcing term |
---|
| 1913 | self.exchange_indices = None |
---|
[5294] | 1914 | if self.center is not None and self.radius is not None: |
---|
| 1915 | # Inlet is circular |
---|
[6410] | 1916 | inlet_region = 'center=%s, radius=%s' % (self.center, self.radius) |
---|
| 1917 | |
---|
[5436] | 1918 | self.exchange_indices = [] |
---|
[5294] | 1919 | for k in range(N): |
---|
[6410] | 1920 | x, y = points[k,:] # Centroid |
---|
| 1921 | |
---|
[5736] | 1922 | c = self.center |
---|
| 1923 | if ((x-c[0])**2+(y-c[1])**2) < self.radius**2: |
---|
[5436] | 1924 | self.exchange_indices.append(k) |
---|
[6410] | 1925 | |
---|
| 1926 | if self.polygon is not None: |
---|
[5294] | 1927 | # Inlet is polygon |
---|
[6410] | 1928 | inlet_region = 'polygon=%s, area=%f m^2' % (self.polygon, |
---|
| 1929 | self.exchange_area) |
---|
| 1930 | |
---|
[5436] | 1931 | self.exchange_indices = inside_polygon(points, self.polygon) |
---|
[6410] | 1932 | |
---|
[5450] | 1933 | if self.exchange_indices is not None: |
---|
| 1934 | if len(self.exchange_indices) == 0: |
---|
[5736] | 1935 | msg = 'No triangles have been identified in ' |
---|
[6410] | 1936 | msg += 'specified region: %s' % inlet_region |
---|
[5450] | 1937 | raise Exception, msg |
---|
[6410] | 1938 | |
---|
[5873] | 1939 | # Check and store default_rate |
---|
[6410] | 1940 | msg = ('Keyword argument default_rate must be either None ' |
---|
| 1941 | 'or a function of time.\nI got %s.' % str(default_rate)) |
---|
| 1942 | assert (default_rate is None or |
---|
| 1943 | type(default_rate) in [IntType, FloatType] or |
---|
| 1944 | callable(default_rate)), msg |
---|
| 1945 | |
---|
[5873] | 1946 | if default_rate is not None: |
---|
| 1947 | # If it is a constant, make it a function |
---|
| 1948 | if not callable(default_rate): |
---|
| 1949 | tmp = default_rate |
---|
| 1950 | default_rate = lambda t: tmp |
---|
[5294] | 1951 | |
---|
[5873] | 1952 | # Check that default_rate is a function of one argument |
---|
| 1953 | try: |
---|
| 1954 | default_rate(0.0) |
---|
| 1955 | except: |
---|
| 1956 | raise Exception, msg |
---|
| 1957 | |
---|
| 1958 | self.default_rate = default_rate |
---|
[6410] | 1959 | self.default_rate_invoked = False # Flag |
---|
[5873] | 1960 | |
---|
[6410] | 1961 | ## |
---|
| 1962 | # @brief Execute this instance. |
---|
| 1963 | # @param domain |
---|
[5294] | 1964 | def __call__(self, domain): |
---|
[6410] | 1965 | """Apply inflow function at time specified in domain, update stage""" |
---|
[5294] | 1966 | |
---|
| 1967 | # Call virtual method allowing local modifications |
---|
[5873] | 1968 | t = domain.get_time() |
---|
| 1969 | try: |
---|
| 1970 | rate = self.update_rate(t) |
---|
[5874] | 1971 | except Modeltime_too_early, e: |
---|
| 1972 | raise Modeltime_too_early, e |
---|
| 1973 | except Modeltime_too_late, e: |
---|
| 1974 | if self.default_rate is None: |
---|
[6410] | 1975 | raise Exception, e # Reraise exception |
---|
[5873] | 1976 | else: |
---|
[5874] | 1977 | # Pass control to default rate function |
---|
[5873] | 1978 | rate = self.default_rate(t) |
---|
[6410] | 1979 | |
---|
[5874] | 1980 | if self.default_rate_invoked is False: |
---|
| 1981 | # Issue warning the first time |
---|
[6410] | 1982 | msg = ('%s\n' |
---|
| 1983 | 'Instead I will use the default rate: %s\n' |
---|
| 1984 | 'Note: Further warnings will be supressed' |
---|
| 1985 | % (str(e), str(self.default_rate))) |
---|
[5874] | 1986 | warn(msg) |
---|
[6410] | 1987 | |
---|
[5874] | 1988 | # FIXME (Ole): Replace this crude flag with |
---|
| 1989 | # Python's ability to print warnings only once. |
---|
| 1990 | # See http://docs.python.org/lib/warning-filter.html |
---|
| 1991 | self.default_rate_invoked = True |
---|
[5873] | 1992 | |
---|
[5294] | 1993 | if rate is None: |
---|
[6410] | 1994 | msg = ('Attribute rate must be specified in General_forcing ' |
---|
| 1995 | 'or its descendants before attempting to call it') |
---|
[5294] | 1996 | raise Exception, msg |
---|
| 1997 | |
---|
| 1998 | # Now rate is a number |
---|
| 1999 | if self.verbose is True: |
---|
[6410] | 2000 | print 'Rate of %s at time = %.2f = %f' % (self.quantity_name, |
---|
| 2001 | domain.get_time(), |
---|
| 2002 | rate) |
---|
[5294] | 2003 | |
---|
[5436] | 2004 | if self.exchange_indices is None: |
---|
[5294] | 2005 | self.update[:] += rate |
---|
| 2006 | else: |
---|
| 2007 | # Brute force assignment of restricted rate |
---|
[5436] | 2008 | for k in self.exchange_indices: |
---|
[5294] | 2009 | self.update[k] += rate |
---|
| 2010 | |
---|
[6410] | 2011 | ## |
---|
| 2012 | # @brief Update the internal rate. |
---|
| 2013 | # @param t A callable or scalar used to set the rate. |
---|
| 2014 | # @return The new rate. |
---|
[5294] | 2015 | def update_rate(self, t): |
---|
| 2016 | """Virtual method allowing local modifications by writing an |
---|
| 2017 | overriding version in descendant |
---|
| 2018 | """ |
---|
[6410] | 2019 | |
---|
[6304] | 2020 | if callable(self.rate): |
---|
| 2021 | rate = self.rate(t) |
---|
| 2022 | else: |
---|
| 2023 | rate = self.rate |
---|
[5294] | 2024 | |
---|
| 2025 | return rate |
---|
| 2026 | |
---|
[6410] | 2027 | ## |
---|
| 2028 | # @brief Get values for the specified quantity. |
---|
| 2029 | # @param quantity_name Name of the quantity of interest. |
---|
| 2030 | # @return The value(s) of the quantity. |
---|
| 2031 | # @note If 'quantity_name' is None, use self.quantity_name. |
---|
| 2032 | def get_quantity_values(self, quantity_name=None): |
---|
| 2033 | """Return values for specified quantity restricted to opening |
---|
[5294] | 2034 | |
---|
[6121] | 2035 | Optionally a quantity name can be specified if values from another |
---|
| 2036 | quantity is sought |
---|
[5294] | 2037 | """ |
---|
[6410] | 2038 | |
---|
[6121] | 2039 | if quantity_name is None: |
---|
| 2040 | quantity_name = self.quantity_name |
---|
[6410] | 2041 | |
---|
[6121] | 2042 | q = self.domain.quantities[quantity_name] |
---|
[6410] | 2043 | return q.get_values(location='centroids', |
---|
[6121] | 2044 | indices=self.exchange_indices) |
---|
[5294] | 2045 | |
---|
[6410] | 2046 | ## |
---|
| 2047 | # @brief Set value for the specified quantity. |
---|
| 2048 | # @param val The value object used to set value. |
---|
| 2049 | # @param quantity_name Name of the quantity of interest. |
---|
| 2050 | # @note If 'quantity_name' is None, use self.quantity_name. |
---|
[6121] | 2051 | def set_quantity_values(self, val, quantity_name=None): |
---|
[6410] | 2052 | """Set values for specified quantity restricted to opening |
---|
| 2053 | |
---|
[6121] | 2054 | Optionally a quantity name can be specified if values from another |
---|
[6410] | 2055 | quantity is sought |
---|
[5294] | 2056 | """ |
---|
| 2057 | |
---|
[6121] | 2058 | if quantity_name is None: |
---|
| 2059 | quantity_name = self.quantity_name |
---|
[5294] | 2060 | |
---|
[6410] | 2061 | q = self.domain.quantities[self.quantity_name] |
---|
| 2062 | q.set_values(val, |
---|
| 2063 | location='centroids', |
---|
| 2064 | indices=self.exchange_indices) |
---|
[5294] | 2065 | |
---|
[5736] | 2066 | |
---|
[6410] | 2067 | ## |
---|
| 2068 | # @brief A class for rainfall forcing function. |
---|
| 2069 | # @note Inherits from General_forcing. |
---|
[5294] | 2070 | class Rainfall(General_forcing): |
---|
[4530] | 2071 | """Class Rainfall - general 'rain over entire domain' forcing term. |
---|
[6410] | 2072 | |
---|
[4530] | 2073 | Used for implementing Rainfall over the entire domain. |
---|
[6410] | 2074 | |
---|
[6304] | 2075 | Current Limited to only One Gauge.. |
---|
[6410] | 2076 | |
---|
| 2077 | Need to add Spatial Varying Capability |
---|
[6304] | 2078 | (This module came from copying and amending the Inflow Code) |
---|
[6410] | 2079 | |
---|
[4530] | 2080 | Rainfall(rain) |
---|
[5294] | 2081 | |
---|
[6410] | 2082 | domain |
---|
| 2083 | rain [mm/s]: Total rain rate over the specified domain. |
---|
[6304] | 2084 | NOTE: Raingauge Data needs to reflect the time step. |
---|
| 2085 | IE: if Gauge is mm read at a time step, then the input |
---|
[4530] | 2086 | here is as mm/(timeStep) so 10mm in 5minutes becomes |
---|
| 2087 | 10/(5x60) = 0.0333mm/s. |
---|
[6304] | 2088 | |
---|
[4530] | 2089 | This parameter can be either a constant or a |
---|
[6410] | 2090 | function of time. Positive values indicate inflow, |
---|
[4530] | 2091 | negative values indicate outflow. |
---|
| 2092 | (and be used for Infiltration - Write Seperate Module) |
---|
| 2093 | The specified flow will be divided by the area of |
---|
| 2094 | the inflow region and then applied to update the |
---|
[5294] | 2095 | stage quantity. |
---|
[5178] | 2096 | |
---|
| 2097 | polygon: Specifies a polygon to restrict the rainfall. |
---|
[6410] | 2098 | |
---|
[4530] | 2099 | Examples |
---|
| 2100 | How to put them in a run File... |
---|
[6304] | 2101 | |
---|
[5736] | 2102 | #------------------------------------------------------------------------ |
---|
[4530] | 2103 | # Setup specialised forcing terms |
---|
[5736] | 2104 | #------------------------------------------------------------------------ |
---|
[4530] | 2105 | # This is the new element implemented by Ole and Rudy to allow direct |
---|
[6055] | 2106 | # input of Rainfall in mm/s |
---|
[4438] | 2107 | |
---|
[6410] | 2108 | catchmentrainfall = Rainfall(rain=file_function('Q100_2hr_Rain.tms')) |
---|
[4530] | 2109 | # Note need path to File in String. |
---|
| 2110 | # Else assumed in same directory |
---|
| 2111 | |
---|
| 2112 | domain.forcing_terms.append(catchmentrainfall) |
---|
| 2113 | """ |
---|
| 2114 | |
---|
[6410] | 2115 | ## |
---|
| 2116 | # @brief Create an instance of the class. |
---|
| 2117 | # @param domain Domain of interest. |
---|
| 2118 | # @param rate Total rain rate over the specified domain (mm/s). |
---|
| 2119 | # @param center |
---|
| 2120 | # @param radius |
---|
| 2121 | # @param polygon Polygon to restrict rainfall. |
---|
| 2122 | # @param default_rate |
---|
| 2123 | # @param verbose True if this instance is to be verbose. |
---|
[4530] | 2124 | def __init__(self, |
---|
[5294] | 2125 | domain, |
---|
[6304] | 2126 | rate=0.0, |
---|
[6410] | 2127 | center=None, |
---|
| 2128 | radius=None, |
---|
[5294] | 2129 | polygon=None, |
---|
[6410] | 2130 | default_rate=None, |
---|
[5294] | 2131 | verbose=False): |
---|
[4530] | 2132 | |
---|
[5294] | 2133 | # Converting mm/s to m/s to apply in ANUGA) |
---|
| 2134 | if callable(rate): |
---|
| 2135 | rain = lambda t: rate(t)/1000.0 |
---|
| 2136 | else: |
---|
[5873] | 2137 | rain = rate/1000.0 |
---|
| 2138 | |
---|
[6410] | 2139 | if default_rate is not None: |
---|
[5873] | 2140 | if callable(default_rate): |
---|
| 2141 | default_rain = lambda t: default_rate(t)/1000.0 |
---|
| 2142 | else: |
---|
| 2143 | default_rain = default_rate/1000.0 |
---|
| 2144 | else: |
---|
| 2145 | default_rain = None |
---|
| 2146 | |
---|
[6410] | 2147 | # pass to parent class |
---|
[5294] | 2148 | General_forcing.__init__(self, |
---|
| 2149 | domain, |
---|
| 2150 | 'stage', |
---|
| 2151 | rate=rain, |
---|
[6410] | 2152 | center=center, |
---|
| 2153 | radius=radius, |
---|
[5294] | 2154 | polygon=polygon, |
---|
[5874] | 2155 | default_rate=default_rain, |
---|
[5294] | 2156 | verbose=verbose) |
---|
[5178] | 2157 | |
---|
[4530] | 2158 | |
---|
[6410] | 2159 | ## |
---|
| 2160 | # @brief A class for inflow (rain and drain) forcing function. |
---|
| 2161 | # @note Inherits from General_forcing. |
---|
[5294] | 2162 | class Inflow(General_forcing): |
---|
[4438] | 2163 | """Class Inflow - general 'rain and drain' forcing term. |
---|
[6410] | 2164 | |
---|
[4438] | 2165 | Useful for implementing flows in and out of the domain. |
---|
[6410] | 2166 | |
---|
[5294] | 2167 | Inflow(flow, center, radius, polygon) |
---|
| 2168 | |
---|
| 2169 | domain |
---|
[6410] | 2170 | rate [m^3/s]: Total flow rate over the specified area. |
---|
[4438] | 2171 | This parameter can be either a constant or a |
---|
[6410] | 2172 | function of time. Positive values indicate inflow, |
---|
[4438] | 2173 | negative values indicate outflow. |
---|
| 2174 | The specified flow will be divided by the area of |
---|
[6410] | 2175 | the inflow region and then applied to update stage. |
---|
[5294] | 2176 | center [m]: Coordinates at center of flow point |
---|
| 2177 | radius [m]: Size of circular area |
---|
| 2178 | polygon: Arbitrary polygon. |
---|
| 2179 | |
---|
| 2180 | Either center, radius or polygon must be specified |
---|
[6410] | 2181 | |
---|
[4438] | 2182 | Examples |
---|
| 2183 | |
---|
| 2184 | # Constant drain at 0.003 m^3/s. |
---|
| 2185 | # The outflow area is 0.07**2*pi=0.0154 m^2 |
---|
[6410] | 2186 | # This corresponds to a rate of change of 0.003/0.0154 = 0.2 m/s |
---|
| 2187 | # |
---|
[4438] | 2188 | Inflow((0.7, 0.4), 0.07, -0.003) |
---|
| 2189 | |
---|
| 2190 | |
---|
| 2191 | # Tap turning up to a maximum inflow of 0.0142 m^3/s. |
---|
| 2192 | # The inflow area is 0.03**2*pi = 0.00283 m^2 |
---|
[6410] | 2193 | # This corresponds to a rate of change of 0.0142/0.00283 = 5 m/s |
---|
[4438] | 2194 | # over the specified area |
---|
| 2195 | Inflow((0.5, 0.5), 0.03, lambda t: min(0.01*t, 0.0142)) |
---|
[4530] | 2196 | |
---|
[5294] | 2197 | |
---|
[5736] | 2198 | #------------------------------------------------------------------------ |
---|
[4530] | 2199 | # Setup specialised forcing terms |
---|
[5736] | 2200 | #------------------------------------------------------------------------ |
---|
[4530] | 2201 | # This is the new element implemented by Ole to allow direct input |
---|
| 2202 | # of Inflow in m^3/s |
---|
| 2203 | |
---|
| 2204 | hydrograph = Inflow(center=(320, 300), radius=10, |
---|
[5506] | 2205 | rate=file_function('Q/QPMF_Rot_Sub13.tms')) |
---|
[4530] | 2206 | |
---|
| 2207 | domain.forcing_terms.append(hydrograph) |
---|
[4438] | 2208 | """ |
---|
| 2209 | |
---|
[6410] | 2210 | ## |
---|
| 2211 | # @brief Create an instance of the class. |
---|
| 2212 | # @param domain Domain of interest. |
---|
| 2213 | # @param rate Total rain rate over the specified domain (mm/s). |
---|
| 2214 | # @param center |
---|
| 2215 | # @param radius |
---|
| 2216 | # @param polygon Polygon to restrict rainfall. |
---|
| 2217 | # @param default_rate |
---|
| 2218 | # @param verbose True if this instance is to be verbose. |
---|
[4438] | 2219 | def __init__(self, |
---|
[5294] | 2220 | domain, |
---|
[6304] | 2221 | rate=0.0, |
---|
[6410] | 2222 | center=None, |
---|
| 2223 | radius=None, |
---|
[5294] | 2224 | polygon=None, |
---|
[5874] | 2225 | default_rate=None, |
---|
[6410] | 2226 | verbose=False): |
---|
[5294] | 2227 | # Create object first to make area is available |
---|
| 2228 | General_forcing.__init__(self, |
---|
| 2229 | domain, |
---|
| 2230 | 'stage', |
---|
| 2231 | rate=rate, |
---|
[6410] | 2232 | center=center, |
---|
| 2233 | radius=radius, |
---|
[5294] | 2234 | polygon=polygon, |
---|
[5873] | 2235 | default_rate=default_rate, |
---|
[5294] | 2236 | verbose=verbose) |
---|
| 2237 | |
---|
[6410] | 2238 | ## |
---|
| 2239 | # @brief Update the instance rate. |
---|
| 2240 | # @param t New rate object. |
---|
[5294] | 2241 | def update_rate(self, t): |
---|
| 2242 | """Virtual method allowing local modifications by writing an |
---|
| 2243 | overriding version in descendant |
---|
| 2244 | |
---|
[6410] | 2245 | This one converts m^3/s to m/s which can be added directly |
---|
[5736] | 2246 | to 'stage' in ANUGA |
---|
[5294] | 2247 | """ |
---|
| 2248 | |
---|
[6304] | 2249 | if callable(self.rate): |
---|
| 2250 | _rate = self.rate(t)/self.exchange_area |
---|
| 2251 | else: |
---|
| 2252 | _rate = self.rate/self.exchange_area |
---|
[4438] | 2253 | |
---|
[5294] | 2254 | return _rate |
---|
[4438] | 2255 | |
---|
| 2256 | |
---|
[6410] | 2257 | ################################################################################ |
---|
[4733] | 2258 | # Initialise module |
---|
[6410] | 2259 | ################################################################################ |
---|
[3804] | 2260 | |
---|
| 2261 | from anuga.utilities import compile |
---|
| 2262 | if compile.can_use_C_extension('shallow_water_ext.c'): |
---|
[6410] | 2263 | # Underlying C implementations can be accessed |
---|
[3804] | 2264 | from shallow_water_ext import rotate, assign_windfield_values |
---|
[4769] | 2265 | else: |
---|
[6410] | 2266 | msg = 'C implementations could not be accessed by %s.\n ' % __file__ |
---|
[4769] | 2267 | msg += 'Make sure compile_all.py has been run as described in ' |
---|
| 2268 | msg += 'the ANUGA installation guide.' |
---|
| 2269 | raise Exception, msg |
---|
[3804] | 2270 | |
---|
[4733] | 2271 | # Optimisation with psyco |
---|
[3804] | 2272 | from anuga.config import use_psyco |
---|
| 2273 | if use_psyco: |
---|
| 2274 | try: |
---|
| 2275 | import psyco |
---|
| 2276 | except: |
---|
| 2277 | import os |
---|
[5920] | 2278 | if os.name == 'posix' and os.uname()[4] in ['x86_64', 'ia64']: |
---|
[3804] | 2279 | pass |
---|
| 2280 | #Psyco isn't supported on 64 bit systems, but it doesn't matter |
---|
| 2281 | else: |
---|
[6410] | 2282 | msg = ('WARNING: psyco (speedup) could not be imported, ' |
---|
| 2283 | 'you may want to consider installing it') |
---|
[3804] | 2284 | print msg |
---|
| 2285 | else: |
---|
| 2286 | psyco.bind(Domain.distribute_to_vertices_and_edges) |
---|
| 2287 | psyco.bind(Domain.compute_fluxes) |
---|
| 2288 | |
---|
[6410] | 2289 | |
---|
[3804] | 2290 | if __name__ == "__main__": |
---|
| 2291 | pass |
---|