[5897] | 1 | """Proof of concept sparse matrix code |
---|
| 2 | """ |
---|
| 3 | |
---|
[6304] | 4 | import numpy as num |
---|
[5897] | 5 | |
---|
[6158] | 6 | |
---|
[5897] | 7 | class Sparse: |
---|
| 8 | |
---|
| 9 | def __init__(self, *args): |
---|
| 10 | """Create sparse matrix. |
---|
| 11 | There are two construction forms |
---|
| 12 | Usage: |
---|
| 13 | |
---|
| 14 | Sparse(A) #Creates sparse matrix from dense matrix A |
---|
| 15 | Sparse(M, N) #Creates empty MxN sparse matrix |
---|
| 16 | """ |
---|
| 17 | |
---|
| 18 | self.Data = {} |
---|
| 19 | |
---|
| 20 | if len(args) == 1: |
---|
| 21 | try: |
---|
[6158] | 22 | A = num.array(args[0]) |
---|
[5897] | 23 | except: |
---|
[6304] | 24 | raise 'Input must be convertable to a numeric array' |
---|
[5897] | 25 | |
---|
| 26 | assert len(A.shape) == 2, 'Input must be a 2d matrix' |
---|
| 27 | |
---|
| 28 | self.M, self.N = A.shape |
---|
| 29 | for i in range(self.M): |
---|
| 30 | for j in range(self.N): |
---|
| 31 | if A[i, j] != 0.0: |
---|
| 32 | self.Data[i, j] = A[i, j] |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | elif len(args) == 2: |
---|
| 36 | self.M = args[0] |
---|
| 37 | self.N = args[1] |
---|
| 38 | else: |
---|
| 39 | raise 'Invalid construction' |
---|
| 40 | |
---|
| 41 | self.shape = (self.M, self.N) |
---|
| 42 | |
---|
| 43 | |
---|
| 44 | def __repr__(self): |
---|
| 45 | return '%d X %d sparse matrix:\n' %(self.M, self.N) + `self.Data` |
---|
| 46 | |
---|
| 47 | def __len__(self): |
---|
| 48 | """Return number of nonzeros of A |
---|
| 49 | """ |
---|
| 50 | return len(self.Data) |
---|
| 51 | |
---|
| 52 | def nonzeros(self): |
---|
| 53 | """Return number of nonzeros of A |
---|
| 54 | """ |
---|
| 55 | return len(self) |
---|
| 56 | |
---|
| 57 | def __setitem__(self, key, x): |
---|
| 58 | |
---|
| 59 | i,j = key |
---|
| 60 | # removing these asserts will not speed things up |
---|
| 61 | assert 0 <= i < self.M |
---|
| 62 | assert 0 <= j < self.N |
---|
| 63 | |
---|
| 64 | if x != 0: |
---|
| 65 | self.Data[key] = float(x) |
---|
| 66 | else: |
---|
| 67 | if self.Data.has_key( key ): |
---|
| 68 | del self.Data[key] |
---|
| 69 | |
---|
| 70 | def __getitem__(self, key): |
---|
| 71 | |
---|
| 72 | i,j = key |
---|
| 73 | # removing these asserts will not speed things up |
---|
| 74 | assert 0 <= i < self.M |
---|
| 75 | assert 0 <= j < self.N |
---|
| 76 | |
---|
| 77 | if self.Data.has_key( key ): |
---|
| 78 | return self.Data[ key ] |
---|
| 79 | else: |
---|
| 80 | return 0.0 |
---|
| 81 | |
---|
| 82 | def copy(self): |
---|
| 83 | #FIXME: Use the copy module instead |
---|
| 84 | new = Sparse(self.M,self.N) |
---|
| 85 | |
---|
| 86 | for key in self.Data.keys(): |
---|
| 87 | i, j = key |
---|
| 88 | |
---|
| 89 | new[i,j] = self.Data[i,j] |
---|
| 90 | |
---|
| 91 | return new |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | def todense(self): |
---|
[6304] | 95 | D = num.zeros( (self.M, self.N), num.float) |
---|
[5897] | 96 | |
---|
| 97 | for i in range(self.M): |
---|
| 98 | for j in range(self.N): |
---|
| 99 | if self.Data.has_key( (i,j) ): |
---|
| 100 | D[i, j] = self.Data[ (i,j) ] |
---|
| 101 | return D |
---|
| 102 | |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | def __mul__(self, other): |
---|
| 106 | """Multiply this matrix onto 'other' which can either be |
---|
[6304] | 107 | a numeric vector, a numeric matrix or another sparse matrix. |
---|
[5897] | 108 | """ |
---|
| 109 | |
---|
| 110 | try: |
---|
[6158] | 111 | B = num.array(other) |
---|
[5897] | 112 | except: |
---|
[6304] | 113 | msg = 'FIXME: Only numeric types implemented so far' |
---|
[5897] | 114 | raise msg |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | # Assume numeric types from now on |
---|
| 118 | |
---|
| 119 | if len(B.shape) == 0: |
---|
| 120 | # Scalar - use __rmul__ method |
---|
| 121 | R = B*self |
---|
| 122 | |
---|
| 123 | elif len(B.shape) == 1: |
---|
| 124 | # Vector |
---|
| 125 | msg = 'Mismatching dimensions: You cannot multiply (%d x %d) matrix onto %d-vector'\ |
---|
| 126 | %(self.M, self.N, B.shape[0]) |
---|
| 127 | assert B.shape[0] == self.N, msg |
---|
| 128 | |
---|
[6304] | 129 | R = num.zeros(self.M, num.float) #Result |
---|
[5897] | 130 | |
---|
| 131 | # Multiply nonzero elements |
---|
| 132 | for key in self.Data.keys(): |
---|
| 133 | i, j = key |
---|
| 134 | |
---|
| 135 | R[i] += self.Data[key]*B[j] |
---|
| 136 | elif len(B.shape) == 2: |
---|
| 137 | |
---|
| 138 | |
---|
[6304] | 139 | R = num.zeros((self.M, B.shape[1]), num.float) #Result matrix |
---|
[5897] | 140 | |
---|
| 141 | # Multiply nonzero elements |
---|
| 142 | for col in range(R.shape[1]): |
---|
| 143 | # For each column |
---|
| 144 | |
---|
| 145 | for key in self.Data.keys(): |
---|
| 146 | i, j = key |
---|
| 147 | |
---|
| 148 | R[i, col] += self.Data[key]*B[j, col] |
---|
| 149 | |
---|
| 150 | |
---|
| 151 | else: |
---|
| 152 | raise ValueError, 'Dimension too high: d=%d' %len(B.shape) |
---|
| 153 | |
---|
| 154 | return R |
---|
| 155 | |
---|
| 156 | |
---|
| 157 | def __add__(self, other): |
---|
| 158 | """Add this matrix onto 'other' |
---|
| 159 | """ |
---|
| 160 | |
---|
| 161 | new = other.copy() |
---|
| 162 | for key in self.Data.keys(): |
---|
| 163 | i, j = key |
---|
| 164 | |
---|
| 165 | new[i,j] += self.Data[key] |
---|
| 166 | |
---|
| 167 | return new |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | def __rmul__(self, other): |
---|
| 171 | """Right multiply this matrix with scalar |
---|
| 172 | """ |
---|
| 173 | |
---|
| 174 | try: |
---|
| 175 | other = float(other) |
---|
| 176 | except: |
---|
| 177 | msg = 'Sparse matrix can only "right-multiply" onto a scalar' |
---|
| 178 | raise TypeError, msg |
---|
| 179 | else: |
---|
| 180 | new = self.copy() |
---|
| 181 | #Multiply nonzero elements |
---|
| 182 | for key in new.Data.keys(): |
---|
| 183 | i, j = key |
---|
| 184 | |
---|
| 185 | new.Data[key] = other*new.Data[key] |
---|
| 186 | |
---|
| 187 | return new |
---|
| 188 | |
---|
| 189 | |
---|
| 190 | def trans_mult(self, other): |
---|
| 191 | """Multiply the transpose of matrix with 'other' which can be |
---|
[6304] | 192 | a numeric vector. |
---|
[5897] | 193 | """ |
---|
| 194 | |
---|
| 195 | try: |
---|
[6158] | 196 | B = num.array(other) |
---|
[5897] | 197 | except: |
---|
[6304] | 198 | print 'FIXME: Only numeric types implemented so far' |
---|
[5897] | 199 | |
---|
| 200 | |
---|
| 201 | #Assume numeric types from now on |
---|
| 202 | if len(B.shape) == 1: |
---|
| 203 | #Vector |
---|
| 204 | |
---|
| 205 | assert B.shape[0] == self.M, 'Mismatching dimensions' |
---|
| 206 | |
---|
[6304] | 207 | R = num.zeros((self.N,), num.float) #Result |
---|
[5897] | 208 | |
---|
| 209 | #Multiply nonzero elements |
---|
| 210 | for key in self.Data.keys(): |
---|
| 211 | i, j = key |
---|
| 212 | |
---|
| 213 | R[j] += self.Data[key]*B[i] |
---|
| 214 | |
---|
| 215 | else: |
---|
| 216 | raise 'Can only multiply with 1d array' |
---|
| 217 | |
---|
| 218 | return R |
---|
| 219 | |
---|
| 220 | class Sparse_CSR: |
---|
| 221 | |
---|
| 222 | def __init__(self, A): |
---|
| 223 | """Create sparse matrix in csr format. |
---|
| 224 | |
---|
| 225 | Sparse_CSR(A) #creates csr sparse matrix from sparse matrix |
---|
| 226 | Matrices are not built using this format, since it's painful to |
---|
| 227 | add values to an existing sparse_CSR instance (hence there are no |
---|
| 228 | objects to do this.) |
---|
| 229 | |
---|
| 230 | Rather, build a matrix, and convert it to this format for a speed |
---|
| 231 | increase. |
---|
| 232 | |
---|
| 233 | data - a 1D array of the data |
---|
| 234 | Colind - The ith item in this 1D array is the column index of the |
---|
| 235 | ith data in the data array |
---|
| 236 | rowptr - 1D array, with the index representing the row of the matrix. |
---|
| 237 | The item in the row represents the index into colind of the |
---|
| 238 | first data value of this row. |
---|
| 239 | Regard it as a pointer into the colind array, for the ith row. |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | """ |
---|
| 243 | |
---|
| 244 | if isinstance(A,Sparse): |
---|
| 245 | |
---|
| 246 | keys = A.Data.keys() |
---|
| 247 | keys.sort() |
---|
| 248 | nnz = len(keys) |
---|
[6304] | 249 | data = num.zeros ( (nnz,), num.float) |
---|
| 250 | colind = num.zeros ( (nnz,), num.int) |
---|
| 251 | row_ptr = num.zeros ( (A.M+1,), num.int) |
---|
[5897] | 252 | current_row = -1 |
---|
| 253 | k = 0 |
---|
| 254 | for key in keys: |
---|
| 255 | ikey0 = int(key[0]) |
---|
| 256 | ikey1 = int(key[1]) |
---|
| 257 | if ikey0 != current_row: |
---|
| 258 | current_row = ikey0 |
---|
| 259 | row_ptr[ikey0] = k |
---|
| 260 | data[k] = A.Data[key] |
---|
| 261 | colind[k] = ikey1 |
---|
| 262 | k += 1 |
---|
| 263 | for row in range(current_row+1, A.M+1): |
---|
| 264 | row_ptr[row] = nnz |
---|
| 265 | #row_ptr[-1] = nnz |
---|
| 266 | |
---|
| 267 | self.data = data |
---|
| 268 | self.colind = colind |
---|
| 269 | self.row_ptr = row_ptr |
---|
| 270 | self.M = A.M |
---|
| 271 | self.N = A.N |
---|
| 272 | else: |
---|
| 273 | raise ValueError, "Sparse_CSR(A) expects A == Sparse Matrix" |
---|
| 274 | |
---|
| 275 | def __repr__(self): |
---|
| 276 | return '%d X %d sparse matrix:\n' %(self.M, self.N) + `self.data` |
---|
| 277 | |
---|
| 278 | def __len__(self): |
---|
| 279 | """Return number of nonzeros of A |
---|
| 280 | """ |
---|
| 281 | return self.row_ptr[-1] |
---|
| 282 | |
---|
| 283 | def nonzeros(self): |
---|
| 284 | """Return number of nonzeros of A |
---|
| 285 | """ |
---|
| 286 | return len(self) |
---|
| 287 | |
---|
| 288 | def todense(self): |
---|
[6304] | 289 | D = num.zeros( (self.M, self.N), num.float) |
---|
[5897] | 290 | |
---|
| 291 | for i in range(self.M): |
---|
| 292 | for ckey in range(self.row_ptr[i],self.row_ptr[i+1]): |
---|
| 293 | j = self.colind[ckey] |
---|
| 294 | D[i, j] = self.data[ckey] |
---|
| 295 | return D |
---|
| 296 | |
---|
| 297 | def __mul__(self, other): |
---|
| 298 | """Multiply this matrix onto 'other' which can either be |
---|
[6304] | 299 | a numeric vector, a numeric matrix or another sparse matrix. |
---|
[5897] | 300 | """ |
---|
| 301 | |
---|
| 302 | try: |
---|
[6158] | 303 | B = num.array(other) |
---|
[5897] | 304 | except: |
---|
[6304] | 305 | print 'FIXME: Only numeric types implemented so far' |
---|
[5897] | 306 | |
---|
| 307 | return csr_mv(self,B) |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | # Setup for C extensions |
---|
| 311 | from anuga.utilities import compile |
---|
| 312 | if compile.can_use_C_extension('sparse_ext.c'): |
---|
| 313 | # Access underlying c implementations |
---|
| 314 | from sparse_ext import csr_mv |
---|
| 315 | |
---|
| 316 | |
---|
| 317 | if __name__ == '__main__': |
---|
| 318 | # A little selftest |
---|
| 319 | |
---|
| 320 | A = Sparse(3,3) |
---|
| 321 | |
---|
| 322 | A[1,1] = 4 |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | print A |
---|
| 326 | print A.todense() |
---|
| 327 | |
---|
| 328 | A[1,1] = 0 |
---|
| 329 | |
---|
| 330 | print A |
---|
| 331 | print A.todense() |
---|
| 332 | |
---|
| 333 | A[1,2] = 0 |
---|
| 334 | |
---|
| 335 | |
---|
| 336 | A[0,0] = 3 |
---|
| 337 | A[1,1] = 2 |
---|
| 338 | A[1,2] = 2 |
---|
| 339 | A[2,2] = 1 |
---|
| 340 | |
---|
| 341 | print A |
---|
| 342 | print A.todense() |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | #Right hand side vector |
---|
| 346 | v = [2,3,4] |
---|
| 347 | |
---|
| 348 | u = A*v |
---|
| 349 | print u |
---|
[6158] | 350 | assert num.allclose(u, [6,14,4]) |
---|
[5897] | 351 | |
---|
| 352 | u = A.trans_mult(v) |
---|
| 353 | print u |
---|
[6158] | 354 | assert num.allclose(u, [6,6,10]) |
---|
[5897] | 355 | |
---|
| 356 | #Right hand side column |
---|
[6304] | 357 | v = num.array([[2,4],[3,4],[4,4]]) |
---|
[5897] | 358 | |
---|
| 359 | u = A*v[:,0] |
---|
[6158] | 360 | assert num.allclose(u, [6,14,4]) |
---|
[5897] | 361 | |
---|
| 362 | #u = A*v[:,1] |
---|
| 363 | #print u |
---|
| 364 | print A.shape |
---|
| 365 | |
---|
| 366 | B = 3*A |
---|
| 367 | print B.todense() |
---|
| 368 | |
---|
| 369 | B[1,0] = 2 |
---|
| 370 | |
---|
| 371 | C = A+B |
---|
| 372 | |
---|
| 373 | print C.todense() |
---|
| 374 | |
---|
| 375 | C = Sparse_CSR(C) |
---|
| 376 | |
---|
| 377 | y = C*[6,14,4] |
---|
| 378 | |
---|
| 379 | print y |
---|
| 380 | |
---|
| 381 | y2 = C*[[6,4],[4,28],[4,8]] |
---|
| 382 | |
---|
| 383 | print y2 |
---|