1 | |
---|
2 | |
---|
3 | |
---|
4 | |
---|
5 | |
---|
6 | |
---|
7 | |
---|
8 | ############################################### |
---|
9 | #OBSOLETE STUFF |
---|
10 | #Native checkpoint format. |
---|
11 | #Information needed to recreate a state is preserved |
---|
12 | #FIXME: Rethink and maybe use netcdf format |
---|
13 | def cpt_variable_writer(filename, t, v0, v1, v2): |
---|
14 | """Store all conserved quantities to file |
---|
15 | """ |
---|
16 | |
---|
17 | M, N = v0.shape |
---|
18 | |
---|
19 | FN = create_filename(filename, 'cpt', M, t) |
---|
20 | #print 'Writing to %s' %FN |
---|
21 | |
---|
22 | fid = open(FN, 'w') |
---|
23 | for i in range(M): |
---|
24 | for j in range(N): |
---|
25 | fid.write('%.16e ' %v0[i,j]) |
---|
26 | for j in range(N): |
---|
27 | fid.write('%.16e ' %v1[i,j]) |
---|
28 | for j in range(N): |
---|
29 | fid.write('%.16e ' %v2[i,j]) |
---|
30 | |
---|
31 | fid.write('\n') |
---|
32 | fid.close() |
---|
33 | |
---|
34 | |
---|
35 | def cpt_variable_reader(filename, t, v0, v1, v2): |
---|
36 | """Store all conserved quantities to file |
---|
37 | """ |
---|
38 | |
---|
39 | M, N = v0.shape |
---|
40 | |
---|
41 | FN = create_filename(filename, 'cpt', M, t) |
---|
42 | #print 'Reading from %s' %FN |
---|
43 | |
---|
44 | fid = open(FN) |
---|
45 | |
---|
46 | |
---|
47 | for i in range(M): |
---|
48 | values = fid.readline().split() #Get one line |
---|
49 | |
---|
50 | for j in range(N): |
---|
51 | v0[i,j] = float(values[j]) |
---|
52 | v1[i,j] = float(values[3+j]) |
---|
53 | v2[i,j] = float(values[6+j]) |
---|
54 | |
---|
55 | fid.close() |
---|
56 | |
---|
57 | def cpt_constant_writer(filename, X0, X1, X2, v0, v1, v2): |
---|
58 | """Writes x,y,z,z,z coordinates of triangles constituting the bed |
---|
59 | elevation. |
---|
60 | FIXME: Not in use pt |
---|
61 | """ |
---|
62 | |
---|
63 | M, N = v0.shape |
---|
64 | |
---|
65 | |
---|
66 | print X0 |
---|
67 | import sys; sys.exit() |
---|
68 | FN = create_filename(filename, 'cpt', M) |
---|
69 | print 'Writing to %s' %FN |
---|
70 | |
---|
71 | fid = open(FN, 'w') |
---|
72 | for i in range(M): |
---|
73 | for j in range(2): |
---|
74 | fid.write('%.16e ' %X0[i,j]) #x, y |
---|
75 | for j in range(N): |
---|
76 | fid.write('%.16e ' %v0[i,j]) #z,z,z, |
---|
77 | |
---|
78 | for j in range(2): |
---|
79 | fid.write('%.16e ' %X1[i,j]) #x, y |
---|
80 | for j in range(N): |
---|
81 | fid.write('%.16e ' %v1[i,j]) |
---|
82 | |
---|
83 | for j in range(2): |
---|
84 | fid.write('%.16e ' %X2[i,j]) #x, y |
---|
85 | for j in range(N): |
---|
86 | fid.write('%.16e ' %v2[i,j]) |
---|
87 | |
---|
88 | fid.write('\n') |
---|
89 | fid.close() |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | #Function for storing out to e.g. visualisation |
---|
94 | #FIXME: Do we want this? |
---|
95 | #FIXME: Not done yet for this version |
---|
96 | def dat_constant_writer(filename, X0, X1, X2, v0, v1, v2): |
---|
97 | """Writes x,y,z coordinates of triangles constituting the bed elevation. |
---|
98 | """ |
---|
99 | |
---|
100 | M, N = v0.shape |
---|
101 | |
---|
102 | FN = create_filename(filename, 'dat', M) |
---|
103 | #print 'Writing to %s' %FN |
---|
104 | |
---|
105 | fid = open(FN, 'w') |
---|
106 | for i in range(M): |
---|
107 | for j in range(2): |
---|
108 | fid.write('%f ' %X0[i,j]) #x, y |
---|
109 | fid.write('%f ' %v0[i,0]) #z |
---|
110 | |
---|
111 | for j in range(2): |
---|
112 | fid.write('%f ' %X1[i,j]) #x, y |
---|
113 | fid.write('%f ' %v1[i,0]) #z |
---|
114 | |
---|
115 | for j in range(2): |
---|
116 | fid.write('%f ' %X2[i,j]) #x, y |
---|
117 | fid.write('%f ' %v2[i,0]) #z |
---|
118 | |
---|
119 | fid.write('\n') |
---|
120 | fid.close() |
---|
121 | |
---|
122 | |
---|
123 | |
---|
124 | def dat_variable_writer(filename, t, v0, v1, v2): |
---|
125 | """Store water height to file |
---|
126 | """ |
---|
127 | |
---|
128 | M, N = v0.shape |
---|
129 | |
---|
130 | FN = create_filename(filename, 'dat', M, t) |
---|
131 | #print 'Writing to %s' %FN |
---|
132 | |
---|
133 | fid = open(FN, 'w') |
---|
134 | for i in range(M): |
---|
135 | fid.write('%.4f ' %v0[i,0]) |
---|
136 | fid.write('%.4f ' %v1[i,0]) |
---|
137 | fid.write('%.4f ' %v2[i,0]) |
---|
138 | |
---|
139 | fid.write('\n') |
---|
140 | fid.close() |
---|
141 | |
---|
142 | |
---|
143 | def read_sww(filename): |
---|
144 | """Read sww Net CDF file containing Shallow Water Wave simulation |
---|
145 | |
---|
146 | The integer array volumes is of shape Nx3 where N is the number of |
---|
147 | triangles in the mesh. |
---|
148 | |
---|
149 | Each entry in volumes is an index into the x,y arrays (the location). |
---|
150 | |
---|
151 | Quantities stage, elevation, xmomentum and ymomentum are all in arrays of dimensions |
---|
152 | number_of_timesteps, number_of_points. |
---|
153 | |
---|
154 | The momentum is not always stored. |
---|
155 | |
---|
156 | """ |
---|
157 | from Scientific.IO.NetCDF import NetCDFFile |
---|
158 | print 'Reading from ', filename |
---|
159 | fid = NetCDFFile(filename, 'r') #Open existing file for read |
---|
160 | #latitude, longitude |
---|
161 | # Get the variables as Numeric arrays |
---|
162 | x = fid.variables['x'] #x-coordinates of vertices |
---|
163 | y = fid.variables['y'] #y-coordinates of vertices |
---|
164 | z = fid.variables['elevation'] #Elevation |
---|
165 | time = fid.variables['time'] #Timesteps |
---|
166 | stage = fid.variables['stage'] #Water level |
---|
167 | #xmomentum = fid.variables['xmomentum'] #Momentum in the x-direction |
---|
168 | #ymomentum = fid.variables['ymomentum'] #Momentum in the y-direction |
---|
169 | |
---|
170 | volumes = fid.variables['volumes'] #Connectivity |
---|
171 | |
---|
172 | #FIXME (Ole): What is this? |
---|
173 | # Why isn't anything returned? |
---|
174 | # Where's the unit test? |
---|
175 | |
---|
176 | |
---|
177 | |
---|
178 | def sww2asc_obsolete(basename_in, basename_out = None, |
---|
179 | quantity = None, |
---|
180 | timestep = None, |
---|
181 | reduction = None, |
---|
182 | cellsize = 10, |
---|
183 | verbose = False, |
---|
184 | origin = None): |
---|
185 | """Read SWW file and convert to Digitial Elevation model format (.asc) |
---|
186 | |
---|
187 | Example: |
---|
188 | |
---|
189 | ncols 3121 |
---|
190 | nrows 1800 |
---|
191 | xllcorner 722000 |
---|
192 | yllcorner 5893000 |
---|
193 | cellsize 25 |
---|
194 | NODATA_value -9999 |
---|
195 | 138.3698 137.4194 136.5062 135.5558 .......... |
---|
196 | |
---|
197 | Also write accompanying file with same basename_in but extension .prj |
---|
198 | used to fix the UTM zone, datum, false northings and eastings. |
---|
199 | |
---|
200 | The prj format is assumed to be as |
---|
201 | |
---|
202 | Projection UTM |
---|
203 | Zone 56 |
---|
204 | Datum WGS84 |
---|
205 | Zunits NO |
---|
206 | Units METERS |
---|
207 | Spheroid WGS84 |
---|
208 | Xshift 0.0000000000 |
---|
209 | Yshift 10000000.0000000000 |
---|
210 | Parameters |
---|
211 | |
---|
212 | |
---|
213 | if quantity is given, out values from quantity otherwise default to |
---|
214 | elevation |
---|
215 | |
---|
216 | if timestep (an index) is given, output quantity at that timestep |
---|
217 | |
---|
218 | if reduction is given use that to reduce quantity over all timesteps. |
---|
219 | |
---|
220 | """ |
---|
221 | from Numeric import array, Float, concatenate, NewAxis, zeros,\ |
---|
222 | sometrue |
---|
223 | from anuga.utilities.polygon import inside_polygon |
---|
224 | |
---|
225 | #FIXME: Should be variable |
---|
226 | datum = 'WGS84' |
---|
227 | false_easting = 500000 |
---|
228 | false_northing = 10000000 |
---|
229 | |
---|
230 | if quantity is None: |
---|
231 | quantity = 'elevation' |
---|
232 | |
---|
233 | if reduction is None: |
---|
234 | reduction = max |
---|
235 | |
---|
236 | if basename_out is None: |
---|
237 | basename_out = basename_in + '_%s' %quantity |
---|
238 | |
---|
239 | swwfile = basename_in + '.sww' |
---|
240 | ascfile = basename_out + '.asc' |
---|
241 | prjfile = basename_out + '.prj' |
---|
242 | |
---|
243 | |
---|
244 | if verbose: print 'Reading from %s' %swwfile |
---|
245 | #Read sww file |
---|
246 | from Scientific.IO.NetCDF import NetCDFFile |
---|
247 | fid = NetCDFFile(swwfile) |
---|
248 | |
---|
249 | #Get extent and reference |
---|
250 | x = fid.variables['x'][:] |
---|
251 | y = fid.variables['y'][:] |
---|
252 | volumes = fid.variables['volumes'][:] |
---|
253 | |
---|
254 | ymin = min(y); ymax = max(y) |
---|
255 | xmin = min(x); xmax = max(x) |
---|
256 | |
---|
257 | number_of_timesteps = fid.dimensions['number_of_timesteps'] |
---|
258 | number_of_points = fid.dimensions['number_of_points'] |
---|
259 | if origin is None: |
---|
260 | |
---|
261 | #Get geo_reference |
---|
262 | #sww files don't have to have a geo_ref |
---|
263 | try: |
---|
264 | geo_reference = Geo_reference(NetCDFObject=fid) |
---|
265 | except AttributeError, e: |
---|
266 | geo_reference = Geo_reference() #Default georef object |
---|
267 | |
---|
268 | xllcorner = geo_reference.get_xllcorner() |
---|
269 | yllcorner = geo_reference.get_yllcorner() |
---|
270 | zone = geo_reference.get_zone() |
---|
271 | else: |
---|
272 | zone = origin[0] |
---|
273 | xllcorner = origin[1] |
---|
274 | yllcorner = origin[2] |
---|
275 | |
---|
276 | |
---|
277 | #Get quantity and reduce if applicable |
---|
278 | if verbose: print 'Reading quantity %s' %quantity |
---|
279 | |
---|
280 | if quantity.lower() == 'depth': |
---|
281 | q = fid.variables['stage'][:] - fid.variables['elevation'][:] |
---|
282 | else: |
---|
283 | q = fid.variables[quantity][:] |
---|
284 | |
---|
285 | |
---|
286 | if len(q.shape) == 2: |
---|
287 | if verbose: print 'Reducing quantity %s' %quantity |
---|
288 | q_reduced = zeros( number_of_points, Float ) |
---|
289 | |
---|
290 | for k in range(number_of_points): |
---|
291 | q_reduced[k] = reduction( q[:,k] ) |
---|
292 | |
---|
293 | q = q_reduced |
---|
294 | |
---|
295 | #Now q has dimension: number_of_points |
---|
296 | |
---|
297 | #Create grid and update xll/yll corner and x,y |
---|
298 | if verbose: print 'Creating grid' |
---|
299 | ncols = int((xmax-xmin)/cellsize)+1 |
---|
300 | nrows = int((ymax-ymin)/cellsize)+1 |
---|
301 | |
---|
302 | newxllcorner = xmin+xllcorner |
---|
303 | newyllcorner = ymin+yllcorner |
---|
304 | |
---|
305 | x = x+xllcorner-newxllcorner |
---|
306 | y = y+yllcorner-newyllcorner |
---|
307 | |
---|
308 | vertex_points = concatenate ((x[:, NewAxis] ,y[:, NewAxis]), axis = 1) |
---|
309 | assert len(vertex_points.shape) == 2 |
---|
310 | |
---|
311 | |
---|
312 | from Numeric import zeros, Float |
---|
313 | grid_points = zeros ( (ncols*nrows, 2), Float ) |
---|
314 | |
---|
315 | |
---|
316 | for i in xrange(nrows): |
---|
317 | yg = i*cellsize |
---|
318 | for j in xrange(ncols): |
---|
319 | xg = j*cellsize |
---|
320 | k = i*ncols + j |
---|
321 | |
---|
322 | grid_points[k,0] = xg |
---|
323 | grid_points[k,1] = yg |
---|
324 | |
---|
325 | #Interpolate |
---|
326 | from least_squares import Interpolation |
---|
327 | |
---|
328 | |
---|
329 | #FIXME: This should be done with precrop = True, otherwise it'll |
---|
330 | #take forever. With expand_search set to False, some grid points might |
---|
331 | #miss out.... |
---|
332 | |
---|
333 | interp = Interpolation(vertex_points, volumes, grid_points, alpha=0.0, |
---|
334 | precrop = False, expand_search = True, |
---|
335 | verbose = verbose) |
---|
336 | |
---|
337 | #Interpolate using quantity values |
---|
338 | if verbose: print 'Interpolating' |
---|
339 | grid_values = interp.interpolate(q).flat |
---|
340 | |
---|
341 | #Write |
---|
342 | #Write prj file |
---|
343 | if verbose: print 'Writing %s' %prjfile |
---|
344 | prjid = open(prjfile, 'w') |
---|
345 | prjid.write('Projection %s\n' %'UTM') |
---|
346 | prjid.write('Zone %d\n' %zone) |
---|
347 | prjid.write('Datum %s\n' %datum) |
---|
348 | prjid.write('Zunits NO\n') |
---|
349 | prjid.write('Units METERS\n') |
---|
350 | prjid.write('Spheroid %s\n' %datum) |
---|
351 | prjid.write('Xshift %d\n' %false_easting) |
---|
352 | prjid.write('Yshift %d\n' %false_northing) |
---|
353 | prjid.write('Parameters\n') |
---|
354 | prjid.close() |
---|
355 | |
---|
356 | |
---|
357 | |
---|
358 | if verbose: print 'Writing %s' %ascfile |
---|
359 | NODATA_value = -9999 |
---|
360 | |
---|
361 | ascid = open(ascfile, 'w') |
---|
362 | |
---|
363 | ascid.write('ncols %d\n' %ncols) |
---|
364 | ascid.write('nrows %d\n' %nrows) |
---|
365 | ascid.write('xllcorner %d\n' %newxllcorner) |
---|
366 | ascid.write('yllcorner %d\n' %newyllcorner) |
---|
367 | ascid.write('cellsize %f\n' %cellsize) |
---|
368 | ascid.write('NODATA_value %d\n' %NODATA_value) |
---|
369 | |
---|
370 | |
---|
371 | #Get bounding polygon from mesh |
---|
372 | P = interp.mesh.get_boundary_polygon() |
---|
373 | inside_indices = inside_polygon(grid_points, P) |
---|
374 | |
---|
375 | for i in range(nrows): |
---|
376 | if verbose and i%((nrows+10)/10)==0: |
---|
377 | print 'Doing row %d of %d' %(i, nrows) |
---|
378 | |
---|
379 | for j in range(ncols): |
---|
380 | index = (nrows-i-1)*ncols+j |
---|
381 | |
---|
382 | if sometrue(inside_indices == index): |
---|
383 | ascid.write('%f ' %grid_values[index]) |
---|
384 | else: |
---|
385 | ascid.write('%d ' %NODATA_value) |
---|
386 | |
---|
387 | ascid.write('\n') |
---|
388 | |
---|
389 | #Close |
---|
390 | ascid.close() |
---|
391 | fid.close() |
---|
392 | |
---|
393 | |
---|
394 | |
---|
395 | |
---|
396 | def NOT_test_dem2pts(self): |
---|
397 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
398 | """ |
---|
399 | |
---|
400 | import time, os |
---|
401 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
402 | from Scientific.IO.NetCDF import NetCDFFile |
---|
403 | |
---|
404 | #Write test asc file |
---|
405 | root = 'demtest' |
---|
406 | |
---|
407 | filename = root+'.asc' |
---|
408 | fid = open(filename, 'w') |
---|
409 | fid.write("""ncols 5 |
---|
410 | nrows 6 |
---|
411 | xllcorner 2000.5 |
---|
412 | yllcorner 3000.5 |
---|
413 | cellsize 25 |
---|
414 | NODATA_value -9999 |
---|
415 | """) |
---|
416 | #Create linear function |
---|
417 | |
---|
418 | ref_points = [] |
---|
419 | ref_elevation = [] |
---|
420 | for i in range(6): |
---|
421 | y = (6-i)*25.0 |
---|
422 | for j in range(5): |
---|
423 | x = j*25.0 |
---|
424 | z = x+2*y |
---|
425 | |
---|
426 | ref_points.append( [x,y] ) |
---|
427 | ref_elevation.append(z) |
---|
428 | fid.write('%f ' %z) |
---|
429 | fid.write('\n') |
---|
430 | |
---|
431 | fid.close() |
---|
432 | |
---|
433 | #Write prj file with metadata |
---|
434 | metafilename = root+'.prj' |
---|
435 | fid = open(metafilename, 'w') |
---|
436 | |
---|
437 | |
---|
438 | fid.write("""Projection UTM |
---|
439 | Zone 56 |
---|
440 | Datum WGS84 |
---|
441 | Zunits NO |
---|
442 | Units METERS |
---|
443 | Spheroid WGS84 |
---|
444 | Xshift 0.0000000000 |
---|
445 | Yshift 10000000.0000000000 |
---|
446 | Parameters |
---|
447 | """) |
---|
448 | fid.close() |
---|
449 | |
---|
450 | #Convert to NetCDF pts |
---|
451 | convert_dem_from_ascii2netcdf(root) |
---|
452 | dem2pts(root) |
---|
453 | |
---|
454 | #Check contents |
---|
455 | #Get NetCDF |
---|
456 | fid = NetCDFFile(root+'.pts', 'r') |
---|
457 | |
---|
458 | # Get the variables |
---|
459 | #print fid.variables.keys() |
---|
460 | points = fid.variables['points'] |
---|
461 | elevation = fid.variables['elevation'] |
---|
462 | |
---|
463 | #Check values |
---|
464 | |
---|
465 | #print points[:] |
---|
466 | #print ref_points |
---|
467 | assert allclose(points, ref_points) |
---|
468 | |
---|
469 | #print attributes[:] |
---|
470 | #print ref_elevation |
---|
471 | assert allclose(elevation, ref_elevation) |
---|
472 | |
---|
473 | #Cleanup |
---|
474 | fid.close() |
---|
475 | |
---|
476 | |
---|
477 | os.remove(root + '.pts') |
---|
478 | os.remove(root + '.dem') |
---|
479 | os.remove(root + '.asc') |
---|
480 | os.remove(root + '.prj') |
---|
481 | |
---|
482 | |
---|
483 | |
---|
484 | def NOT_test_dem2pts_bounding_box(self): |
---|
485 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
486 | """ |
---|
487 | |
---|
488 | import time, os |
---|
489 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
490 | from Scientific.IO.NetCDF import NetCDFFile |
---|
491 | |
---|
492 | #Write test asc file |
---|
493 | root = 'demtest' |
---|
494 | |
---|
495 | filename = root+'.asc' |
---|
496 | fid = open(filename, 'w') |
---|
497 | fid.write("""ncols 5 |
---|
498 | nrows 6 |
---|
499 | xllcorner 2000.5 |
---|
500 | yllcorner 3000.5 |
---|
501 | cellsize 25 |
---|
502 | NODATA_value -9999 |
---|
503 | """) |
---|
504 | #Create linear function |
---|
505 | |
---|
506 | ref_points = [] |
---|
507 | ref_elevation = [] |
---|
508 | for i in range(6): |
---|
509 | y = (6-i)*25.0 |
---|
510 | for j in range(5): |
---|
511 | x = j*25.0 |
---|
512 | z = x+2*y |
---|
513 | |
---|
514 | ref_points.append( [x,y] ) |
---|
515 | ref_elevation.append(z) |
---|
516 | fid.write('%f ' %z) |
---|
517 | fid.write('\n') |
---|
518 | |
---|
519 | fid.close() |
---|
520 | |
---|
521 | #Write prj file with metadata |
---|
522 | metafilename = root+'.prj' |
---|
523 | fid = open(metafilename, 'w') |
---|
524 | |
---|
525 | |
---|
526 | fid.write("""Projection UTM |
---|
527 | Zone 56 |
---|
528 | Datum WGS84 |
---|
529 | Zunits NO |
---|
530 | Units METERS |
---|
531 | Spheroid WGS84 |
---|
532 | Xshift 0.0000000000 |
---|
533 | Yshift 10000000.0000000000 |
---|
534 | Parameters |
---|
535 | """) |
---|
536 | fid.close() |
---|
537 | |
---|
538 | #Convert to NetCDF pts |
---|
539 | convert_dem_from_ascii2netcdf(root) |
---|
540 | dem2pts(root, easting_min=2010.0, easting_max=2110.0, |
---|
541 | northing_min=3035.0, northing_max=3125.5) |
---|
542 | |
---|
543 | #Check contents |
---|
544 | #Get NetCDF |
---|
545 | fid = NetCDFFile(root+'.pts', 'r') |
---|
546 | |
---|
547 | # Get the variables |
---|
548 | #print fid.variables.keys() |
---|
549 | points = fid.variables['points'] |
---|
550 | elevation = fid.variables['elevation'] |
---|
551 | |
---|
552 | #Check values |
---|
553 | assert fid.xllcorner[0] == 2010.0 |
---|
554 | assert fid.yllcorner[0] == 3035.0 |
---|
555 | |
---|
556 | #create new reference points |
---|
557 | ref_points = [] |
---|
558 | ref_elevation = [] |
---|
559 | for i in range(4): |
---|
560 | y = (4-i)*25.0 + 25.0 |
---|
561 | y_new = y + 3000.5 - 3035.0 |
---|
562 | for j in range(4): |
---|
563 | x = j*25.0 + 25.0 |
---|
564 | x_new = x + 2000.5 - 2010.0 |
---|
565 | z = x+2*y |
---|
566 | |
---|
567 | ref_points.append( [x_new,y_new] ) |
---|
568 | ref_elevation.append(z) |
---|
569 | |
---|
570 | #print points[:] |
---|
571 | #print ref_points |
---|
572 | assert allclose(points, ref_points) |
---|
573 | |
---|
574 | #print attributes[:] |
---|
575 | #print ref_elevation |
---|
576 | assert allclose(elevation, ref_elevation) |
---|
577 | |
---|
578 | #Cleanup |
---|
579 | fid.close() |
---|
580 | |
---|
581 | |
---|
582 | os.remove(root + '.pts') |
---|
583 | os.remove(root + '.dem') |
---|
584 | os.remove(root + '.asc') |
---|
585 | os.remove(root + '.prj') |
---|
586 | |
---|
587 | |
---|
588 | |
---|
589 | def NOT_test_dem2pts_remove_Nullvalues(self): |
---|
590 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
591 | """ |
---|
592 | |
---|
593 | import time, os |
---|
594 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
595 | from Scientific.IO.NetCDF import NetCDFFile |
---|
596 | |
---|
597 | #Write test asc file |
---|
598 | root = 'demtest' |
---|
599 | |
---|
600 | filename = root+'.asc' |
---|
601 | fid = open(filename, 'w') |
---|
602 | fid.write("""ncols 5 |
---|
603 | nrows 6 |
---|
604 | xllcorner 2000.5 |
---|
605 | yllcorner 3000.5 |
---|
606 | cellsize 25 |
---|
607 | NODATA_value -9999 |
---|
608 | """) |
---|
609 | #Create linear function |
---|
610 | # ref_ will write all the values |
---|
611 | # new_ref_ will write the values except for NODATA_values |
---|
612 | ref_points = [] |
---|
613 | ref_elevation = [] |
---|
614 | new_ref_pts = [] |
---|
615 | new_ref_elev = [] |
---|
616 | NODATA_value = -9999 |
---|
617 | for i in range(6): |
---|
618 | y = (6-i)*25.0 |
---|
619 | for j in range(5): |
---|
620 | x = j*25.0 |
---|
621 | z = x+2*y |
---|
622 | if j == 4: z = NODATA_value # column |
---|
623 | if i == 2 and j == 2: z = NODATA_value # random |
---|
624 | if i == 5 and j == 1: z = NODATA_value |
---|
625 | if i == 1: z = NODATA_value # row |
---|
626 | if i == 3 and j == 1: z = NODATA_value # two pts/row |
---|
627 | if i == 3 and j == 3: z = NODATA_value |
---|
628 | |
---|
629 | |
---|
630 | if z <> NODATA_value: |
---|
631 | new_ref_elev.append(z) |
---|
632 | new_ref_pts.append( [x,y] ) |
---|
633 | |
---|
634 | ref_points.append( [x,y] ) |
---|
635 | ref_elevation.append(z) |
---|
636 | |
---|
637 | fid.write('%f ' %z) |
---|
638 | fid.write('\n') |
---|
639 | |
---|
640 | fid.close() |
---|
641 | |
---|
642 | |
---|
643 | #Write prj file with metadata |
---|
644 | metafilename = root+'.prj' |
---|
645 | fid = open(metafilename, 'w') |
---|
646 | |
---|
647 | |
---|
648 | fid.write("""Projection UTM |
---|
649 | Zone 56 |
---|
650 | Datum WGS84 |
---|
651 | Zunits NO |
---|
652 | Units METERS |
---|
653 | Spheroid WGS84 |
---|
654 | Xshift 0.0000000000 |
---|
655 | Yshift 10000000.0000000000 |
---|
656 | Parameters |
---|
657 | """) |
---|
658 | fid.close() |
---|
659 | |
---|
660 | #Convert to NetCDF pts |
---|
661 | convert_dem_from_ascii2netcdf(root) |
---|
662 | dem2pts(root) |
---|
663 | |
---|
664 | #Check contents |
---|
665 | #Get NetCDF |
---|
666 | fid = NetCDFFile(root+'.pts', 'r') |
---|
667 | |
---|
668 | # Get the variables |
---|
669 | #print fid.variables.keys() |
---|
670 | points = fid.variables['points'] |
---|
671 | elevation = fid.variables['elevation'] |
---|
672 | |
---|
673 | #Check values |
---|
674 | #print 'points', points[:] |
---|
675 | assert len(points) == len(new_ref_pts), 'length of returned points not correct' |
---|
676 | assert allclose(points, new_ref_pts), 'points do not align' |
---|
677 | |
---|
678 | #print 'elevation', elevation[:] |
---|
679 | assert len(elevation) == len(new_ref_elev), 'length of returned elevation not correct' |
---|
680 | assert allclose(elevation, new_ref_elev), 'elevations do not align' |
---|
681 | |
---|
682 | #Cleanup |
---|
683 | fid.close() |
---|
684 | |
---|
685 | |
---|
686 | os.remove(root + '.pts') |
---|
687 | os.remove(root + '.dem') |
---|
688 | os.remove(root + '.asc') |
---|
689 | os.remove(root + '.prj') |
---|
690 | |
---|
691 | def NOT_test_dem2pts_bounding_box_Nullvalues(self): |
---|
692 | """Test conversion from dem in ascii format to native NetCDF xya format |
---|
693 | """ |
---|
694 | |
---|
695 | import time, os |
---|
696 | from Numeric import array, zeros, allclose, Float, concatenate |
---|
697 | from Scientific.IO.NetCDF import NetCDFFile |
---|
698 | |
---|
699 | #Write test asc file |
---|
700 | root = 'demtest' |
---|
701 | |
---|
702 | filename = root+'.asc' |
---|
703 | fid = open(filename, 'w') |
---|
704 | fid.write("""ncols 5 |
---|
705 | nrows 6 |
---|
706 | xllcorner 2000.5 |
---|
707 | yllcorner 3000.5 |
---|
708 | cellsize 25 |
---|
709 | NODATA_value -9999 |
---|
710 | """) |
---|
711 | #Create linear function |
---|
712 | |
---|
713 | ref_points = [] |
---|
714 | ref_elevation = [] |
---|
715 | new_ref_pts1 = [] |
---|
716 | new_ref_elev1 = [] |
---|
717 | NODATA_value = -9999 |
---|
718 | for i in range(6): |
---|
719 | y = (6-i)*25.0 |
---|
720 | for j in range(5): |
---|
721 | x = j*25.0 |
---|
722 | z = x+2*y |
---|
723 | if j == 4: z = NODATA_value # column |
---|
724 | if i == 2 and j == 2: z = NODATA_value # random |
---|
725 | if i == 5 and j == 1: z = NODATA_value |
---|
726 | if i == 1: z = NODATA_value # row |
---|
727 | if i == 3 and j == 1: z = NODATA_value # two pts/row |
---|
728 | if i == 3 and j == 3: z = NODATA_value |
---|
729 | |
---|
730 | if z <> NODATA_value: |
---|
731 | new_ref_elev1.append(z) |
---|
732 | new_ref_pts1.append( [x,y] ) |
---|
733 | |
---|
734 | ref_points.append( [x,y] ) |
---|
735 | ref_elevation.append(z) |
---|
736 | fid.write('%f ' %z) |
---|
737 | fid.write('\n') |
---|
738 | |
---|
739 | fid.close() |
---|
740 | |
---|
741 | #Write prj file with metadata |
---|
742 | metafilename = root+'.prj' |
---|
743 | fid = open(metafilename, 'w') |
---|
744 | |
---|
745 | |
---|
746 | fid.write("""Projection UTM |
---|
747 | Zone 56 |
---|
748 | Datum WGS84 |
---|
749 | Zunits NO |
---|
750 | Units METERS |
---|
751 | Spheroid WGS84 |
---|
752 | Xshift 0.0000000000 |
---|
753 | Yshift 10000000.0000000000 |
---|
754 | Parameters |
---|
755 | """) |
---|
756 | fid.close() |
---|
757 | |
---|
758 | #Convert to NetCDF pts |
---|
759 | convert_dem_from_ascii2netcdf(root) |
---|
760 | dem2pts(root, easting_min=2010.0, easting_max=2110.0, |
---|
761 | northing_min=3035.0, northing_max=3125.5) |
---|
762 | |
---|
763 | #Check contents |
---|
764 | #Get NetCDF |
---|
765 | fid = NetCDFFile(root+'.pts', 'r') |
---|
766 | |
---|
767 | # Get the variables |
---|
768 | #print fid.variables.keys() |
---|
769 | points = fid.variables['points'] |
---|
770 | elevation = fid.variables['elevation'] |
---|
771 | |
---|
772 | #Check values |
---|
773 | assert fid.xllcorner[0] == 2010.0 |
---|
774 | assert fid.yllcorner[0] == 3035.0 |
---|
775 | |
---|
776 | #create new reference points |
---|
777 | ref_points = [] |
---|
778 | ref_elevation = [] |
---|
779 | new_ref_pts2 = [] |
---|
780 | new_ref_elev2 = [] |
---|
781 | for i in range(4): |
---|
782 | y = (4-i)*25.0 + 25.0 |
---|
783 | y_new = y + 3000.5 - 3035.0 |
---|
784 | for j in range(4): |
---|
785 | x = j*25.0 + 25.0 |
---|
786 | x_new = x + 2000.5 - 2010.0 |
---|
787 | z = x+2*y |
---|
788 | |
---|
789 | if j == 3: z = NODATA_value # column |
---|
790 | if i == 1 and j == 1: z = NODATA_value # random |
---|
791 | if i == 4 and j == 0: z = NODATA_value |
---|
792 | if i == 0: z = NODATA_value # row |
---|
793 | if i == 2 and j == 0: z = NODATA_value # two pts/row |
---|
794 | if i == 2 and j == 2: z = NODATA_value |
---|
795 | |
---|
796 | if z <> NODATA_value: |
---|
797 | new_ref_elev2.append(z) |
---|
798 | new_ref_pts2.append( [x_new,y_new] ) |
---|
799 | |
---|
800 | |
---|
801 | ref_points.append( [x_new,y_new] ) |
---|
802 | ref_elevation.append(z) |
---|
803 | |
---|
804 | #print points[:] |
---|
805 | #print ref_points |
---|
806 | #assert allclose(points, ref_points) |
---|
807 | |
---|
808 | #print attributes[:] |
---|
809 | #print ref_elevation |
---|
810 | #assert allclose(elevation, ref_elevation) |
---|
811 | |
---|
812 | |
---|
813 | assert len(points) == len(new_ref_pts2), 'length of returned points not correct' |
---|
814 | assert allclose(points, new_ref_pts2), 'points do not align' |
---|
815 | |
---|
816 | #print 'elevation', elevation[:] |
---|
817 | assert len(elevation) == len(new_ref_elev2), 'length of returned elevation not correct' |
---|
818 | assert allclose(elevation, new_ref_elev2), 'elevations do not align' |
---|
819 | #Cleanup |
---|
820 | fid.close() |
---|
821 | |
---|
822 | |
---|
823 | os.remove(root + '.pts') |
---|
824 | os.remove(root + '.dem') |
---|
825 | os.remove(root + '.asc') |
---|
826 | os.remove(root + '.prj') |
---|
827 | |
---|
828 | #******************** |
---|
829 | #*** END OF OBSOLETE FUNCTIONS |
---|
830 | #*************** |
---|