1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | import unittest, os |
---|
4 | from math import sqrt, pi |
---|
5 | import tempfile |
---|
6 | |
---|
7 | from anuga.config import g, epsilon |
---|
8 | import numpy |
---|
9 | from anuga.utilities.numerical_tools import mean |
---|
10 | from anuga.utilities.polygon import is_inside_polygon |
---|
11 | from anuga.coordinate_transforms.geo_reference import Geo_reference |
---|
12 | from anuga.abstract_2d_finite_volumes.quantity import Quantity |
---|
13 | from anuga.geospatial_data.geospatial_data import Geospatial_data |
---|
14 | |
---|
15 | from shallow_water_domain import * |
---|
16 | |
---|
17 | # Get gateway to C implementation of flux function for direct testing |
---|
18 | from shallow_water_ext import flux_function_central as flux_function |
---|
19 | |
---|
20 | # For test_fitting_using_shallow_water_domain example |
---|
21 | def linear_function(point): |
---|
22 | point = numpy.array(point) |
---|
23 | return point[:,0]+point[:,1] |
---|
24 | |
---|
25 | class Weir: |
---|
26 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
27 | x,y are assumed to be in the unit square |
---|
28 | """ |
---|
29 | |
---|
30 | def __init__(self, stage): |
---|
31 | self.inflow_stage = stage |
---|
32 | |
---|
33 | def __call__(self, x, y): |
---|
34 | |
---|
35 | N = len(x) |
---|
36 | assert N == len(y) |
---|
37 | |
---|
38 | z = numpy.zeros(N, numpy.float) |
---|
39 | for i in range(N): |
---|
40 | z[i] = -x[i]/2 #General slope |
---|
41 | |
---|
42 | #Flattish bit to the left |
---|
43 | if x[i] < 0.3: |
---|
44 | z[i] = -x[i]/10 |
---|
45 | |
---|
46 | #Weir |
---|
47 | if x[i] >= 0.3 and x[i] < 0.4: |
---|
48 | z[i] = -x[i]+0.9 |
---|
49 | |
---|
50 | #Dip |
---|
51 | x0 = 0.6 |
---|
52 | #depth = -1.3 |
---|
53 | depth = -1.0 |
---|
54 | #plateaux = -0.9 |
---|
55 | plateaux = -0.6 |
---|
56 | if y[i] < 0.7: |
---|
57 | if x[i] > x0 and x[i] < 0.9: |
---|
58 | z[i] = depth |
---|
59 | |
---|
60 | #RHS plateaux |
---|
61 | if x[i] >= 0.9: |
---|
62 | z[i] = plateaux |
---|
63 | |
---|
64 | |
---|
65 | elif y[i] >= 0.7 and y[i] < 1.5: |
---|
66 | #Restrict and deepen |
---|
67 | if x[i] >= x0 and x[i] < 0.8: |
---|
68 | z[i] = depth-(y[i]/3-0.3) |
---|
69 | #z[i] = depth-y[i]/5 |
---|
70 | #z[i] = depth |
---|
71 | elif x[i] >= 0.8: |
---|
72 | #RHS plateaux |
---|
73 | z[i] = plateaux |
---|
74 | |
---|
75 | elif y[i] >= 1.5: |
---|
76 | if x[i] >= x0 and x[i] < 0.8 + (y[i]-1.5)/1.2: |
---|
77 | #Widen up and stay at constant depth |
---|
78 | z[i] = depth-1.5/5 |
---|
79 | elif x[i] >= 0.8 + (y[i]-1.5)/1.2: |
---|
80 | #RHS plateaux |
---|
81 | z[i] = plateaux |
---|
82 | |
---|
83 | |
---|
84 | #Hole in weir (slightly higher than inflow condition) |
---|
85 | if x[i] >= 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
86 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
87 | |
---|
88 | #Channel behind weir |
---|
89 | x0 = 0.5 |
---|
90 | if x[i] >= 0.4 and x[i] < x0 and y[i] > 0.2 and y[i] < 0.4: |
---|
91 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
92 | |
---|
93 | if x[i] >= x0 and x[i] < 0.6 and y[i] > 0.2 and y[i] < 0.4: |
---|
94 | #Flatten it out towards the end |
---|
95 | z[i] = -x0+self.inflow_stage + 0.02 + (x0-x[i])/5 |
---|
96 | |
---|
97 | #Hole to the east |
---|
98 | x0 = 1.1; y0 = 0.35 |
---|
99 | #if x[i] < -0.2 and y < 0.5: |
---|
100 | if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
101 | z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-1.0 |
---|
102 | |
---|
103 | #Tiny channel draining hole |
---|
104 | if x[i] >= 1.14 and x[i] < 1.2 and y[i] >= 0.4 and y[i] < 0.6: |
---|
105 | z[i] = -0.9 #North south |
---|
106 | |
---|
107 | if x[i] >= 0.9 and x[i] < 1.18 and y[i] >= 0.58 and y[i] < 0.65: |
---|
108 | z[i] = -1.0 + (x[i]-0.9)/3 #East west |
---|
109 | |
---|
110 | |
---|
111 | |
---|
112 | #Stuff not in use |
---|
113 | |
---|
114 | #Upward slope at inlet to the north west |
---|
115 | #if x[i] < 0.0: # and y[i] > 0.5: |
---|
116 | # #z[i] = -y[i]+0.5 #-x[i]/2 |
---|
117 | # z[i] = x[i]/4 - y[i]**2 + 0.5 |
---|
118 | |
---|
119 | #Hole to the west |
---|
120 | #x0 = -0.4; y0 = 0.35 # center |
---|
121 | #if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
122 | # z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-0.2 |
---|
123 | |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | return z/2 |
---|
129 | |
---|
130 | class Weir_simple: |
---|
131 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
132 | x,y are assumed to be in the unit square |
---|
133 | """ |
---|
134 | |
---|
135 | def __init__(self, stage): |
---|
136 | self.inflow_stage = stage |
---|
137 | |
---|
138 | def __call__(self, x, y): |
---|
139 | |
---|
140 | N = len(x) |
---|
141 | assert N == len(y) |
---|
142 | |
---|
143 | z = numpy.zeros(N, numpy.float) |
---|
144 | for i in range(N): |
---|
145 | z[i] = -x[i] #General slope |
---|
146 | |
---|
147 | #Flat bit to the left |
---|
148 | if x[i] < 0.3: |
---|
149 | z[i] = -x[i]/10 #General slope |
---|
150 | |
---|
151 | #Weir |
---|
152 | if x[i] > 0.3 and x[i] < 0.4: |
---|
153 | z[i] = -x[i]+0.9 |
---|
154 | |
---|
155 | #Dip |
---|
156 | if x[i] > 0.6 and x[i] < 0.9: |
---|
157 | z[i] = -x[i]-0.5 #-y[i]/5 |
---|
158 | |
---|
159 | #Hole in weir (slightly higher than inflow condition) |
---|
160 | if x[i] > 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
161 | z[i] = -x[i]+self.inflow_stage + 0.05 |
---|
162 | |
---|
163 | |
---|
164 | return z/2 |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | |
---|
169 | #Variable windfield implemented using functions |
---|
170 | def speed(t,x,y): |
---|
171 | """Large speeds halfway between center and edges |
---|
172 | Low speeds at center and edges |
---|
173 | """ |
---|
174 | |
---|
175 | from math import exp, cos, pi |
---|
176 | |
---|
177 | x = numpy.array(x) |
---|
178 | y = numpy.array(y) |
---|
179 | |
---|
180 | N = len(x) |
---|
181 | s = 0*x #New array |
---|
182 | |
---|
183 | for k in range(N): |
---|
184 | |
---|
185 | r = sqrt(x[k]**2 + y[k]**2) |
---|
186 | |
---|
187 | factor = exp( -(r-0.15)**2 ) |
---|
188 | |
---|
189 | s[k] = 4000 * factor * (cos(t*2*pi/150) + 2) |
---|
190 | |
---|
191 | return s |
---|
192 | |
---|
193 | |
---|
194 | def scalar_func(t,x,y): |
---|
195 | """Function that returns a scalar. |
---|
196 | Used to test error message when Numeric array is expected |
---|
197 | """ |
---|
198 | |
---|
199 | return 17.7 |
---|
200 | |
---|
201 | |
---|
202 | def angle(t,x,y): |
---|
203 | """Rotating field |
---|
204 | """ |
---|
205 | from math import atan, pi |
---|
206 | |
---|
207 | x = numpy.array(x) |
---|
208 | y = numpy.array(y) |
---|
209 | |
---|
210 | N = len(x) |
---|
211 | a = 0*x #New array |
---|
212 | |
---|
213 | for k in range(N): |
---|
214 | r = sqrt(x[k]**2 + y[k]**2) |
---|
215 | |
---|
216 | angle = atan(y[k]/x[k]) |
---|
217 | |
---|
218 | if x[k] < 0: |
---|
219 | angle+=pi #atan in ]-pi/2; pi/2[ |
---|
220 | |
---|
221 | #Take normal direction |
---|
222 | angle -= pi/2 |
---|
223 | |
---|
224 | #Ensure positive radians |
---|
225 | if angle < 0: |
---|
226 | angle += 2*pi |
---|
227 | |
---|
228 | a[k] = angle/pi*180 |
---|
229 | |
---|
230 | return a |
---|
231 | |
---|
232 | |
---|
233 | class Test_Shallow_Water(unittest.TestCase): |
---|
234 | def setUp(self): |
---|
235 | pass |
---|
236 | |
---|
237 | def tearDown(self): |
---|
238 | pass |
---|
239 | |
---|
240 | def test_rotate(self): |
---|
241 | normal = numpy.array([0.0,-1.0]) |
---|
242 | |
---|
243 | q = numpy.array([1.0,2.0,3.0]) |
---|
244 | |
---|
245 | r = rotate(q, normal, direction = 1) |
---|
246 | assert r[0] == 1 |
---|
247 | assert r[1] == -3 |
---|
248 | assert r[2] == 2 |
---|
249 | |
---|
250 | w = rotate(r, normal, direction = -1) |
---|
251 | assert numpy.allclose(w, q) |
---|
252 | |
---|
253 | #Check error check |
---|
254 | try: |
---|
255 | rotate(r, numpy.array([1,1,1]) ) |
---|
256 | except: |
---|
257 | pass |
---|
258 | else: |
---|
259 | raise 'Should have raised an exception' |
---|
260 | |
---|
261 | |
---|
262 | # Individual flux tests |
---|
263 | def test_flux_zero_case(self): |
---|
264 | ql = numpy.zeros( 3, numpy.float ) |
---|
265 | qr = numpy.zeros( 3, numpy.float ) |
---|
266 | normal = numpy.zeros( 2, numpy.float ) |
---|
267 | edgeflux = numpy.zeros( 3, numpy.float ) |
---|
268 | zl = zr = 0. |
---|
269 | H0 = 0.0 |
---|
270 | |
---|
271 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
272 | |
---|
273 | assert numpy.allclose(edgeflux, [0,0,0]) |
---|
274 | assert max_speed == 0. |
---|
275 | |
---|
276 | def test_flux_constants(self): |
---|
277 | w = 2.0 |
---|
278 | |
---|
279 | normal = numpy.array([1.,0]) |
---|
280 | ql = numpy.array([w, 0, 0]) |
---|
281 | qr = numpy.array([w, 0, 0]) |
---|
282 | edgeflux = numpy.zeros(3, numpy.float) |
---|
283 | zl = zr = 0. |
---|
284 | h = w - (zl+zr)/2 |
---|
285 | H0 = 0.0 |
---|
286 | |
---|
287 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
288 | assert numpy.allclose(edgeflux, [0., 0.5*g*h**2, 0.]) |
---|
289 | assert max_speed == sqrt(g*h) |
---|
290 | |
---|
291 | #def test_flux_slope(self): |
---|
292 | # #FIXME: TODO |
---|
293 | # w = 2.0 |
---|
294 | # |
---|
295 | # normal = array([1.,0]) |
---|
296 | # ql = array([w, 0, 0]) |
---|
297 | # qr = array([w, 0, 0]) |
---|
298 | # zl = zr = 0. |
---|
299 | # h = w - (zl+zr)/2 |
---|
300 | # |
---|
301 | # flux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
302 | # |
---|
303 | # assert allclose(flux, [0., 0.5*g*h**2, 0.]) |
---|
304 | # assert max_speed == sqrt(g*h) |
---|
305 | |
---|
306 | |
---|
307 | def test_flux1(self): |
---|
308 | #Use data from previous version of abstract_2d_finite_volumes |
---|
309 | normal = numpy.array([1.,0]) |
---|
310 | ql = numpy.array([-0.2, 2, 3]) |
---|
311 | qr = numpy.array([-0.2, 2, 3]) |
---|
312 | zl = zr = -0.5 |
---|
313 | edgeflux = numpy.zeros(3, numpy.float) |
---|
314 | |
---|
315 | H0 = 0.0 |
---|
316 | |
---|
317 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
318 | |
---|
319 | assert numpy.allclose(edgeflux, [2.,13.77433333, 20.]) |
---|
320 | assert numpy.allclose(max_speed, 8.38130948661) |
---|
321 | |
---|
322 | |
---|
323 | def test_flux2(self): |
---|
324 | #Use data from previous version of abstract_2d_finite_volumes |
---|
325 | normal = numpy.array([0., -1.]) |
---|
326 | ql = numpy.array([-0.075, 2, 3]) |
---|
327 | qr = numpy.array([-0.075, 2, 3]) |
---|
328 | zl = zr = -0.375 |
---|
329 | |
---|
330 | edgeflux = numpy.zeros(3, numpy.float) |
---|
331 | H0 = 0.0 |
---|
332 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
333 | |
---|
334 | assert numpy.allclose(edgeflux, [-3.,-20.0, -30.441]) |
---|
335 | assert numpy.allclose(max_speed, 11.7146428199) |
---|
336 | |
---|
337 | def test_flux3(self): |
---|
338 | #Use data from previous version of abstract_2d_finite_volumes |
---|
339 | normal = numpy.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
340 | ql = numpy.array([-0.075, 2, 3]) |
---|
341 | qr = numpy.array([-0.075, 2, 3]) |
---|
342 | zl = zr = -0.375 |
---|
343 | |
---|
344 | edgeflux = numpy.zeros(3, numpy.float) |
---|
345 | H0 = 0.0 |
---|
346 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
347 | |
---|
348 | assert numpy.allclose(edgeflux, [sqrt(2)/2, 4.40221112, 7.3829019]) |
---|
349 | assert numpy.allclose(max_speed, 4.0716654239) |
---|
350 | |
---|
351 | def test_flux4(self): |
---|
352 | #Use data from previous version of abstract_2d_finite_volumes |
---|
353 | normal = numpy.array([-sqrt(2)/2, sqrt(2)/2]) |
---|
354 | ql = numpy.array([-0.34319278, 0.10254161, 0.07273855]) |
---|
355 | qr = numpy.array([-0.30683287, 0.1071986, 0.05930515]) |
---|
356 | zl = zr = -0.375 |
---|
357 | |
---|
358 | edgeflux = numpy.zeros(3, numpy.float) |
---|
359 | H0 = 0.0 |
---|
360 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
361 | |
---|
362 | assert numpy.allclose(edgeflux, [-0.04072676, -0.07096636, -0.01604364]) |
---|
363 | assert numpy.allclose(max_speed, 1.31414103233) |
---|
364 | |
---|
365 | def test_flux_computation(self): |
---|
366 | """test_flux_computation - test flux calculation (actual C implementation) |
---|
367 | This one tests the constant case where only the pressure term contributes to each edge and cancels out |
---|
368 | once the total flux has been summed up. |
---|
369 | """ |
---|
370 | |
---|
371 | a = [0.0, 0.0] |
---|
372 | b = [0.0, 2.0] |
---|
373 | c = [2.0,0.0] |
---|
374 | d = [0.0, 4.0] |
---|
375 | e = [2.0, 2.0] |
---|
376 | f = [4.0,0.0] |
---|
377 | |
---|
378 | points = [a, b, c, d, e, f] |
---|
379 | #bac, bce, ecf, dbe, daf, dae |
---|
380 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
381 | |
---|
382 | domain = Domain(points, vertices) |
---|
383 | domain.check_integrity() |
---|
384 | |
---|
385 | # The constant case |
---|
386 | domain.set_quantity('elevation', -1) |
---|
387 | domain.set_quantity('stage', 1) |
---|
388 | |
---|
389 | domain.compute_fluxes() |
---|
390 | assert numpy.allclose(domain.get_quantity('stage').explicit_update[1], 0) # Central triangle |
---|
391 | |
---|
392 | |
---|
393 | # The more general case |
---|
394 | def surface(x,y): |
---|
395 | return -x/2 |
---|
396 | |
---|
397 | domain.set_quantity('elevation', -10) |
---|
398 | domain.set_quantity('stage', surface) |
---|
399 | domain.set_quantity('xmomentum', 1) |
---|
400 | |
---|
401 | domain.compute_fluxes() |
---|
402 | |
---|
403 | #print domain.get_quantity('stage').explicit_update |
---|
404 | # FIXME (Ole): TODO the general case |
---|
405 | #assert allclose(domain.get_quantity('stage').explicit_update[1], ........??) |
---|
406 | |
---|
407 | |
---|
408 | |
---|
409 | def test_sw_domain_simple(self): |
---|
410 | a = [0.0, 0.0] |
---|
411 | b = [0.0, 2.0] |
---|
412 | c = [2.0,0.0] |
---|
413 | d = [0.0, 4.0] |
---|
414 | e = [2.0, 2.0] |
---|
415 | f = [4.0,0.0] |
---|
416 | |
---|
417 | points = [a, b, c, d, e, f] |
---|
418 | #bac, bce, ecf, dbe, daf, dae |
---|
419 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
420 | |
---|
421 | |
---|
422 | #from anuga.abstract_2d_finite_volumes.domain import Domain as Generic_domain |
---|
423 | #msg = 'The class %s is not a subclass of the generic domain class %s'\ |
---|
424 | # %(DomainClass, Domain) |
---|
425 | #assert issubclass(DomainClass, Domain), msg |
---|
426 | |
---|
427 | domain = Domain(points, vertices) |
---|
428 | domain.check_integrity() |
---|
429 | |
---|
430 | for name in ['stage', 'xmomentum', 'ymomentum', |
---|
431 | 'elevation', 'friction']: |
---|
432 | assert domain.quantities.has_key(name) |
---|
433 | |
---|
434 | |
---|
435 | assert numpy.alltrue(domain.get_conserved_quantities(0, edge=1) == 0.) |
---|
436 | |
---|
437 | |
---|
438 | def test_boundary_conditions(self): |
---|
439 | |
---|
440 | a = [0.0, 0.0] |
---|
441 | b = [0.0, 2.0] |
---|
442 | c = [2.0,0.0] |
---|
443 | d = [0.0, 4.0] |
---|
444 | e = [2.0, 2.0] |
---|
445 | f = [4.0,0.0] |
---|
446 | |
---|
447 | points = [a, b, c, d, e, f] |
---|
448 | #bac, bce, ecf, dbe |
---|
449 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
450 | boundary = { (0, 0): 'Third', |
---|
451 | (0, 2): 'First', |
---|
452 | (2, 0): 'Second', |
---|
453 | (2, 1): 'Second', |
---|
454 | (3, 1): 'Second', |
---|
455 | (3, 2): 'Third'} |
---|
456 | |
---|
457 | |
---|
458 | domain = Domain(points, vertices, boundary) |
---|
459 | domain.check_integrity() |
---|
460 | |
---|
461 | |
---|
462 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
463 | [0,0,9], [-6, 3, 3]]) |
---|
464 | |
---|
465 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
466 | [3,3,3], [4, 4, 4]]) |
---|
467 | |
---|
468 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
469 | [30,30,30], [40, 40, 40]]) |
---|
470 | |
---|
471 | |
---|
472 | D = Dirichlet_boundary([5,2,1]) |
---|
473 | T = Transmissive_boundary(domain) |
---|
474 | R = Reflective_boundary(domain) |
---|
475 | domain.set_boundary( {'First': D, 'Second': T, 'Third': R}) |
---|
476 | |
---|
477 | domain.update_boundary() |
---|
478 | |
---|
479 | #Stage |
---|
480 | assert domain.quantities['stage'].boundary_values[0] == 2.5 |
---|
481 | assert domain.quantities['stage'].boundary_values[0] ==\ |
---|
482 | domain.get_conserved_quantities(0, edge=0)[0] #Reflective (2.5) |
---|
483 | assert domain.quantities['stage'].boundary_values[1] == 5. #Dirichlet |
---|
484 | assert domain.quantities['stage'].boundary_values[2] ==\ |
---|
485 | domain.get_conserved_quantities(2, edge=0)[0] #Transmissive (4.5) |
---|
486 | assert domain.quantities['stage'].boundary_values[3] ==\ |
---|
487 | domain.get_conserved_quantities(2, edge=1)[0] #Transmissive (4.5) |
---|
488 | assert domain.quantities['stage'].boundary_values[4] ==\ |
---|
489 | domain.get_conserved_quantities(3, edge=1)[0] #Transmissive (-1.5) |
---|
490 | assert domain.quantities['stage'].boundary_values[5] ==\ |
---|
491 | domain.get_conserved_quantities(3, edge=2)[0] #Reflective (-1.5) |
---|
492 | |
---|
493 | #Xmomentum |
---|
494 | assert domain.quantities['xmomentum'].boundary_values[0] == 1.0 #Reflective |
---|
495 | assert domain.quantities['xmomentum'].boundary_values[1] == 2. #Dirichlet |
---|
496 | assert domain.quantities['xmomentum'].boundary_values[2] ==\ |
---|
497 | domain.get_conserved_quantities(2, edge=0)[1] #Transmissive |
---|
498 | assert domain.quantities['xmomentum'].boundary_values[3] ==\ |
---|
499 | domain.get_conserved_quantities(2, edge=1)[1] #Transmissive |
---|
500 | assert domain.quantities['xmomentum'].boundary_values[4] ==\ |
---|
501 | domain.get_conserved_quantities(3, edge=1)[1] #Transmissive |
---|
502 | assert domain.quantities['xmomentum'].boundary_values[5] == -4.0 #Reflective |
---|
503 | |
---|
504 | #Ymomentum |
---|
505 | assert domain.quantities['ymomentum'].boundary_values[0] == -10.0 #Reflective |
---|
506 | assert domain.quantities['ymomentum'].boundary_values[1] == 1. #Dirichlet |
---|
507 | assert domain.quantities['ymomentum'].boundary_values[2] == 30. #Transmissive |
---|
508 | assert domain.quantities['ymomentum'].boundary_values[3] == 30. #Transmissive |
---|
509 | assert domain.quantities['ymomentum'].boundary_values[4] == 40. #Transmissive |
---|
510 | assert domain.quantities['ymomentum'].boundary_values[5] == 40. #Reflective |
---|
511 | |
---|
512 | |
---|
513 | def test_boundary_conditionsII(self): |
---|
514 | |
---|
515 | a = [0.0, 0.0] |
---|
516 | b = [0.0, 2.0] |
---|
517 | c = [2.0,0.0] |
---|
518 | d = [0.0, 4.0] |
---|
519 | e = [2.0, 2.0] |
---|
520 | f = [4.0,0.0] |
---|
521 | |
---|
522 | points = [a, b, c, d, e, f] |
---|
523 | #bac, bce, ecf, dbe |
---|
524 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
525 | boundary = { (0, 0): 'Third', |
---|
526 | (0, 2): 'First', |
---|
527 | (2, 0): 'Second', |
---|
528 | (2, 1): 'Second', |
---|
529 | (3, 1): 'Second', |
---|
530 | (3, 2): 'Third', |
---|
531 | (0, 1): 'Internal'} |
---|
532 | |
---|
533 | |
---|
534 | domain = Domain(points, vertices, boundary) |
---|
535 | domain.check_integrity() |
---|
536 | |
---|
537 | |
---|
538 | domain.set_quantity('stage', [[1,2,3], [5,5,5], |
---|
539 | [0,0,9], [-6, 3, 3]]) |
---|
540 | |
---|
541 | domain.set_quantity('xmomentum', [[1,1,1], [2,2,2], |
---|
542 | [3,3,3], [4, 4, 4]]) |
---|
543 | |
---|
544 | domain.set_quantity('ymomentum', [[10,10,10], [20,20,20], |
---|
545 | [30,30,30], [40, 40, 40]]) |
---|
546 | |
---|
547 | |
---|
548 | D = Dirichlet_boundary([5,2,1]) |
---|
549 | T = Transmissive_boundary(domain) |
---|
550 | R = Reflective_boundary(domain) |
---|
551 | domain.set_boundary( {'First': D, 'Second': T, |
---|
552 | 'Third': R, 'Internal': None}) |
---|
553 | |
---|
554 | domain.update_boundary() |
---|
555 | domain.check_integrity() |
---|
556 | |
---|
557 | |
---|
558 | def test_compute_fluxes0(self): |
---|
559 | # Do a full triangle and check that fluxes cancel out for |
---|
560 | # the constant stage case |
---|
561 | |
---|
562 | a = [0.0, 0.0] |
---|
563 | b = [0.0, 2.0] |
---|
564 | c = [2.0,0.0] |
---|
565 | d = [0.0, 4.0] |
---|
566 | e = [2.0, 2.0] |
---|
567 | f = [4.0,0.0] |
---|
568 | |
---|
569 | points = [a, b, c, d, e, f] |
---|
570 | #bac, bce, ecf, dbe |
---|
571 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
572 | |
---|
573 | domain = Domain(points, vertices) |
---|
574 | domain.set_quantity('stage', [[2,2,2], [2,2,2], |
---|
575 | [2,2,2], [2,2,2]]) |
---|
576 | domain.check_integrity() |
---|
577 | |
---|
578 | assert numpy.allclose(domain.neighbours, [[-1,1,-1], [2,3,0], [-1,-1,1],[1,-1,-1]]) |
---|
579 | assert numpy.allclose(domain.neighbour_edges, [[-1,2,-1], [2,0,1], [-1,-1,0],[1,-1,-1]]) |
---|
580 | |
---|
581 | zl=zr=0. # Assume flat bed |
---|
582 | |
---|
583 | edgeflux = numpy.zeros(3, numpy.float) |
---|
584 | edgeflux0 = numpy.zeros(3, numpy.float) |
---|
585 | edgeflux1 = numpy.zeros(3, numpy.float) |
---|
586 | edgeflux2 = numpy.zeros(3, numpy.float) |
---|
587 | H0 = 0.0 |
---|
588 | |
---|
589 | # Flux across right edge of volume 1 |
---|
590 | normal = domain.get_normal(1,0) |
---|
591 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
592 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
593 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
594 | |
---|
595 | # Check that flux seen from other triangles is inverse |
---|
596 | tmp = qr; qr=ql; ql=tmp |
---|
597 | normal = domain.get_normal(2,2) |
---|
598 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
599 | |
---|
600 | assert numpy.allclose(edgeflux0 + edgeflux, 0.) |
---|
601 | |
---|
602 | # Flux across upper edge of volume 1 |
---|
603 | normal = domain.get_normal(1,1) |
---|
604 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
605 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
606 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
607 | |
---|
608 | # Check that flux seen from other triangles is inverse |
---|
609 | tmp = qr; qr=ql; ql=tmp |
---|
610 | normal = domain.get_normal(3,0) |
---|
611 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
612 | |
---|
613 | assert numpy.allclose(edgeflux1 + edgeflux, 0.) |
---|
614 | |
---|
615 | |
---|
616 | # Flux across lower left hypotenuse of volume 1 |
---|
617 | normal = domain.get_normal(1,2) |
---|
618 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
619 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
620 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
621 | |
---|
622 | # Check that flux seen from other triangles is inverse |
---|
623 | tmp = qr; qr=ql; ql=tmp |
---|
624 | normal = domain.get_normal(0,1) |
---|
625 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
626 | assert numpy.allclose(edgeflux2 + edgeflux, 0.) |
---|
627 | |
---|
628 | |
---|
629 | # Scale by edgelengths, add up anc check that total flux is zero |
---|
630 | e0 = domain.edgelengths[1, 0] |
---|
631 | e1 = domain.edgelengths[1, 1] |
---|
632 | e2 = domain.edgelengths[1, 2] |
---|
633 | |
---|
634 | assert numpy.allclose(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2, 0.) |
---|
635 | |
---|
636 | # Now check that compute_flux yields zeros as well |
---|
637 | domain.compute_fluxes() |
---|
638 | |
---|
639 | for name in ['stage', 'xmomentum', 'ymomentum']: |
---|
640 | #print name, domain.quantities[name].explicit_update |
---|
641 | assert numpy.allclose(domain.quantities[name].explicit_update[1], 0) |
---|
642 | |
---|
643 | |
---|
644 | |
---|
645 | def test_compute_fluxes1(self): |
---|
646 | #Use values from previous version |
---|
647 | |
---|
648 | a = [0.0, 0.0] |
---|
649 | b = [0.0, 2.0] |
---|
650 | c = [2.0,0.0] |
---|
651 | d = [0.0, 4.0] |
---|
652 | e = [2.0, 2.0] |
---|
653 | f = [4.0,0.0] |
---|
654 | |
---|
655 | points = [a, b, c, d, e, f] |
---|
656 | #bac, bce, ecf, dbe |
---|
657 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
658 | |
---|
659 | domain = Domain(points, vertices) |
---|
660 | val0 = 2.+2.0/3 |
---|
661 | val1 = 4.+4.0/3 |
---|
662 | val2 = 8.+2.0/3 |
---|
663 | val3 = 2.+8.0/3 |
---|
664 | |
---|
665 | domain.set_quantity('stage', [[val0, val0, val0], [val1, val1, val1], |
---|
666 | [val2, val2, val2], [val3, val3, val3]]) |
---|
667 | domain.check_integrity() |
---|
668 | |
---|
669 | zl=zr=0. #Assume flat bed |
---|
670 | |
---|
671 | edgeflux = numpy.zeros(3, numpy.float) |
---|
672 | edgeflux0 = numpy.zeros(3, numpy.float) |
---|
673 | edgeflux1 = numpy.zeros(3, numpy.float) |
---|
674 | edgeflux2 = numpy.zeros(3, numpy.float) |
---|
675 | H0 = 0.0 |
---|
676 | |
---|
677 | |
---|
678 | # Flux across right edge of volume 1 |
---|
679 | normal = domain.get_normal(1,0) #Get normal 0 of triangle 1 |
---|
680 | assert numpy.allclose(normal, [1, 0]) |
---|
681 | |
---|
682 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
683 | assert numpy.allclose(ql, [val1, 0, 0]) |
---|
684 | |
---|
685 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
686 | assert numpy.allclose(qr, [val2, 0, 0]) |
---|
687 | |
---|
688 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
689 | |
---|
690 | # Flux across edge in the east direction (as per normal vector) |
---|
691 | assert numpy.allclose(edgeflux0, [-15.3598804, 253.71111111, 0.]) |
---|
692 | assert numpy.allclose(max_speed, 9.21592824046) |
---|
693 | |
---|
694 | |
---|
695 | #Flux across edge in the west direction (opposite sign for xmomentum) |
---|
696 | normal_opposite = domain.get_normal(2,2) #Get normal 2 of triangle 2 |
---|
697 | assert numpy.allclose(normal_opposite, [-1, 0]) |
---|
698 | |
---|
699 | max_speed = flux_function(normal_opposite, ql, qr, zl, zr, edgeflux, epsilon, g, H0) |
---|
700 | #flux_opposite, max_speed = flux_function([-1, 0], ql, qr, zl, zr) |
---|
701 | assert numpy.allclose(edgeflux, [-15.3598804, -253.71111111, 0.]) |
---|
702 | |
---|
703 | |
---|
704 | #Flux across upper edge of volume 1 |
---|
705 | normal = domain.get_normal(1,1) |
---|
706 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
707 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
708 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
709 | |
---|
710 | assert numpy.allclose(edgeflux1, [2.4098563, 0., 123.04444444]) |
---|
711 | assert numpy.allclose(max_speed, 7.22956891292) |
---|
712 | |
---|
713 | #Flux across lower left hypotenuse of volume 1 |
---|
714 | normal = domain.get_normal(1,2) |
---|
715 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
716 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
717 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
718 | |
---|
719 | assert numpy.allclose(edgeflux2, [9.63942522, -61.59685738, -61.59685738]) |
---|
720 | assert numpy.allclose(max_speed, 7.22956891292) |
---|
721 | |
---|
722 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
723 | e0 = domain.edgelengths[1, 0] |
---|
724 | e1 = domain.edgelengths[1, 1] |
---|
725 | e2 = domain.edgelengths[1, 2] |
---|
726 | |
---|
727 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
728 | assert numpy.allclose(total_flux, [-0.68218178, -166.6, -35.93333333]) |
---|
729 | |
---|
730 | |
---|
731 | domain.compute_fluxes() |
---|
732 | |
---|
733 | #assert allclose(total_flux, domain.explicit_update[1,:]) |
---|
734 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
735 | assert numpy.allclose(total_flux[i], |
---|
736 | domain.quantities[name].explicit_update[1]) |
---|
737 | |
---|
738 | #assert allclose(domain.explicit_update, [ |
---|
739 | # [0., -69.68888889, -69.68888889], |
---|
740 | # [-0.68218178, -166.6, -35.93333333], |
---|
741 | # [-111.77316251, 69.68888889, 0.], |
---|
742 | # [-35.68522449, 0., 69.68888889]]) |
---|
743 | |
---|
744 | assert numpy.allclose(domain.quantities['stage'].explicit_update, |
---|
745 | [0., -0.68218178, -111.77316251, -35.68522449]) |
---|
746 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update, |
---|
747 | [-69.68888889, -166.6, 69.68888889, 0]) |
---|
748 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update, |
---|
749 | [-69.68888889, -35.93333333, 0., 69.68888889]) |
---|
750 | |
---|
751 | |
---|
752 | #assert allclose(domain.quantities[name].explicit_update |
---|
753 | |
---|
754 | |
---|
755 | |
---|
756 | |
---|
757 | |
---|
758 | def test_compute_fluxes2(self): |
---|
759 | #Random values, incl momentum |
---|
760 | |
---|
761 | a = [0.0, 0.0] |
---|
762 | b = [0.0, 2.0] |
---|
763 | c = [2.0,0.0] |
---|
764 | d = [0.0, 4.0] |
---|
765 | e = [2.0, 2.0] |
---|
766 | f = [4.0,0.0] |
---|
767 | |
---|
768 | points = [a, b, c, d, e, f] |
---|
769 | #bac, bce, ecf, dbe |
---|
770 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
771 | |
---|
772 | domain = Domain(points, vertices) |
---|
773 | val0 = 2.+2.0/3 |
---|
774 | val1 = 4.+4.0/3 |
---|
775 | val2 = 8.+2.0/3 |
---|
776 | val3 = 2.+8.0/3 |
---|
777 | |
---|
778 | zl=zr=0 #Assume flat zero bed |
---|
779 | edgeflux = numpy.zeros(3, numpy.float) |
---|
780 | edgeflux0 = numpy.zeros(3, numpy.float) |
---|
781 | edgeflux1 = numpy.zeros(3, numpy.float) |
---|
782 | edgeflux2 = numpy.zeros(3, numpy.float) |
---|
783 | H0 = 0.0 |
---|
784 | |
---|
785 | |
---|
786 | domain.set_quantity('elevation', zl*numpy.ones( (4,3) )) |
---|
787 | |
---|
788 | |
---|
789 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
790 | [val1, val1+1, val1], |
---|
791 | [val2, val2-2, val2], |
---|
792 | [val3-0.5, val3, val3]]) |
---|
793 | |
---|
794 | domain.set_quantity('xmomentum', |
---|
795 | [[1, 2, 3], [3, 4, 5], |
---|
796 | [1, -1, 0], [0, -2, 2]]) |
---|
797 | |
---|
798 | domain.set_quantity('ymomentum', |
---|
799 | [[1, -1, 0], [0, -3, 2], |
---|
800 | [0, 1, 0], [-1, 2, 2]]) |
---|
801 | |
---|
802 | |
---|
803 | domain.check_integrity() |
---|
804 | |
---|
805 | |
---|
806 | |
---|
807 | #Flux across right edge of volume 1 |
---|
808 | normal = domain.get_normal(1,0) |
---|
809 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
810 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
811 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
812 | |
---|
813 | #Flux across upper edge of volume 1 |
---|
814 | normal = domain.get_normal(1,1) |
---|
815 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
816 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
817 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
818 | |
---|
819 | #Flux across lower left hypotenuse of volume 1 |
---|
820 | normal = domain.get_normal(1,2) |
---|
821 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
822 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
823 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
824 | |
---|
825 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
826 | e0 = domain.edgelengths[1, 0] |
---|
827 | e1 = domain.edgelengths[1, 1] |
---|
828 | e2 = domain.edgelengths[1, 2] |
---|
829 | |
---|
830 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
831 | |
---|
832 | |
---|
833 | domain.compute_fluxes() |
---|
834 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
835 | assert numpy.allclose(total_flux[i], |
---|
836 | domain.quantities[name].explicit_update[1]) |
---|
837 | #assert allclose(total_flux, domain.explicit_update[1,:]) |
---|
838 | |
---|
839 | |
---|
840 | # FIXME (Ole): Need test like this for fluxes in very shallow water. |
---|
841 | def test_compute_fluxes3(self): |
---|
842 | #Random values, incl momentum |
---|
843 | |
---|
844 | a = [0.0, 0.0] |
---|
845 | b = [0.0, 2.0] |
---|
846 | c = [2.0,0.0] |
---|
847 | d = [0.0, 4.0] |
---|
848 | e = [2.0, 2.0] |
---|
849 | f = [4.0,0.0] |
---|
850 | |
---|
851 | points = [a, b, c, d, e, f] |
---|
852 | #bac, bce, ecf, dbe |
---|
853 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
854 | |
---|
855 | domain = Domain(points, vertices) |
---|
856 | val0 = 2.+2.0/3 |
---|
857 | val1 = 4.+4.0/3 |
---|
858 | val2 = 8.+2.0/3 |
---|
859 | val3 = 2.+8.0/3 |
---|
860 | |
---|
861 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
862 | domain.set_quantity('elevation', zl*numpy.ones( (4,3) )) |
---|
863 | |
---|
864 | |
---|
865 | edgeflux = numpy.zeros(3, numpy.float) |
---|
866 | edgeflux0 = numpy.zeros(3, numpy.float) |
---|
867 | edgeflux1 = numpy.zeros(3, numpy.float) |
---|
868 | edgeflux2 = numpy.zeros(3, numpy.float) |
---|
869 | H0 = 0.0 |
---|
870 | |
---|
871 | |
---|
872 | |
---|
873 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
874 | [val1, val1+1, val1], |
---|
875 | [val2, val2-2, val2], |
---|
876 | [val3-0.5, val3, val3]]) |
---|
877 | |
---|
878 | domain.set_quantity('xmomentum', |
---|
879 | [[1, 2, 3], [3, 4, 5], |
---|
880 | [1, -1, 0], [0, -2, 2]]) |
---|
881 | |
---|
882 | domain.set_quantity('ymomentum', |
---|
883 | [[1, -1, 0], [0, -3, 2], |
---|
884 | [0, 1, 0], [-1, 2, 2]]) |
---|
885 | |
---|
886 | |
---|
887 | domain.check_integrity() |
---|
888 | |
---|
889 | |
---|
890 | |
---|
891 | #Flux across right edge of volume 1 |
---|
892 | normal = domain.get_normal(1,0) |
---|
893 | ql = domain.get_conserved_quantities(vol_id=1, edge=0) |
---|
894 | qr = domain.get_conserved_quantities(vol_id=2, edge=2) |
---|
895 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux0, epsilon, g, H0) |
---|
896 | |
---|
897 | #Flux across upper edge of volume 1 |
---|
898 | normal = domain.get_normal(1,1) |
---|
899 | ql = domain.get_conserved_quantities(vol_id=1, edge=1) |
---|
900 | qr = domain.get_conserved_quantities(vol_id=3, edge=0) |
---|
901 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux1, epsilon, g, H0) |
---|
902 | |
---|
903 | #Flux across lower left hypotenuse of volume 1 |
---|
904 | normal = domain.get_normal(1,2) |
---|
905 | ql = domain.get_conserved_quantities(vol_id=1, edge=2) |
---|
906 | qr = domain.get_conserved_quantities(vol_id=0, edge=1) |
---|
907 | max_speed = flux_function(normal, ql, qr, zl, zr, edgeflux2, epsilon, g, H0) |
---|
908 | |
---|
909 | #Scale, add up and check that compute_fluxes is correct for vol 1 |
---|
910 | e0 = domain.edgelengths[1, 0] |
---|
911 | e1 = domain.edgelengths[1, 1] |
---|
912 | e2 = domain.edgelengths[1, 2] |
---|
913 | |
---|
914 | total_flux = -(e0*edgeflux0+e1*edgeflux1+e2*edgeflux2)/domain.areas[1] |
---|
915 | |
---|
916 | domain.compute_fluxes() |
---|
917 | for i, name in enumerate(['stage', 'xmomentum', 'ymomentum']): |
---|
918 | assert numpy.allclose(total_flux[i], |
---|
919 | domain.quantities[name].explicit_update[1]) |
---|
920 | |
---|
921 | |
---|
922 | |
---|
923 | def xtest_catching_negative_heights(self): |
---|
924 | |
---|
925 | #OBSOLETE |
---|
926 | |
---|
927 | a = [0.0, 0.0] |
---|
928 | b = [0.0, 2.0] |
---|
929 | c = [2.0,0.0] |
---|
930 | d = [0.0, 4.0] |
---|
931 | e = [2.0, 2.0] |
---|
932 | f = [4.0,0.0] |
---|
933 | |
---|
934 | points = [a, b, c, d, e, f] |
---|
935 | #bac, bce, ecf, dbe |
---|
936 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
937 | |
---|
938 | domain = Domain(points, vertices) |
---|
939 | val0 = 2.+2.0/3 |
---|
940 | val1 = 4.+4.0/3 |
---|
941 | val2 = 8.+2.0/3 |
---|
942 | val3 = 2.+8.0/3 |
---|
943 | |
---|
944 | zl=zr=4 #Too large |
---|
945 | domain.set_quantity('elevation', zl*numpy.ones( (4,3) )) |
---|
946 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
947 | [val1, val1+1, val1], |
---|
948 | [val2, val2-2, val2], |
---|
949 | [val3-0.5, val3, val3]]) |
---|
950 | |
---|
951 | #Should fail |
---|
952 | try: |
---|
953 | domain.check_integrity() |
---|
954 | except: |
---|
955 | pass |
---|
956 | |
---|
957 | |
---|
958 | |
---|
959 | def test_get_wet_elements(self): |
---|
960 | |
---|
961 | a = [0.0, 0.0] |
---|
962 | b = [0.0, 2.0] |
---|
963 | c = [2.0,0.0] |
---|
964 | d = [0.0, 4.0] |
---|
965 | e = [2.0, 2.0] |
---|
966 | f = [4.0,0.0] |
---|
967 | |
---|
968 | points = [a, b, c, d, e, f] |
---|
969 | #bac, bce, ecf, dbe |
---|
970 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
971 | |
---|
972 | domain = Domain(points, vertices) |
---|
973 | val0 = 2.+2.0/3 |
---|
974 | val1 = 4.+4.0/3 |
---|
975 | val2 = 8.+2.0/3 |
---|
976 | val3 = 2.+8.0/3 |
---|
977 | |
---|
978 | zl=zr=5 |
---|
979 | domain.set_quantity('elevation', zl*numpy.ones( (4,3) )) |
---|
980 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
981 | [val1, val1+1, val1], |
---|
982 | [val2, val2-2, val2], |
---|
983 | [val3-0.5, val3, val3]]) |
---|
984 | |
---|
985 | |
---|
986 | |
---|
987 | #print domain.get_quantity('elevation').get_values(location='centroids') |
---|
988 | #print domain.get_quantity('stage').get_values(location='centroids') |
---|
989 | domain.check_integrity() |
---|
990 | |
---|
991 | indices = domain.get_wet_elements() |
---|
992 | assert numpy.allclose(indices, [1,2]) |
---|
993 | |
---|
994 | indices = domain.get_wet_elements(indices=[0,1,3]) |
---|
995 | assert numpy.allclose(indices, [1]) |
---|
996 | |
---|
997 | |
---|
998 | |
---|
999 | def test_get_maximum_inundation_1(self): |
---|
1000 | |
---|
1001 | a = [0.0, 0.0] |
---|
1002 | b = [0.0, 2.0] |
---|
1003 | c = [2.0,0.0] |
---|
1004 | d = [0.0, 4.0] |
---|
1005 | e = [2.0, 2.0] |
---|
1006 | f = [4.0,0.0] |
---|
1007 | |
---|
1008 | points = [a, b, c, d, e, f] |
---|
1009 | #bac, bce, ecf, dbe |
---|
1010 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1011 | |
---|
1012 | domain = Domain(points, vertices) |
---|
1013 | |
---|
1014 | domain.set_quantity('elevation', lambda x, y: x+2*y) #2 4 4 6 |
---|
1015 | domain.set_quantity('stage', 3) |
---|
1016 | |
---|
1017 | domain.check_integrity() |
---|
1018 | |
---|
1019 | indices = domain.get_wet_elements() |
---|
1020 | assert numpy.allclose(indices, [0]) |
---|
1021 | |
---|
1022 | q = domain.get_maximum_inundation_elevation() |
---|
1023 | assert numpy.allclose(q, domain.get_quantity('elevation').get_values(location='centroids')[0]) |
---|
1024 | |
---|
1025 | x, y = domain.get_maximum_inundation_location() |
---|
1026 | assert numpy.allclose([x, y], domain.get_centroid_coordinates()[0]) |
---|
1027 | |
---|
1028 | |
---|
1029 | def test_get_maximum_inundation_2(self): |
---|
1030 | """test_get_maximum_inundation_2(self) |
---|
1031 | |
---|
1032 | Test multiple wet cells with same elevation |
---|
1033 | """ |
---|
1034 | |
---|
1035 | a = [0.0, 0.0] |
---|
1036 | b = [0.0, 2.0] |
---|
1037 | c = [2.0,0.0] |
---|
1038 | d = [0.0, 4.0] |
---|
1039 | e = [2.0, 2.0] |
---|
1040 | f = [4.0,0.0] |
---|
1041 | |
---|
1042 | points = [a, b, c, d, e, f] |
---|
1043 | #bac, bce, ecf, dbe |
---|
1044 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1045 | |
---|
1046 | domain = Domain(points, vertices) |
---|
1047 | |
---|
1048 | domain.set_quantity('elevation', lambda x, y: x+2*y) #2 4 4 6 |
---|
1049 | domain.set_quantity('stage', 4.1) |
---|
1050 | |
---|
1051 | domain.check_integrity() |
---|
1052 | |
---|
1053 | indices = domain.get_wet_elements() |
---|
1054 | assert numpy.allclose(indices, [0,1,2]) |
---|
1055 | |
---|
1056 | q = domain.get_maximum_inundation_elevation() |
---|
1057 | assert numpy.allclose(q, 4) |
---|
1058 | |
---|
1059 | x, y = domain.get_maximum_inundation_location() |
---|
1060 | assert numpy.allclose([x, y], domain.get_centroid_coordinates()[1]) |
---|
1061 | |
---|
1062 | |
---|
1063 | def test_get_maximum_inundation_3(self): |
---|
1064 | """test_get_maximum_inundation_3(self) |
---|
1065 | |
---|
1066 | Test of real runup example: |
---|
1067 | """ |
---|
1068 | |
---|
1069 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1070 | |
---|
1071 | initial_runup_height = -0.4 |
---|
1072 | final_runup_height = -0.3 |
---|
1073 | |
---|
1074 | |
---|
1075 | #-------------------------------------------------------------- |
---|
1076 | # Setup computational domain |
---|
1077 | #-------------------------------------------------------------- |
---|
1078 | N = 5 |
---|
1079 | points, vertices, boundary = rectangular_cross(N, N) |
---|
1080 | domain = Domain(points, vertices, boundary) |
---|
1081 | domain.set_maximum_allowed_speed(1.0) |
---|
1082 | |
---|
1083 | #-------------------------------------------------------------- |
---|
1084 | # Setup initial conditions |
---|
1085 | #-------------------------------------------------------------- |
---|
1086 | def topography(x,y): |
---|
1087 | return -x/2 # linear bed slope |
---|
1088 | |
---|
1089 | |
---|
1090 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
1091 | domain.set_quantity('friction', 0.) # Zero friction |
---|
1092 | domain.set_quantity('stage', initial_runup_height) # Constant negative initial stage |
---|
1093 | |
---|
1094 | |
---|
1095 | #-------------------------------------------------------------- |
---|
1096 | # Setup boundary conditions |
---|
1097 | #-------------------------------------------------------------- |
---|
1098 | Br = Reflective_boundary(domain) # Reflective wall |
---|
1099 | Bd = Dirichlet_boundary([final_runup_height, # Constant inflow |
---|
1100 | 0, |
---|
1101 | 0]) |
---|
1102 | |
---|
1103 | # All reflective to begin with (still water) |
---|
1104 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1105 | |
---|
1106 | |
---|
1107 | #-------------------------------------------------------------- |
---|
1108 | # Test initial inundation height |
---|
1109 | #-------------------------------------------------------------- |
---|
1110 | |
---|
1111 | indices = domain.get_wet_elements() |
---|
1112 | z = domain.get_quantity('elevation').\ |
---|
1113 | get_values(location='centroids', indices=indices) |
---|
1114 | assert numpy.alltrue(z<initial_runup_height) |
---|
1115 | |
---|
1116 | q = domain.get_maximum_inundation_elevation() |
---|
1117 | assert numpy.allclose(q, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1118 | |
---|
1119 | x, y = domain.get_maximum_inundation_location() |
---|
1120 | |
---|
1121 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1122 | assert numpy.allclose(q, qref) |
---|
1123 | |
---|
1124 | |
---|
1125 | wet_elements = domain.get_wet_elements() |
---|
1126 | wet_elevations = domain.get_quantity('elevation').get_values(location='centroids', |
---|
1127 | indices=wet_elements) |
---|
1128 | assert numpy.alltrue(wet_elevations<initial_runup_height) |
---|
1129 | assert numpy.allclose(wet_elevations, z) |
---|
1130 | |
---|
1131 | |
---|
1132 | #print domain.get_quantity('elevation').get_maximum_value(indices=wet_elements) |
---|
1133 | #print domain.get_quantity('elevation').get_maximum_location(indices=wet_elements) |
---|
1134 | #print domain.get_quantity('elevation').get_maximum_index(indices=wet_elements) |
---|
1135 | |
---|
1136 | |
---|
1137 | #-------------------------------------------------------------- |
---|
1138 | # Let triangles adjust |
---|
1139 | #-------------------------------------------------------------- |
---|
1140 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
1141 | pass |
---|
1142 | |
---|
1143 | |
---|
1144 | #-------------------------------------------------------------- |
---|
1145 | # Test inundation height again |
---|
1146 | #-------------------------------------------------------------- |
---|
1147 | |
---|
1148 | indices = domain.get_wet_elements() |
---|
1149 | z = domain.get_quantity('elevation').\ |
---|
1150 | get_values(location='centroids', indices=indices) |
---|
1151 | |
---|
1152 | assert numpy.alltrue(z<initial_runup_height) |
---|
1153 | |
---|
1154 | q = domain.get_maximum_inundation_elevation() |
---|
1155 | assert numpy.allclose(q, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1156 | |
---|
1157 | x, y = domain.get_maximum_inundation_location() |
---|
1158 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1159 | assert numpy.allclose(q, qref) |
---|
1160 | |
---|
1161 | |
---|
1162 | #-------------------------------------------------------------- |
---|
1163 | # Update boundary to allow inflow |
---|
1164 | #-------------------------------------------------------------- |
---|
1165 | domain.set_boundary({'right': Bd}) |
---|
1166 | |
---|
1167 | |
---|
1168 | #-------------------------------------------------------------- |
---|
1169 | # Evolve system through time |
---|
1170 | #-------------------------------------------------------------- |
---|
1171 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0): |
---|
1172 | #print domain.timestepping_statistics(track_speeds=True) |
---|
1173 | #domain.write_time() |
---|
1174 | pass |
---|
1175 | |
---|
1176 | #-------------------------------------------------------------- |
---|
1177 | # Test inundation height again |
---|
1178 | #-------------------------------------------------------------- |
---|
1179 | |
---|
1180 | indices = domain.get_wet_elements() |
---|
1181 | z = domain.get_quantity('elevation').\ |
---|
1182 | get_values(location='centroids', indices=indices) |
---|
1183 | |
---|
1184 | assert numpy.alltrue(z<final_runup_height) |
---|
1185 | |
---|
1186 | q = domain.get_maximum_inundation_elevation() |
---|
1187 | assert numpy.allclose(q, final_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1188 | |
---|
1189 | x, y = domain.get_maximum_inundation_location() |
---|
1190 | qref = domain.get_quantity('elevation').get_values(interpolation_points = [[x, y]]) |
---|
1191 | assert numpy.allclose(q, qref) |
---|
1192 | |
---|
1193 | |
---|
1194 | wet_elements = domain.get_wet_elements() |
---|
1195 | wet_elevations = domain.get_quantity('elevation').get_values(location='centroids', |
---|
1196 | indices=wet_elements) |
---|
1197 | assert numpy.alltrue(wet_elevations<final_runup_height) |
---|
1198 | assert numpy.allclose(wet_elevations, z) |
---|
1199 | |
---|
1200 | |
---|
1201 | |
---|
1202 | def test_get_maximum_inundation_from_sww(self): |
---|
1203 | """test_get_maximum_inundation_from_sww(self) |
---|
1204 | |
---|
1205 | Test of get_maximum_inundation_elevation() |
---|
1206 | and get_maximum_inundation_location() from data_manager.py |
---|
1207 | |
---|
1208 | This is based on test_get_maximum_inundation_3(self) but works with the |
---|
1209 | stored results instead of with the internal data structure. |
---|
1210 | |
---|
1211 | This test uses the underlying get_maximum_inundation_data for tests |
---|
1212 | """ |
---|
1213 | |
---|
1214 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1215 | from data_manager import get_maximum_inundation_elevation |
---|
1216 | from data_manager import get_maximum_inundation_location |
---|
1217 | from data_manager import get_maximum_inundation_data |
---|
1218 | |
---|
1219 | |
---|
1220 | initial_runup_height = -0.4 |
---|
1221 | final_runup_height = -0.3 |
---|
1222 | |
---|
1223 | |
---|
1224 | #-------------------------------------------------------------- |
---|
1225 | # Setup computational domain |
---|
1226 | #-------------------------------------------------------------- |
---|
1227 | N = 10 |
---|
1228 | points, vertices, boundary = rectangular_cross(N, N) |
---|
1229 | domain = Domain(points, vertices, boundary) |
---|
1230 | domain.set_name('runup_test') |
---|
1231 | domain.set_maximum_allowed_speed(1.0) |
---|
1232 | |
---|
1233 | domain.tight_slope_limiters = 0 # FIXME: This works better with old limiters so far |
---|
1234 | |
---|
1235 | #-------------------------------------------------------------- |
---|
1236 | # Setup initial conditions |
---|
1237 | #-------------------------------------------------------------- |
---|
1238 | def topography(x,y): |
---|
1239 | return -x/2 # linear bed slope |
---|
1240 | |
---|
1241 | |
---|
1242 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
1243 | domain.set_quantity('friction', 0.) # Zero friction |
---|
1244 | domain.set_quantity('stage', initial_runup_height) # Constant negative initial stage |
---|
1245 | |
---|
1246 | |
---|
1247 | #-------------------------------------------------------------- |
---|
1248 | # Setup boundary conditions |
---|
1249 | #-------------------------------------------------------------- |
---|
1250 | Br = Reflective_boundary(domain) # Reflective wall |
---|
1251 | Bd = Dirichlet_boundary([final_runup_height, # Constant inflow |
---|
1252 | 0, |
---|
1253 | 0]) |
---|
1254 | |
---|
1255 | # All reflective to begin with (still water) |
---|
1256 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
1257 | |
---|
1258 | |
---|
1259 | #-------------------------------------------------------------- |
---|
1260 | # Test initial inundation height |
---|
1261 | #-------------------------------------------------------------- |
---|
1262 | |
---|
1263 | indices = domain.get_wet_elements() |
---|
1264 | z = domain.get_quantity('elevation').\ |
---|
1265 | get_values(location='centroids', indices=indices) |
---|
1266 | assert numpy.alltrue(z<initial_runup_height) |
---|
1267 | |
---|
1268 | q_ref = domain.get_maximum_inundation_elevation() |
---|
1269 | assert numpy.allclose(q_ref, initial_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1270 | |
---|
1271 | |
---|
1272 | #-------------------------------------------------------------- |
---|
1273 | # Let triangles adjust |
---|
1274 | #-------------------------------------------------------------- |
---|
1275 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
1276 | pass |
---|
1277 | |
---|
1278 | |
---|
1279 | #-------------------------------------------------------------- |
---|
1280 | # Test inundation height again |
---|
1281 | #-------------------------------------------------------------- |
---|
1282 | |
---|
1283 | q_ref = domain.get_maximum_inundation_elevation() |
---|
1284 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1285 | msg = 'We got %f, should have been %f' %(q, q_ref) |
---|
1286 | assert numpy.allclose(q, q_ref, rtol=1.0/N), msg |
---|
1287 | |
---|
1288 | |
---|
1289 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1290 | msg = 'We got %f, should have been %f' %(q, initial_runup_height) |
---|
1291 | assert numpy.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
1292 | |
---|
1293 | |
---|
1294 | # Test error condition if time interval is out |
---|
1295 | try: |
---|
1296 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
1297 | time_interval=[2.0, 3.0]) |
---|
1298 | except ValueError: |
---|
1299 | pass |
---|
1300 | else: |
---|
1301 | msg = 'should have caught wrong time interval' |
---|
1302 | raise Exception, msg |
---|
1303 | |
---|
1304 | # Check correct time interval |
---|
1305 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1306 | time_interval=[0.0, 3.0]) |
---|
1307 | msg = 'We got %f, should have been %f' %(q, initial_runup_height) |
---|
1308 | assert numpy.allclose(q, initial_runup_height, rtol = 1.0/N), msg |
---|
1309 | assert numpy.allclose(-loc[0]/2, q) # From topography formula |
---|
1310 | |
---|
1311 | |
---|
1312 | #-------------------------------------------------------------- |
---|
1313 | # Update boundary to allow inflow |
---|
1314 | #-------------------------------------------------------------- |
---|
1315 | domain.set_boundary({'right': Bd}) |
---|
1316 | |
---|
1317 | |
---|
1318 | #-------------------------------------------------------------- |
---|
1319 | # Evolve system through time |
---|
1320 | #-------------------------------------------------------------- |
---|
1321 | q_max = None |
---|
1322 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0, |
---|
1323 | skip_initial_step = True): |
---|
1324 | q = domain.get_maximum_inundation_elevation() |
---|
1325 | if q > q_max: q_max = q |
---|
1326 | |
---|
1327 | |
---|
1328 | #-------------------------------------------------------------- |
---|
1329 | # Test inundation height again |
---|
1330 | #-------------------------------------------------------------- |
---|
1331 | |
---|
1332 | indices = domain.get_wet_elements() |
---|
1333 | z = domain.get_quantity('elevation').\ |
---|
1334 | get_values(location='centroids', indices=indices) |
---|
1335 | |
---|
1336 | assert numpy.alltrue(z<final_runup_height) |
---|
1337 | |
---|
1338 | q = domain.get_maximum_inundation_elevation() |
---|
1339 | assert numpy.allclose(q, final_runup_height, rtol = 1.0/N) # First order accuracy |
---|
1340 | |
---|
1341 | q, loc = get_maximum_inundation_data('runup_test.sww', time_interval=[3.0, 3.0]) |
---|
1342 | msg = 'We got %f, should have been %f' %(q, final_runup_height) |
---|
1343 | assert numpy.allclose(q, final_runup_height, rtol=1.0/N), msg |
---|
1344 | #print 'loc', loc, q |
---|
1345 | assert numpy.allclose(-loc[0]/2, q) # From topography formula |
---|
1346 | |
---|
1347 | q = get_maximum_inundation_elevation('runup_test.sww') |
---|
1348 | loc = get_maximum_inundation_location('runup_test.sww') |
---|
1349 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1350 | assert numpy.allclose(q, q_max, rtol=1.0/N), msg |
---|
1351 | #print 'loc', loc, q |
---|
1352 | assert numpy.allclose(-loc[0]/2, q) # From topography formula |
---|
1353 | |
---|
1354 | |
---|
1355 | |
---|
1356 | q = get_maximum_inundation_elevation('runup_test.sww', time_interval=[0, 3]) |
---|
1357 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1358 | assert numpy.allclose(q, q_max, rtol=1.0/N), msg |
---|
1359 | |
---|
1360 | |
---|
1361 | # Check polygon mode |
---|
1362 | polygon = [[0.3, 0.0], [0.9, 0.0], [0.9, 1.0], [0.3, 1.0]] # Runup region |
---|
1363 | q = get_maximum_inundation_elevation('runup_test.sww', |
---|
1364 | polygon = polygon, |
---|
1365 | time_interval=[0, 3]) |
---|
1366 | msg = 'We got %f, should have been %f' %(q, q_max) |
---|
1367 | assert numpy.allclose(q, q_max, rtol=1.0/N), msg |
---|
1368 | |
---|
1369 | |
---|
1370 | polygon = [[0.9, 0.0], [1.0, 0.0], [1.0, 1.0], [0.9, 1.0]] # Offshore region |
---|
1371 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1372 | polygon = polygon, |
---|
1373 | time_interval=[0, 3]) |
---|
1374 | msg = 'We got %f, should have been %f' %(q, -0.475) |
---|
1375 | assert numpy.allclose(q, -0.475, rtol=1.0/N), msg |
---|
1376 | assert is_inside_polygon(loc, polygon) |
---|
1377 | assert numpy.allclose(-loc[0]/2, q) # From topography formula |
---|
1378 | |
---|
1379 | |
---|
1380 | polygon = [[0.0, 0.0], [0.4, 0.0], [0.4, 1.0], [0.0, 1.0]] # Dry region |
---|
1381 | q, loc = get_maximum_inundation_data('runup_test.sww', |
---|
1382 | polygon = polygon, |
---|
1383 | time_interval=[0, 3]) |
---|
1384 | msg = 'We got %s, should have been None' %(q) |
---|
1385 | assert q is None, msg |
---|
1386 | msg = 'We got %s, should have been None' %(loc) |
---|
1387 | assert loc is None, msg |
---|
1388 | |
---|
1389 | # Check what happens if no time point is within interval |
---|
1390 | try: |
---|
1391 | q = get_maximum_inundation_elevation('runup_test.sww', time_interval=[2.75, 2.75]) |
---|
1392 | except AssertionError: |
---|
1393 | pass |
---|
1394 | else: |
---|
1395 | msg = 'Time interval should have raised an exception' |
---|
1396 | raise msg |
---|
1397 | |
---|
1398 | # Cleanup |
---|
1399 | try: |
---|
1400 | os.remove(domain.get_name() + '.' + domain.format) |
---|
1401 | except: |
---|
1402 | pass |
---|
1403 | #FIXME(Ole): Windows won't allow removal of this |
---|
1404 | |
---|
1405 | |
---|
1406 | |
---|
1407 | def test_get_flow_through_cross_section_with_geo(self): |
---|
1408 | """test_get_flow_through_cross_section(self): |
---|
1409 | |
---|
1410 | Test that the total flow through a cross section can be |
---|
1411 | correctly obtained at run-time from the ANUGA domain. |
---|
1412 | |
---|
1413 | This test creates a flat bed with a known flow through it and tests |
---|
1414 | that the function correctly returns the expected flow. |
---|
1415 | |
---|
1416 | The specifics are |
---|
1417 | e = -1 m |
---|
1418 | u = 2 m/s |
---|
1419 | h = 2 m |
---|
1420 | w = 3 m (width of channel) |
---|
1421 | |
---|
1422 | q = u*h*w = 12 m^3/s |
---|
1423 | |
---|
1424 | |
---|
1425 | This run tries it with georeferencing and with elevation = -1 |
---|
1426 | |
---|
1427 | """ |
---|
1428 | |
---|
1429 | import time, os |
---|
1430 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1431 | |
---|
1432 | # Setup |
---|
1433 | from mesh_factory import rectangular |
---|
1434 | |
---|
1435 | # Create basic mesh (20m x 3m) |
---|
1436 | width = 3 |
---|
1437 | length = 20 |
---|
1438 | t_end = 1 |
---|
1439 | points, vertices, boundary = rectangular(length, width, |
---|
1440 | length, width) |
---|
1441 | |
---|
1442 | # Create shallow water domain |
---|
1443 | domain = Domain(points, vertices, boundary, |
---|
1444 | geo_reference=Geo_reference(56,308500,6189000)) |
---|
1445 | |
---|
1446 | domain.default_order = 2 |
---|
1447 | domain.set_quantities_to_be_stored(None) |
---|
1448 | |
---|
1449 | |
---|
1450 | e = -1.0 |
---|
1451 | w = 1.0 |
---|
1452 | h = w-e |
---|
1453 | u = 2.0 |
---|
1454 | uh = u*h |
---|
1455 | |
---|
1456 | Br = Reflective_boundary(domain) # Side walls |
---|
1457 | Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet: |
---|
1458 | |
---|
1459 | |
---|
1460 | # Initial conditions |
---|
1461 | domain.set_quantity('elevation', e) |
---|
1462 | domain.set_quantity('stage', w) |
---|
1463 | domain.set_quantity('xmomentum', uh) |
---|
1464 | domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1465 | |
---|
1466 | |
---|
1467 | # Interpolation points down the middle |
---|
1468 | I = [[0, width/2.], |
---|
1469 | [length/2., width/2.], |
---|
1470 | [length, width/2.]] |
---|
1471 | interpolation_points = domain.geo_reference.get_absolute(I) |
---|
1472 | |
---|
1473 | # Shortcuts to quantites |
---|
1474 | stage = domain.get_quantity('stage') |
---|
1475 | xmomentum = domain.get_quantity('xmomentum') |
---|
1476 | ymomentum = domain.get_quantity('ymomentum') |
---|
1477 | |
---|
1478 | for t in domain.evolve(yieldstep=0.1, finaltime = t_end): |
---|
1479 | # Check that quantities are they should be in the interior |
---|
1480 | |
---|
1481 | w_t = stage.get_values(interpolation_points) |
---|
1482 | uh_t = xmomentum.get_values(interpolation_points) |
---|
1483 | vh_t = ymomentum.get_values(interpolation_points) |
---|
1484 | |
---|
1485 | assert numpy.allclose(w_t, w) |
---|
1486 | assert numpy.allclose(uh_t, uh) |
---|
1487 | assert numpy.allclose(vh_t, 0.0) |
---|
1488 | |
---|
1489 | |
---|
1490 | # Check flows through the middle |
---|
1491 | for i in range(5): |
---|
1492 | x = length/2. + i*0.23674563 # Arbitrary |
---|
1493 | cross_section = [[x, 0], [x, width]] |
---|
1494 | |
---|
1495 | cross_section = domain.geo_reference.get_absolute(cross_section) |
---|
1496 | Q = domain.get_flow_through_cross_section(cross_section, |
---|
1497 | verbose=False) |
---|
1498 | |
---|
1499 | assert numpy.allclose(Q, uh*width) |
---|
1500 | |
---|
1501 | |
---|
1502 | |
---|
1503 | def test_get_energy_through_cross_section_with_geo(self): |
---|
1504 | """test_get_energy_through_cross_section(self): |
---|
1505 | |
---|
1506 | Test that the total and specific energy through a cross section can be |
---|
1507 | correctly obtained at run-time from the ANUGA domain. |
---|
1508 | |
---|
1509 | This test creates a flat bed with a known flow through it and tests |
---|
1510 | that the function correctly returns the expected energies. |
---|
1511 | |
---|
1512 | The specifics are |
---|
1513 | e = -1 m |
---|
1514 | u = 2 m/s |
---|
1515 | h = 2 m |
---|
1516 | w = 3 m (width of channel) |
---|
1517 | |
---|
1518 | q = u*h*w = 12 m^3/s |
---|
1519 | |
---|
1520 | |
---|
1521 | This run tries it with georeferencing and with elevation = -1 |
---|
1522 | |
---|
1523 | """ |
---|
1524 | |
---|
1525 | import time, os |
---|
1526 | from Scientific.IO.NetCDF import NetCDFFile |
---|
1527 | |
---|
1528 | # Setup |
---|
1529 | from mesh_factory import rectangular |
---|
1530 | |
---|
1531 | # Create basic mesh (20m x 3m) |
---|
1532 | width = 3 |
---|
1533 | length = 20 |
---|
1534 | t_end = 1 |
---|
1535 | points, vertices, boundary = rectangular(length, width, |
---|
1536 | length, width) |
---|
1537 | |
---|
1538 | # Create shallow water domain |
---|
1539 | domain = Domain(points, vertices, boundary, |
---|
1540 | geo_reference=Geo_reference(56,308500,6189000)) |
---|
1541 | |
---|
1542 | domain.default_order = 2 |
---|
1543 | domain.set_quantities_to_be_stored(None) |
---|
1544 | |
---|
1545 | |
---|
1546 | e = -1.0 |
---|
1547 | w = 1.0 |
---|
1548 | h = w-e |
---|
1549 | u = 2.0 |
---|
1550 | uh = u*h |
---|
1551 | |
---|
1552 | Br = Reflective_boundary(domain) # Side walls |
---|
1553 | Bd = Dirichlet_boundary([w, uh, 0]) # 2 m/s across the 3 m inlet: |
---|
1554 | |
---|
1555 | |
---|
1556 | # Initial conditions |
---|
1557 | domain.set_quantity('elevation', e) |
---|
1558 | domain.set_quantity('stage', w) |
---|
1559 | domain.set_quantity('xmomentum', uh) |
---|
1560 | domain.set_boundary( {'left': Bd, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1561 | |
---|
1562 | |
---|
1563 | # Interpolation points down the middle |
---|
1564 | I = [[0, width/2.], |
---|
1565 | [length/2., width/2.], |
---|
1566 | [length, width/2.]] |
---|
1567 | interpolation_points = domain.geo_reference.get_absolute(I) |
---|
1568 | |
---|
1569 | # Shortcuts to quantites |
---|
1570 | stage = domain.get_quantity('stage') |
---|
1571 | xmomentum = domain.get_quantity('xmomentum') |
---|
1572 | ymomentum = domain.get_quantity('ymomentum') |
---|
1573 | |
---|
1574 | for t in domain.evolve(yieldstep=0.1, finaltime = t_end): |
---|
1575 | # Check that quantities are they should be in the interior |
---|
1576 | |
---|
1577 | w_t = stage.get_values(interpolation_points) |
---|
1578 | uh_t = xmomentum.get_values(interpolation_points) |
---|
1579 | vh_t = ymomentum.get_values(interpolation_points) |
---|
1580 | |
---|
1581 | assert numpy.allclose(w_t, w) |
---|
1582 | assert numpy.allclose(uh_t, uh) |
---|
1583 | assert numpy.allclose(vh_t, 0.0) |
---|
1584 | |
---|
1585 | |
---|
1586 | # Check energies through the middle |
---|
1587 | for i in range(5): |
---|
1588 | x = length/2. + i*0.23674563 # Arbitrary |
---|
1589 | cross_section = [[x, 0], [x, width]] |
---|
1590 | |
---|
1591 | cross_section = domain.geo_reference.get_absolute(cross_section) |
---|
1592 | Es = domain.get_energy_through_cross_section(cross_section, |
---|
1593 | kind='specific', |
---|
1594 | verbose=False) |
---|
1595 | |
---|
1596 | assert numpy.allclose(Es, h + 0.5*u*u/g) |
---|
1597 | |
---|
1598 | Et = domain.get_energy_through_cross_section(cross_section, |
---|
1599 | kind='total', |
---|
1600 | verbose=False) |
---|
1601 | assert numpy.allclose(Et, w + 0.5*u*u/g) |
---|
1602 | |
---|
1603 | |
---|
1604 | |
---|
1605 | |
---|
1606 | |
---|
1607 | def test_another_runup_example(self): |
---|
1608 | """test_another_runup_example |
---|
1609 | |
---|
1610 | Test runup example where actual timeseries at interpolated |
---|
1611 | points are tested. |
---|
1612 | """ |
---|
1613 | |
---|
1614 | #----------------------------------------------------------------- |
---|
1615 | # Import necessary modules |
---|
1616 | #----------------------------------------------------------------- |
---|
1617 | |
---|
1618 | from anuga.pmesh.mesh_interface import create_mesh_from_regions |
---|
1619 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
1620 | from anuga.shallow_water import Domain |
---|
1621 | from anuga.shallow_water import Reflective_boundary |
---|
1622 | from anuga.shallow_water import Dirichlet_boundary |
---|
1623 | |
---|
1624 | |
---|
1625 | #----------------------------------------------------------------- |
---|
1626 | # Setup computational domain |
---|
1627 | #----------------------------------------------------------------- |
---|
1628 | points, vertices, boundary = rectangular_cross(10, 10) # Basic mesh |
---|
1629 | domain = Domain(points, vertices, boundary) # Create domain |
---|
1630 | domain.set_quantities_to_be_stored(None) |
---|
1631 | domain.set_maximum_allowed_speed(100) #FIXME (Ole): try to remove this |
---|
1632 | |
---|
1633 | # FIXME (Ole): Need tests where this is commented out |
---|
1634 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
1635 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
1636 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
1637 | |
---|
1638 | |
---|
1639 | #----------------------------------------------------------------- |
---|
1640 | # Setup initial conditions |
---|
1641 | #----------------------------------------------------------------- |
---|
1642 | |
---|
1643 | def topography(x,y): |
---|
1644 | return -x/2 # linear bed slope |
---|
1645 | |
---|
1646 | domain.set_quantity('elevation', topography) |
---|
1647 | domain.set_quantity('friction', 0.0) |
---|
1648 | domain.set_quantity('stage', expression='elevation') |
---|
1649 | |
---|
1650 | |
---|
1651 | #---------------------------------------------------------------- |
---|
1652 | # Setup boundary conditions |
---|
1653 | #---------------------------------------------------------------- |
---|
1654 | |
---|
1655 | Br = Reflective_boundary(domain) # Solid reflective wall |
---|
1656 | Bd = Dirichlet_boundary([-0.2,0.,0.]) # Constant boundary values |
---|
1657 | domain.set_boundary({'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) |
---|
1658 | |
---|
1659 | |
---|
1660 | #---------------------------------------------------------------- |
---|
1661 | # Evolve system through time |
---|
1662 | #---------------------------------------------------------------- |
---|
1663 | |
---|
1664 | interpolation_points = [[0.4,0.5], [0.6,0.5], [0.8,0.5], [0.9,0.5]] |
---|
1665 | gauge_values = [] |
---|
1666 | for _ in interpolation_points: |
---|
1667 | gauge_values.append([]) |
---|
1668 | |
---|
1669 | time = [] |
---|
1670 | for t in domain.evolve(yieldstep = 0.1, finaltime = 5.0): |
---|
1671 | # Record time series at known points |
---|
1672 | time.append(domain.get_time()) |
---|
1673 | |
---|
1674 | stage = domain.get_quantity('stage') |
---|
1675 | w = stage.get_values(interpolation_points=interpolation_points) |
---|
1676 | |
---|
1677 | for i, _ in enumerate(interpolation_points): |
---|
1678 | gauge_values[i].append(w[i]) |
---|
1679 | |
---|
1680 | |
---|
1681 | #print |
---|
1682 | #print time |
---|
1683 | #print |
---|
1684 | #for i, (x,y) in enumerate(interpolation_points): |
---|
1685 | # print i, gauge_values[i] |
---|
1686 | # print |
---|
1687 | |
---|
1688 | #Reference (nautilus 26/6/2008) |
---|
1689 | |
---|
1690 | G0 = [-0.20000000000000001, -0.20000000000000001, -0.19920600846161715, -0.19153647344085376, -0.19127622768281194, -0.1770671909675095, -0.16739412133181927, -0.16196038919122191, -0.15621633053131384, -0.15130021599977705, -0.13930978857215484, -0.19349274358263582, -0.19975307598803765, -0.19999897143103357, -0.1999999995532111, -0.19999999999949952, -0.19999999999949952, -0.19999999999949952, -0.19997270012494556, -0.19925805948554556, -0.19934513778450533, -0.19966484196394893, -0.1997352860102084, -0.19968260481750394, -0.19980280797303882, -0.19998804881822749, -0.19999999778075916, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167, -0.19999999999966167] |
---|
1691 | |
---|
1692 | G1 = [-0.29999999999999993, -0.29999588068034899, -0.29250047332330331, -0.28335081844518584, -0.26142206997410805, -0.22656028856329835, -0.21224087216745585, -0.19934324109114465, -0.1889857939783175, -0.18146311603911383, -0.17401078727434263, -0.15419361061257214, -0.16225060576782063, -0.19010941396999181, -0.20901161407004412, -0.21670683975774699, -0.21771386270738891, -0.21481284465869752, -0.21063120869004387, -0.20669243364582401, -0.20320707386714859, -0.19984087691926442, -0.19725417448019505, -0.19633783049069981, -0.19650494599999785, -0.19708316838336942, -0.19779309449413818, -0.19853070294429562, -0.19917342167307153, -0.19964814677795845, -0.19991627610824922, -0.20013162970144974, -0.20029864969405509, -0.20036259676501131, -0.20030682824965193, -0.20016105135750167, -0.19997664501985918, -0.19980185871568762, -0.19966836175417696, -0.19958856744312226, -0.19955954696194517, -0.19956950051110917, -0.19960377086336181, -0.19964885299433241, -0.19969427478531132, -0.19973301547655564, -0.19976121574277764, -0.19977765285688653, -0.19978315117522441, -0.19977994634841739, -0.19977101394878494] |
---|
1693 | |
---|
1694 | G2 = [-0.40000000000000002, -0.39077401254732241, -0.33350466136630474, -0.29771023004255281, -0.27605439066140897, -0.25986156218997497, -0.24502185018573647, -0.231792624329521, -0.21981564668803993, -0.20870707082936543, -0.19877739883776599, -0.18980922837977957, -0.17308011674005838, -0.16306400164013773, -0.17798470933304333, -0.1929554075869116, -0.20236705191987037, -0.20695767560655007, -0.20841025876092567, -0.20792102174869989, -0.20655350005579293, -0.20492002526259828, -0.20310627026780645, -0.20105983335287836, -0.19937394565794653, -0.19853917506699659, -0.19836389977624452, -0.19850305023602796, -0.19877764028836831, -0.19910928131034669, -0.19943705712418805, -0.19970344172958865, -0.19991076989870474, -0.20010020127747646, -0.20025937787100062, -0.20035087292905965, -0.20035829921463297, -0.20029606557316171, -0.20019606915365515, -0.20009096093399206, -0.20000371608204368, -0.19994495432920584, -0.19991535665176338, -0.19990981826533513, -0.19992106419898723, -0.19994189853516578, -0.19996624091229293, -0.19998946016985167, -0.20000842303470234, -0.20002144460718174, -0.20002815561337187] |
---|
1695 | |
---|
1696 | G3 = [-0.45000000000000001, -0.37631169657400332, -0.33000044342859486, -0.30586045469008522, -0.28843572253009941, -0.27215308978603808, -0.25712951540331219, -0.2431608296216613, -0.23032023651386374, -0.2184546873456619, -0.20735123704254332, -0.19740397194806389, -0.1859829564064375, -0.16675980728362105, -0.16951575032846536, -0.1832860872609344, -0.19485758939241243, -0.20231368291811427, -0.20625610376074754, -0.20758116241495619, -0.20721445402086161, -0.20603406830353785, -0.20450262808396991, -0.2026769581185151, -0.2007401212066364, -0.19931160535777592, -0.19863606301128725, -0.19848511940572691, -0.19860091042948352, -0.19885490669377764, -0.19916542732701112, -0.19946678238611959, -0.19971209594104697, -0.19991912886512292, -0.2001058430788881, -0.20024959409472989, -0.20032160254609382, -0.20031583165752354, -0.20025051539293123, -0.2001556115816068, -0.20005952955420872, -0.1999814429561611, -0.19992977821558131, -0.19990457708664208, -0.19990104785490476, -0.19991257153954825, -0.19993258231880562, -0.19995548502882532, -0.19997700760919687, -0.19999429663503748, -0.20000588800248761] |
---|
1697 | |
---|
1698 | #FIXME (DSG):This is a hack so the anuga install, not precompiled |
---|
1699 | # works on DSG's win2000, python 2.3 |
---|
1700 | #The problem is the gauge_values[X] are 52 long, not 51. |
---|
1701 | # |
---|
1702 | # This was probably fixed by Stephen in changeset:3804 |
---|
1703 | #if len(gauge_values[0]) == 52: gauge_values[0].pop() |
---|
1704 | #if len(gauge_values[1]) == 52: gauge_values[1].pop() |
---|
1705 | #if len(gauge_values[2]) == 52: gauge_values[2].pop() |
---|
1706 | #if len(gauge_values[3]) == 52: gauge_values[3].pop() |
---|
1707 | |
---|
1708 | ## print len(G0), len(gauge_values[0]) |
---|
1709 | ## print len(G1), len(gauge_values[1]) |
---|
1710 | |
---|
1711 | #print gauge_values[3] |
---|
1712 | #print G0[:4] |
---|
1713 | #print array(gauge_values[0])-array(G0) |
---|
1714 | |
---|
1715 | |
---|
1716 | assert numpy.allclose(gauge_values[0], G0) |
---|
1717 | assert numpy.allclose(gauge_values[1], G1) |
---|
1718 | assert numpy.allclose(gauge_values[2], G2) |
---|
1719 | assert numpy.allclose(gauge_values[3], G3) |
---|
1720 | |
---|
1721 | |
---|
1722 | |
---|
1723 | |
---|
1724 | |
---|
1725 | |
---|
1726 | |
---|
1727 | ##################################################### |
---|
1728 | |
---|
1729 | def test_flux_optimisation(self): |
---|
1730 | """test_flux_optimisation |
---|
1731 | Test that fluxes are correctly computed using |
---|
1732 | dry and still cell exclusions |
---|
1733 | """ |
---|
1734 | |
---|
1735 | from anuga.config import g |
---|
1736 | import copy |
---|
1737 | |
---|
1738 | a = [0.0, 0.0] |
---|
1739 | b = [0.0, 2.0] |
---|
1740 | c = [2.0, 0.0] |
---|
1741 | d = [0.0, 4.0] |
---|
1742 | e = [2.0, 2.0] |
---|
1743 | f = [4.0, 0.0] |
---|
1744 | |
---|
1745 | points = [a, b, c, d, e, f] |
---|
1746 | #bac, bce, ecf, dbe |
---|
1747 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1748 | |
---|
1749 | domain = Domain(points, vertices) |
---|
1750 | |
---|
1751 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1752 | def slope(x, y): |
---|
1753 | return 3*x |
---|
1754 | |
---|
1755 | h = 0.1 |
---|
1756 | def stage(x,y): |
---|
1757 | return slope(x,y)+h |
---|
1758 | |
---|
1759 | domain.set_quantity('elevation', slope) |
---|
1760 | domain.set_quantity('stage', stage) |
---|
1761 | |
---|
1762 | # Allow slope limiters to work (FIXME (Ole): Shouldn't this be automatic in ANUGA?) |
---|
1763 | domain.distribute_to_vertices_and_edges() |
---|
1764 | |
---|
1765 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
1766 | |
---|
1767 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1768 | |
---|
1769 | |
---|
1770 | # Check that update arrays are initialised to zero |
---|
1771 | assert numpy.allclose(domain.get_quantity('stage').explicit_update, 0) |
---|
1772 | assert numpy.allclose(domain.get_quantity('xmomentum').explicit_update, 0) |
---|
1773 | assert numpy.allclose(domain.get_quantity('ymomentum').explicit_update, 0) |
---|
1774 | |
---|
1775 | |
---|
1776 | # Get true values |
---|
1777 | domain.optimise_dry_cells = False |
---|
1778 | domain.compute_fluxes() |
---|
1779 | stage_ref = copy.copy(domain.get_quantity('stage').explicit_update) |
---|
1780 | xmom_ref = copy.copy(domain.get_quantity('xmomentum').explicit_update) |
---|
1781 | ymom_ref = copy.copy(domain.get_quantity('ymomentum').explicit_update) |
---|
1782 | |
---|
1783 | # Try with flux optimisation |
---|
1784 | domain.optimise_dry_cells = True |
---|
1785 | domain.compute_fluxes() |
---|
1786 | |
---|
1787 | assert numpy.allclose(stage_ref, domain.get_quantity('stage').explicit_update) |
---|
1788 | assert numpy.allclose(xmom_ref, domain.get_quantity('xmomentum').explicit_update) |
---|
1789 | assert numpy.allclose(ymom_ref, domain.get_quantity('ymomentum').explicit_update) |
---|
1790 | |
---|
1791 | |
---|
1792 | |
---|
1793 | def test_initial_condition(self): |
---|
1794 | """test_initial_condition |
---|
1795 | Test that initial condition is output at time == 0 and that |
---|
1796 | computed values change as system evolves |
---|
1797 | """ |
---|
1798 | |
---|
1799 | from anuga.config import g |
---|
1800 | import copy |
---|
1801 | |
---|
1802 | a = [0.0, 0.0] |
---|
1803 | b = [0.0, 2.0] |
---|
1804 | c = [2.0, 0.0] |
---|
1805 | d = [0.0, 4.0] |
---|
1806 | e = [2.0, 2.0] |
---|
1807 | f = [4.0, 0.0] |
---|
1808 | |
---|
1809 | points = [a, b, c, d, e, f] |
---|
1810 | #bac, bce, ecf, dbe |
---|
1811 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1812 | |
---|
1813 | domain = Domain(points, vertices) |
---|
1814 | |
---|
1815 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1816 | def slope(x, y): |
---|
1817 | return 3*x |
---|
1818 | |
---|
1819 | h = 0.1 |
---|
1820 | def stage(x,y): |
---|
1821 | return slope(x,y)+h |
---|
1822 | |
---|
1823 | domain.set_quantity('elevation', slope) |
---|
1824 | domain.set_quantity('stage', stage) |
---|
1825 | |
---|
1826 | # Allow slope limiters to work (FIXME (Ole): Shouldn't this be automatic in ANUGA?) |
---|
1827 | domain.distribute_to_vertices_and_edges() |
---|
1828 | |
---|
1829 | initial_stage = copy.copy(domain.quantities['stage'].vertex_values) |
---|
1830 | |
---|
1831 | domain.set_boundary({'exterior': Reflective_boundary(domain)}) |
---|
1832 | |
---|
1833 | domain.optimise_dry_cells = True |
---|
1834 | #Evolution |
---|
1835 | for t in domain.evolve(yieldstep = 0.5, finaltime = 2.0): |
---|
1836 | stage = domain.quantities['stage'].vertex_values |
---|
1837 | |
---|
1838 | if t == 0.0: |
---|
1839 | assert numpy.allclose(stage, initial_stage) |
---|
1840 | else: |
---|
1841 | assert not numpy.allclose(stage, initial_stage) |
---|
1842 | |
---|
1843 | |
---|
1844 | os.remove(domain.get_name() + '.sww') |
---|
1845 | |
---|
1846 | |
---|
1847 | |
---|
1848 | ##################################################### |
---|
1849 | def test_gravity(self): |
---|
1850 | #Assuming no friction |
---|
1851 | |
---|
1852 | from anuga.config import g |
---|
1853 | |
---|
1854 | a = [0.0, 0.0] |
---|
1855 | b = [0.0, 2.0] |
---|
1856 | c = [2.0, 0.0] |
---|
1857 | d = [0.0, 4.0] |
---|
1858 | e = [2.0, 2.0] |
---|
1859 | f = [4.0, 0.0] |
---|
1860 | |
---|
1861 | points = [a, b, c, d, e, f] |
---|
1862 | #bac, bce, ecf, dbe |
---|
1863 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1864 | |
---|
1865 | domain = Domain(points, vertices) |
---|
1866 | |
---|
1867 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1868 | def slope(x, y): |
---|
1869 | return 3*x |
---|
1870 | |
---|
1871 | h = 0.1 |
---|
1872 | def stage(x,y): |
---|
1873 | return slope(x,y)+h |
---|
1874 | |
---|
1875 | domain.set_quantity('elevation', slope) |
---|
1876 | domain.set_quantity('stage', stage) |
---|
1877 | |
---|
1878 | for name in domain.conserved_quantities: |
---|
1879 | assert numpy.allclose(domain.quantities[name].explicit_update, 0) |
---|
1880 | assert numpy.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
1881 | |
---|
1882 | domain.compute_forcing_terms() |
---|
1883 | |
---|
1884 | assert numpy.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
1885 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
1886 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
1887 | |
---|
1888 | |
---|
1889 | def test_manning_friction(self): |
---|
1890 | from anuga.config import g |
---|
1891 | |
---|
1892 | a = [0.0, 0.0] |
---|
1893 | b = [0.0, 2.0] |
---|
1894 | c = [2.0, 0.0] |
---|
1895 | d = [0.0, 4.0] |
---|
1896 | e = [2.0, 2.0] |
---|
1897 | f = [4.0, 0.0] |
---|
1898 | |
---|
1899 | points = [a, b, c, d, e, f] |
---|
1900 | #bac, bce, ecf, dbe |
---|
1901 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1902 | |
---|
1903 | domain = Domain(points, vertices) |
---|
1904 | |
---|
1905 | #Set up for a gradient of (3,0) at mid triangle (bce) |
---|
1906 | def slope(x, y): |
---|
1907 | return 3*x |
---|
1908 | |
---|
1909 | h = 0.1 |
---|
1910 | def stage(x,y): |
---|
1911 | return slope(x,y)+h |
---|
1912 | |
---|
1913 | eta = 0.07 |
---|
1914 | domain.set_quantity('elevation', slope) |
---|
1915 | domain.set_quantity('stage', stage) |
---|
1916 | domain.set_quantity('friction', eta) |
---|
1917 | |
---|
1918 | for name in domain.conserved_quantities: |
---|
1919 | assert numpy.allclose(domain.quantities[name].explicit_update, 0) |
---|
1920 | assert numpy.allclose(domain.quantities[name].semi_implicit_update, 0) |
---|
1921 | |
---|
1922 | domain.compute_forcing_terms() |
---|
1923 | |
---|
1924 | assert numpy.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
1925 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update, -g*h*3) |
---|
1926 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update, 0) |
---|
1927 | |
---|
1928 | assert numpy.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
1929 | assert numpy.allclose(domain.quantities['xmomentum'].semi_implicit_update, 0) |
---|
1930 | assert numpy.allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
1931 | |
---|
1932 | #Create some momentum for friction to work with |
---|
1933 | domain.set_quantity('xmomentum', 1) |
---|
1934 | S = -g * eta**2 / h**(7.0/3) |
---|
1935 | |
---|
1936 | domain.compute_forcing_terms() |
---|
1937 | assert numpy.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
1938 | assert numpy.allclose(domain.quantities['xmomentum'].semi_implicit_update, S) |
---|
1939 | assert numpy.allclose(domain.quantities['ymomentum'].semi_implicit_update, 0) |
---|
1940 | |
---|
1941 | #A more complex example |
---|
1942 | domain.quantities['stage'].semi_implicit_update[:] = 0.0 |
---|
1943 | domain.quantities['xmomentum'].semi_implicit_update[:] = 0.0 |
---|
1944 | domain.quantities['ymomentum'].semi_implicit_update[:] = 0.0 |
---|
1945 | |
---|
1946 | domain.set_quantity('xmomentum', 3) |
---|
1947 | domain.set_quantity('ymomentum', 4) |
---|
1948 | |
---|
1949 | S = -g * eta**2 * 5 / h**(7.0/3) |
---|
1950 | |
---|
1951 | |
---|
1952 | domain.compute_forcing_terms() |
---|
1953 | |
---|
1954 | assert numpy.allclose(domain.quantities['stage'].semi_implicit_update, 0) |
---|
1955 | assert numpy.allclose(domain.quantities['xmomentum'].semi_implicit_update, 3*S) |
---|
1956 | assert numpy.allclose(domain.quantities['ymomentum'].semi_implicit_update, 4*S) |
---|
1957 | |
---|
1958 | def test_constant_wind_stress(self): |
---|
1959 | from anuga.config import rho_a, rho_w, eta_w |
---|
1960 | from math import pi, cos, sin |
---|
1961 | |
---|
1962 | a = [0.0, 0.0] |
---|
1963 | b = [0.0, 2.0] |
---|
1964 | c = [2.0, 0.0] |
---|
1965 | d = [0.0, 4.0] |
---|
1966 | e = [2.0, 2.0] |
---|
1967 | f = [4.0, 0.0] |
---|
1968 | |
---|
1969 | points = [a, b, c, d, e, f] |
---|
1970 | #bac, bce, ecf, dbe |
---|
1971 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
1972 | |
---|
1973 | |
---|
1974 | domain = Domain(points, vertices) |
---|
1975 | |
---|
1976 | #Flat surface with 1m of water |
---|
1977 | domain.set_quantity('elevation', 0) |
---|
1978 | domain.set_quantity('stage', 1.0) |
---|
1979 | domain.set_quantity('friction', 0) |
---|
1980 | |
---|
1981 | Br = Reflective_boundary(domain) |
---|
1982 | domain.set_boundary({'exterior': Br}) |
---|
1983 | |
---|
1984 | #Setup only one forcing term, constant wind stress |
---|
1985 | s = 100 |
---|
1986 | phi = 135 |
---|
1987 | domain.forcing_terms = [] |
---|
1988 | domain.forcing_terms.append( Wind_stress(s, phi) ) |
---|
1989 | |
---|
1990 | domain.compute_forcing_terms() |
---|
1991 | |
---|
1992 | |
---|
1993 | const = eta_w*rho_a/rho_w |
---|
1994 | |
---|
1995 | #Convert to radians |
---|
1996 | phi = phi*pi/180 |
---|
1997 | |
---|
1998 | #Compute velocity vector (u, v) |
---|
1999 | u = s*cos(phi) |
---|
2000 | v = s*sin(phi) |
---|
2001 | |
---|
2002 | #Compute wind stress |
---|
2003 | S = const * sqrt(u**2 + v**2) |
---|
2004 | |
---|
2005 | assert numpy.allclose(domain.quantities['stage'].explicit_update, 0) |
---|
2006 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update, S*u) |
---|
2007 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update, S*v) |
---|
2008 | |
---|
2009 | |
---|
2010 | def test_variable_wind_stress(self): |
---|
2011 | from anuga.config import rho_a, rho_w, eta_w |
---|
2012 | from math import pi, cos, sin |
---|
2013 | |
---|
2014 | a = [0.0, 0.0] |
---|
2015 | b = [0.0, 2.0] |
---|
2016 | c = [2.0, 0.0] |
---|
2017 | d = [0.0, 4.0] |
---|
2018 | e = [2.0, 2.0] |
---|
2019 | f = [4.0, 0.0] |
---|
2020 | |
---|
2021 | points = [a, b, c, d, e, f] |
---|
2022 | #bac, bce, ecf, dbe |
---|
2023 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2024 | |
---|
2025 | domain = Domain(points, vertices) |
---|
2026 | |
---|
2027 | #Flat surface with 1m of water |
---|
2028 | domain.set_quantity('elevation', 0) |
---|
2029 | domain.set_quantity('stage', 1.0) |
---|
2030 | domain.set_quantity('friction', 0) |
---|
2031 | |
---|
2032 | Br = Reflective_boundary(domain) |
---|
2033 | domain.set_boundary({'exterior': Br}) |
---|
2034 | |
---|
2035 | |
---|
2036 | domain.time = 5.54 #Take a random time (not zero) |
---|
2037 | |
---|
2038 | #Setup only one forcing term, constant wind stress |
---|
2039 | s = 100 |
---|
2040 | phi = 135 |
---|
2041 | domain.forcing_terms = [] |
---|
2042 | domain.forcing_terms.append( Wind_stress(s = speed, phi = angle) ) |
---|
2043 | |
---|
2044 | domain.compute_forcing_terms() |
---|
2045 | |
---|
2046 | #Compute reference solution |
---|
2047 | const = eta_w*rho_a/rho_w |
---|
2048 | |
---|
2049 | N = len(domain) # number_of_triangles |
---|
2050 | |
---|
2051 | xc = domain.get_centroid_coordinates() |
---|
2052 | t = domain.time |
---|
2053 | |
---|
2054 | x = xc[:,0] |
---|
2055 | y = xc[:,1] |
---|
2056 | s_vec = speed(t,x,y) |
---|
2057 | phi_vec = angle(t,x,y) |
---|
2058 | |
---|
2059 | |
---|
2060 | for k in range(N): |
---|
2061 | #Convert to radians |
---|
2062 | phi = phi_vec[k]*pi/180 |
---|
2063 | s = s_vec[k] |
---|
2064 | |
---|
2065 | #Compute velocity vector (u, v) |
---|
2066 | u = s*cos(phi) |
---|
2067 | v = s*sin(phi) |
---|
2068 | |
---|
2069 | #Compute wind stress |
---|
2070 | S = const * sqrt(u**2 + v**2) |
---|
2071 | |
---|
2072 | assert numpy.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2073 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2074 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2075 | |
---|
2076 | |
---|
2077 | |
---|
2078 | |
---|
2079 | |
---|
2080 | |
---|
2081 | def test_windfield_from_file(self): |
---|
2082 | from anuga.config import rho_a, rho_w, eta_w |
---|
2083 | from math import pi, cos, sin |
---|
2084 | from anuga.config import time_format |
---|
2085 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
2086 | import time |
---|
2087 | |
---|
2088 | |
---|
2089 | a = [0.0, 0.0] |
---|
2090 | b = [0.0, 2.0] |
---|
2091 | c = [2.0, 0.0] |
---|
2092 | d = [0.0, 4.0] |
---|
2093 | e = [2.0, 2.0] |
---|
2094 | f = [4.0, 0.0] |
---|
2095 | |
---|
2096 | points = [a, b, c, d, e, f] |
---|
2097 | #bac, bce, ecf, dbe |
---|
2098 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2099 | |
---|
2100 | domain = Domain(points, vertices) |
---|
2101 | |
---|
2102 | #Flat surface with 1m of water |
---|
2103 | domain.set_quantity('elevation', 0) |
---|
2104 | domain.set_quantity('stage', 1.0) |
---|
2105 | domain.set_quantity('friction', 0) |
---|
2106 | |
---|
2107 | Br = Reflective_boundary(domain) |
---|
2108 | domain.set_boundary({'exterior': Br}) |
---|
2109 | |
---|
2110 | |
---|
2111 | domain.time = 7 #Take a time that is represented in file (not zero) |
---|
2112 | |
---|
2113 | #Write wind stress file (ensure that domain.time is covered) |
---|
2114 | #Take x=1 and y=0 |
---|
2115 | filename = 'test_windstress_from_file' |
---|
2116 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
2117 | fid = open(filename + '.txt', 'w') |
---|
2118 | dt = 1 #One second interval |
---|
2119 | t = 0.0 |
---|
2120 | while t <= 10.0: |
---|
2121 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
2122 | |
---|
2123 | fid.write('%s, %f %f\n' %(t_string, |
---|
2124 | speed(t,[1],[0])[0], |
---|
2125 | angle(t,[1],[0])[0])) |
---|
2126 | t += dt |
---|
2127 | |
---|
2128 | fid.close() |
---|
2129 | |
---|
2130 | |
---|
2131 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
2132 | from data_manager import timefile2netcdf |
---|
2133 | timefile2netcdf(filename) |
---|
2134 | os.remove(filename + '.txt') |
---|
2135 | |
---|
2136 | |
---|
2137 | #Setup wind stress |
---|
2138 | F = file_function(filename + '.tms', quantities = ['Attribute0', |
---|
2139 | 'Attribute1']) |
---|
2140 | os.remove(filename + '.tms') |
---|
2141 | |
---|
2142 | |
---|
2143 | #print 'F(5)', F(5) |
---|
2144 | |
---|
2145 | #print 'F(5,x,y)', F(5,x=zeros(3),y=zeros(3)) |
---|
2146 | |
---|
2147 | #print dir(F) |
---|
2148 | #print F.T |
---|
2149 | #print F.precomputed_values |
---|
2150 | # |
---|
2151 | #F = file_function(filename + '.txt') |
---|
2152 | # |
---|
2153 | #print dir(F) |
---|
2154 | #print F.T |
---|
2155 | #print F.Q |
---|
2156 | |
---|
2157 | W = Wind_stress(F) |
---|
2158 | |
---|
2159 | domain.forcing_terms = [] |
---|
2160 | domain.forcing_terms.append(W) |
---|
2161 | |
---|
2162 | domain.compute_forcing_terms() |
---|
2163 | |
---|
2164 | #Compute reference solution |
---|
2165 | const = eta_w*rho_a/rho_w |
---|
2166 | |
---|
2167 | N = len(domain) # number_of_triangles |
---|
2168 | |
---|
2169 | t = domain.time |
---|
2170 | |
---|
2171 | s = speed(t,[1],[0])[0] |
---|
2172 | phi = angle(t,[1],[0])[0] |
---|
2173 | |
---|
2174 | #Convert to radians |
---|
2175 | phi = phi*pi/180 |
---|
2176 | |
---|
2177 | |
---|
2178 | #Compute velocity vector (u, v) |
---|
2179 | u = s*cos(phi) |
---|
2180 | v = s*sin(phi) |
---|
2181 | |
---|
2182 | #Compute wind stress |
---|
2183 | S = const * sqrt(u**2 + v**2) |
---|
2184 | |
---|
2185 | for k in range(N): |
---|
2186 | assert numpy.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2187 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2188 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2189 | |
---|
2190 | |
---|
2191 | def test_windfield_from_file_seconds(self): |
---|
2192 | from anuga.config import rho_a, rho_w, eta_w |
---|
2193 | from math import pi, cos, sin |
---|
2194 | from anuga.config import time_format |
---|
2195 | from anuga.abstract_2d_finite_volumes.util import file_function |
---|
2196 | import time |
---|
2197 | |
---|
2198 | |
---|
2199 | a = [0.0, 0.0] |
---|
2200 | b = [0.0, 2.0] |
---|
2201 | c = [2.0, 0.0] |
---|
2202 | d = [0.0, 4.0] |
---|
2203 | e = [2.0, 2.0] |
---|
2204 | f = [4.0, 0.0] |
---|
2205 | |
---|
2206 | points = [a, b, c, d, e, f] |
---|
2207 | #bac, bce, ecf, dbe |
---|
2208 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2209 | |
---|
2210 | domain = Domain(points, vertices) |
---|
2211 | |
---|
2212 | #Flat surface with 1m of water |
---|
2213 | domain.set_quantity('elevation', 0) |
---|
2214 | domain.set_quantity('stage', 1.0) |
---|
2215 | domain.set_quantity('friction', 0) |
---|
2216 | |
---|
2217 | Br = Reflective_boundary(domain) |
---|
2218 | domain.set_boundary({'exterior': Br}) |
---|
2219 | |
---|
2220 | |
---|
2221 | domain.time = 7 #Take a time that is represented in file (not zero) |
---|
2222 | |
---|
2223 | #Write wind stress file (ensure that domain.time is covered) |
---|
2224 | #Take x=1 and y=0 |
---|
2225 | filename = 'test_windstress_from_file' |
---|
2226 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
2227 | fid = open(filename + '.txt', 'w') |
---|
2228 | dt = 0.5 #1 #One second interval |
---|
2229 | t = 0.0 |
---|
2230 | while t <= 10.0: |
---|
2231 | fid.write('%s, %f %f\n' %(str(t), |
---|
2232 | speed(t,[1],[0])[0], |
---|
2233 | angle(t,[1],[0])[0])) |
---|
2234 | t += dt |
---|
2235 | |
---|
2236 | fid.close() |
---|
2237 | |
---|
2238 | |
---|
2239 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
2240 | from data_manager import timefile2netcdf |
---|
2241 | timefile2netcdf(filename, time_as_seconds=True) |
---|
2242 | os.remove(filename + '.txt') |
---|
2243 | |
---|
2244 | |
---|
2245 | #Setup wind stress |
---|
2246 | F = file_function(filename + '.tms', quantities = ['Attribute0', |
---|
2247 | 'Attribute1']) |
---|
2248 | os.remove(filename + '.tms') |
---|
2249 | |
---|
2250 | |
---|
2251 | #print 'F(5)', F(5) |
---|
2252 | |
---|
2253 | #print 'F(5,x,y)', F(5,x=zeros(3),y=zeros(3)) |
---|
2254 | |
---|
2255 | #print dir(F) |
---|
2256 | #print F.T |
---|
2257 | #print F.precomputed_values |
---|
2258 | # |
---|
2259 | #F = file_function(filename + '.txt') |
---|
2260 | # |
---|
2261 | #print dir(F) |
---|
2262 | #print F.T |
---|
2263 | #print F.Q |
---|
2264 | |
---|
2265 | W = Wind_stress(F) |
---|
2266 | |
---|
2267 | domain.forcing_terms = [] |
---|
2268 | domain.forcing_terms.append(W) |
---|
2269 | |
---|
2270 | domain.compute_forcing_terms() |
---|
2271 | |
---|
2272 | #Compute reference solution |
---|
2273 | const = eta_w*rho_a/rho_w |
---|
2274 | |
---|
2275 | N = len(domain) # number_of_triangles |
---|
2276 | |
---|
2277 | t = domain.time |
---|
2278 | |
---|
2279 | s = speed(t,[1],[0])[0] |
---|
2280 | phi = angle(t,[1],[0])[0] |
---|
2281 | |
---|
2282 | #Convert to radians |
---|
2283 | phi = phi*pi/180 |
---|
2284 | |
---|
2285 | |
---|
2286 | #Compute velocity vector (u, v) |
---|
2287 | u = s*cos(phi) |
---|
2288 | v = s*sin(phi) |
---|
2289 | |
---|
2290 | #Compute wind stress |
---|
2291 | S = const * sqrt(u**2 + v**2) |
---|
2292 | |
---|
2293 | for k in range(N): |
---|
2294 | assert numpy.allclose(domain.quantities['stage'].explicit_update[k], 0) |
---|
2295 | assert numpy.allclose(domain.quantities['xmomentum'].explicit_update[k], S*u) |
---|
2296 | assert numpy.allclose(domain.quantities['ymomentum'].explicit_update[k], S*v) |
---|
2297 | |
---|
2298 | |
---|
2299 | |
---|
2300 | |
---|
2301 | def test_wind_stress_error_condition(self): |
---|
2302 | """Test that windstress reacts properly when forcing functions |
---|
2303 | are wrong - e.g. returns a scalar |
---|
2304 | """ |
---|
2305 | |
---|
2306 | from anuga.config import rho_a, rho_w, eta_w |
---|
2307 | from math import pi, cos, sin |
---|
2308 | |
---|
2309 | a = [0.0, 0.0] |
---|
2310 | b = [0.0, 2.0] |
---|
2311 | c = [2.0, 0.0] |
---|
2312 | d = [0.0, 4.0] |
---|
2313 | e = [2.0, 2.0] |
---|
2314 | f = [4.0, 0.0] |
---|
2315 | |
---|
2316 | points = [a, b, c, d, e, f] |
---|
2317 | #bac, bce, ecf, dbe |
---|
2318 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2319 | |
---|
2320 | domain = Domain(points, vertices) |
---|
2321 | |
---|
2322 | #Flat surface with 1m of water |
---|
2323 | domain.set_quantity('elevation', 0) |
---|
2324 | domain.set_quantity('stage', 1.0) |
---|
2325 | domain.set_quantity('friction', 0) |
---|
2326 | |
---|
2327 | Br = Reflective_boundary(domain) |
---|
2328 | domain.set_boundary({'exterior': Br}) |
---|
2329 | |
---|
2330 | |
---|
2331 | domain.time = 5.54 #Take a random time (not zero) |
---|
2332 | |
---|
2333 | #Setup only one forcing term, bad func |
---|
2334 | domain.forcing_terms = [] |
---|
2335 | |
---|
2336 | try: |
---|
2337 | domain.forcing_terms.append(Wind_stress(s = scalar_func, |
---|
2338 | phi = angle)) |
---|
2339 | except AssertionError: |
---|
2340 | pass |
---|
2341 | else: |
---|
2342 | msg = 'Should have raised exception' |
---|
2343 | raise msg |
---|
2344 | |
---|
2345 | |
---|
2346 | try: |
---|
2347 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
2348 | phi = scalar_func)) |
---|
2349 | except AssertionError: |
---|
2350 | pass |
---|
2351 | else: |
---|
2352 | msg = 'Should have raised exception' |
---|
2353 | raise msg |
---|
2354 | |
---|
2355 | try: |
---|
2356 | domain.forcing_terms.append(Wind_stress(s = speed, |
---|
2357 | phi = 'xx')) |
---|
2358 | except: |
---|
2359 | pass |
---|
2360 | else: |
---|
2361 | msg = 'Should have raised exception' |
---|
2362 | raise msg |
---|
2363 | |
---|
2364 | |
---|
2365 | |
---|
2366 | def test_rainfall(self): |
---|
2367 | from math import pi, cos, sin |
---|
2368 | |
---|
2369 | a = [0.0, 0.0] |
---|
2370 | b = [0.0, 2.0] |
---|
2371 | c = [2.0, 0.0] |
---|
2372 | d = [0.0, 4.0] |
---|
2373 | e = [2.0, 2.0] |
---|
2374 | f = [4.0, 0.0] |
---|
2375 | |
---|
2376 | points = [a, b, c, d, e, f] |
---|
2377 | #bac, bce, ecf, dbe |
---|
2378 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2379 | |
---|
2380 | |
---|
2381 | domain = Domain(points, vertices) |
---|
2382 | |
---|
2383 | #Flat surface with 1m of water |
---|
2384 | domain.set_quantity('elevation', 0) |
---|
2385 | domain.set_quantity('stage', 1.0) |
---|
2386 | domain.set_quantity('friction', 0) |
---|
2387 | |
---|
2388 | Br = Reflective_boundary(domain) |
---|
2389 | domain.set_boundary({'exterior': Br}) |
---|
2390 | |
---|
2391 | # Setup only one forcing term, constant rainfall |
---|
2392 | domain.forcing_terms = [] |
---|
2393 | domain.forcing_terms.append( Rainfall(domain, rate=2.0) ) |
---|
2394 | |
---|
2395 | domain.compute_forcing_terms() |
---|
2396 | assert numpy.allclose(domain.quantities['stage'].explicit_update, 2.0/1000) |
---|
2397 | |
---|
2398 | |
---|
2399 | |
---|
2400 | def test_rainfall_restricted_by_polygon(self): |
---|
2401 | from math import pi, cos, sin |
---|
2402 | |
---|
2403 | a = [0.0, 0.0] |
---|
2404 | b = [0.0, 2.0] |
---|
2405 | c = [2.0, 0.0] |
---|
2406 | d = [0.0, 4.0] |
---|
2407 | e = [2.0, 2.0] |
---|
2408 | f = [4.0, 0.0] |
---|
2409 | |
---|
2410 | points = [a, b, c, d, e, f] |
---|
2411 | #bac, bce, ecf, dbe |
---|
2412 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2413 | |
---|
2414 | |
---|
2415 | domain = Domain(points, vertices) |
---|
2416 | |
---|
2417 | #Flat surface with 1m of water |
---|
2418 | domain.set_quantity('elevation', 0) |
---|
2419 | domain.set_quantity('stage', 1.0) |
---|
2420 | domain.set_quantity('friction', 0) |
---|
2421 | |
---|
2422 | Br = Reflective_boundary(domain) |
---|
2423 | domain.set_boundary({'exterior': Br}) |
---|
2424 | |
---|
2425 | # Setup only one forcing term, constant rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2426 | domain.forcing_terms = [] |
---|
2427 | R = Rainfall(domain, rate=2.0, polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
2428 | |
---|
2429 | assert numpy.allclose(R.exchange_area, 1) |
---|
2430 | |
---|
2431 | domain.forcing_terms.append(R) |
---|
2432 | |
---|
2433 | domain.compute_forcing_terms() |
---|
2434 | #print domain.quantities['stage'].explicit_update |
---|
2435 | |
---|
2436 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], 2.0/1000) |
---|
2437 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2438 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2439 | |
---|
2440 | |
---|
2441 | |
---|
2442 | def test_time_dependent_rainfall_restricted_by_polygon(self): |
---|
2443 | |
---|
2444 | a = [0.0, 0.0] |
---|
2445 | b = [0.0, 2.0] |
---|
2446 | c = [2.0, 0.0] |
---|
2447 | d = [0.0, 4.0] |
---|
2448 | e = [2.0, 2.0] |
---|
2449 | f = [4.0, 0.0] |
---|
2450 | |
---|
2451 | points = [a, b, c, d, e, f] |
---|
2452 | #bac, bce, ecf, dbe |
---|
2453 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2454 | |
---|
2455 | |
---|
2456 | domain = Domain(points, vertices) |
---|
2457 | |
---|
2458 | #Flat surface with 1m of water |
---|
2459 | domain.set_quantity('elevation', 0) |
---|
2460 | domain.set_quantity('stage', 1.0) |
---|
2461 | domain.set_quantity('friction', 0) |
---|
2462 | |
---|
2463 | Br = Reflective_boundary(domain) |
---|
2464 | domain.set_boundary({'exterior': Br}) |
---|
2465 | |
---|
2466 | # Setup only one forcing term, time dependent rainfall restricted to a polygon enclosing triangle #1 (bce) |
---|
2467 | domain.forcing_terms = [] |
---|
2468 | R = Rainfall(domain, rate=lambda t: 3*t + 7, polygon = [[1,1], [2,1], [2,2], [1,2]]) |
---|
2469 | |
---|
2470 | assert numpy.allclose(R.exchange_area, 1) |
---|
2471 | |
---|
2472 | domain.forcing_terms.append(R) |
---|
2473 | |
---|
2474 | |
---|
2475 | domain.time = 10. |
---|
2476 | |
---|
2477 | domain.compute_forcing_terms() |
---|
2478 | #print domain.quantities['stage'].explicit_update |
---|
2479 | |
---|
2480 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], (3*domain.time+7)/1000) |
---|
2481 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2482 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2483 | |
---|
2484 | |
---|
2485 | |
---|
2486 | def test_time_dependent_rainfall_restricted_by_polygon_with_default(self): |
---|
2487 | """test_time_dependent_rainfall_restricted_by_polygon_with_default |
---|
2488 | |
---|
2489 | Test that default rainfall can be used when given rate runs out of data. |
---|
2490 | """ |
---|
2491 | a = [0.0, 0.0] |
---|
2492 | b = [0.0, 2.0] |
---|
2493 | c = [2.0, 0.0] |
---|
2494 | d = [0.0, 4.0] |
---|
2495 | e = [2.0, 2.0] |
---|
2496 | f = [4.0, 0.0] |
---|
2497 | |
---|
2498 | points = [a, b, c, d, e, f] |
---|
2499 | #bac, bce, ecf, dbe |
---|
2500 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2501 | |
---|
2502 | |
---|
2503 | domain = Domain(points, vertices) |
---|
2504 | |
---|
2505 | #Flat surface with 1m of water |
---|
2506 | domain.set_quantity('elevation', 0) |
---|
2507 | domain.set_quantity('stage', 1.0) |
---|
2508 | domain.set_quantity('friction', 0) |
---|
2509 | |
---|
2510 | Br = Reflective_boundary(domain) |
---|
2511 | domain.set_boundary({'exterior': Br}) |
---|
2512 | |
---|
2513 | # Setup only one forcing term, time dependent rainfall that expires at t==20 |
---|
2514 | from anuga.fit_interpolate.interpolate import Modeltime_too_late |
---|
2515 | def main_rate(t): |
---|
2516 | if t > 20: |
---|
2517 | msg = 'Model time exceeded.' |
---|
2518 | raise Modeltime_too_late, msg |
---|
2519 | else: |
---|
2520 | return 3*t + 7 |
---|
2521 | |
---|
2522 | domain.forcing_terms = [] |
---|
2523 | R = Rainfall(domain, rate=main_rate, polygon = [[1,1], [2,1], [2,2], [1,2]], |
---|
2524 | default_rate=5.0) |
---|
2525 | |
---|
2526 | assert numpy.allclose(R.exchange_area, 1) |
---|
2527 | |
---|
2528 | domain.forcing_terms.append(R) |
---|
2529 | |
---|
2530 | |
---|
2531 | domain.time = 10. |
---|
2532 | |
---|
2533 | domain.compute_forcing_terms() |
---|
2534 | #print domain.quantities['stage'].explicit_update |
---|
2535 | |
---|
2536 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], (3*domain.time+7)/1000) |
---|
2537 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2538 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2539 | |
---|
2540 | |
---|
2541 | domain.time = 100. |
---|
2542 | domain.quantities['stage'].explicit_update[:] = 0.0 # Reset |
---|
2543 | domain.compute_forcing_terms() |
---|
2544 | #print domain.quantities['stage'].explicit_update |
---|
2545 | |
---|
2546 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], 5.0/1000) # Default value |
---|
2547 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 0) |
---|
2548 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2549 | |
---|
2550 | |
---|
2551 | |
---|
2552 | |
---|
2553 | |
---|
2554 | def test_inflow_using_circle(self): |
---|
2555 | from math import pi, cos, sin |
---|
2556 | |
---|
2557 | a = [0.0, 0.0] |
---|
2558 | b = [0.0, 2.0] |
---|
2559 | c = [2.0, 0.0] |
---|
2560 | d = [0.0, 4.0] |
---|
2561 | e = [2.0, 2.0] |
---|
2562 | f = [4.0, 0.0] |
---|
2563 | |
---|
2564 | points = [a, b, c, d, e, f] |
---|
2565 | #bac, bce, ecf, dbe |
---|
2566 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2567 | |
---|
2568 | |
---|
2569 | domain = Domain(points, vertices) |
---|
2570 | |
---|
2571 | # Flat surface with 1m of water |
---|
2572 | domain.set_quantity('elevation', 0) |
---|
2573 | domain.set_quantity('stage', 1.0) |
---|
2574 | domain.set_quantity('friction', 0) |
---|
2575 | |
---|
2576 | Br = Reflective_boundary(domain) |
---|
2577 | domain.set_boundary({'exterior': Br}) |
---|
2578 | |
---|
2579 | # Setup only one forcing term, constant inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
2580 | domain.forcing_terms = [] |
---|
2581 | domain.forcing_terms.append( Inflow(domain, rate=2.0, center=(1,1), radius=1) ) |
---|
2582 | |
---|
2583 | domain.compute_forcing_terms() |
---|
2584 | #print domain.quantities['stage'].explicit_update |
---|
2585 | |
---|
2586 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], 2.0/pi) |
---|
2587 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 2.0/pi) |
---|
2588 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2589 | |
---|
2590 | |
---|
2591 | def test_inflow_using_circle_function(self): |
---|
2592 | from math import pi, cos, sin |
---|
2593 | |
---|
2594 | a = [0.0, 0.0] |
---|
2595 | b = [0.0, 2.0] |
---|
2596 | c = [2.0, 0.0] |
---|
2597 | d = [0.0, 4.0] |
---|
2598 | e = [2.0, 2.0] |
---|
2599 | f = [4.0, 0.0] |
---|
2600 | |
---|
2601 | points = [a, b, c, d, e, f] |
---|
2602 | #bac, bce, ecf, dbe |
---|
2603 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2604 | |
---|
2605 | |
---|
2606 | domain = Domain(points, vertices) |
---|
2607 | |
---|
2608 | # Flat surface with 1m of water |
---|
2609 | domain.set_quantity('elevation', 0) |
---|
2610 | domain.set_quantity('stage', 1.0) |
---|
2611 | domain.set_quantity('friction', 0) |
---|
2612 | |
---|
2613 | Br = Reflective_boundary(domain) |
---|
2614 | domain.set_boundary({'exterior': Br}) |
---|
2615 | |
---|
2616 | # Setup only one forcing term, time dependent inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
2617 | domain.forcing_terms = [] |
---|
2618 | domain.forcing_terms.append( Inflow(domain, rate=lambda t: 2., center=(1,1), radius=1) ) |
---|
2619 | |
---|
2620 | domain.compute_forcing_terms() |
---|
2621 | |
---|
2622 | assert numpy.allclose(domain.quantities['stage'].explicit_update[1], 2.0/pi) |
---|
2623 | assert numpy.allclose(domain.quantities['stage'].explicit_update[0], 2.0/pi) |
---|
2624 | assert numpy.allclose(domain.quantities['stage'].explicit_update[2:], 0) |
---|
2625 | |
---|
2626 | |
---|
2627 | |
---|
2628 | |
---|
2629 | def test_inflow_catch_too_few_triangles(self): |
---|
2630 | """test_inflow_catch_too_few_triangles |
---|
2631 | |
---|
2632 | Test that exception is thrown if no triangles are covered by the inflow area |
---|
2633 | """ |
---|
2634 | from math import pi, cos, sin |
---|
2635 | |
---|
2636 | a = [0.0, 0.0] |
---|
2637 | b = [0.0, 2.0] |
---|
2638 | c = [2.0, 0.0] |
---|
2639 | d = [0.0, 4.0] |
---|
2640 | e = [2.0, 2.0] |
---|
2641 | f = [4.0, 0.0] |
---|
2642 | |
---|
2643 | points = [a, b, c, d, e, f] |
---|
2644 | #bac, bce, ecf, dbe |
---|
2645 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2646 | |
---|
2647 | |
---|
2648 | domain = Domain(points, vertices) |
---|
2649 | |
---|
2650 | # Flat surface with 1m of water |
---|
2651 | domain.set_quantity('elevation', 0) |
---|
2652 | domain.set_quantity('stage', 1.0) |
---|
2653 | domain.set_quantity('friction', 0) |
---|
2654 | |
---|
2655 | Br = Reflective_boundary(domain) |
---|
2656 | domain.set_boundary({'exterior': Br}) |
---|
2657 | |
---|
2658 | # Setup only one forcing term, constant inflow of 2 m^3/s on a circle affecting triangles #0 and #1 (bac and bce) |
---|
2659 | |
---|
2660 | try: |
---|
2661 | Inflow(domain, rate=2.0, center=(1,1.1), radius=0.01) |
---|
2662 | except: |
---|
2663 | pass |
---|
2664 | else: |
---|
2665 | msg = 'Should have raised exception' |
---|
2666 | raise Exception, msg |
---|
2667 | |
---|
2668 | |
---|
2669 | |
---|
2670 | |
---|
2671 | |
---|
2672 | |
---|
2673 | ##################################################### |
---|
2674 | def test_first_order_extrapolator_const_z(self): |
---|
2675 | |
---|
2676 | a = [0.0, 0.0] |
---|
2677 | b = [0.0, 2.0] |
---|
2678 | c = [2.0, 0.0] |
---|
2679 | d = [0.0, 4.0] |
---|
2680 | e = [2.0, 2.0] |
---|
2681 | f = [4.0, 0.0] |
---|
2682 | |
---|
2683 | points = [a, b, c, d, e, f] |
---|
2684 | #bac, bce, ecf, dbe |
---|
2685 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2686 | |
---|
2687 | domain = Domain(points, vertices) |
---|
2688 | val0 = 2.+2.0/3 |
---|
2689 | val1 = 4.+4.0/3 |
---|
2690 | val2 = 8.+2.0/3 |
---|
2691 | val3 = 2.+8.0/3 |
---|
2692 | |
---|
2693 | zl=zr=-3.75 #Assume constant bed (must be less than stage) |
---|
2694 | domain.set_quantity('elevation', zl*numpy.ones( (4,3) )) |
---|
2695 | domain.set_quantity('stage', [[val0, val0-1, val0-2], |
---|
2696 | [val1, val1+1, val1], |
---|
2697 | [val2, val2-2, val2], |
---|
2698 | [val3-0.5, val3, val3]]) |
---|
2699 | |
---|
2700 | |
---|
2701 | |
---|
2702 | domain._order_ = 1 |
---|
2703 | domain.distribute_to_vertices_and_edges() |
---|
2704 | |
---|
2705 | #Check that centroid values were distributed to vertices |
---|
2706 | C = domain.quantities['stage'].centroid_values |
---|
2707 | for i in range(3): |
---|
2708 | assert numpy.allclose( domain.quantities['stage'].vertex_values[:,i], C) |
---|
2709 | |
---|
2710 | |
---|
2711 | def test_first_order_limiter_variable_z(self): |
---|
2712 | #Check that first order limiter follows bed_slope |
---|
2713 | from anuga.config import epsilon |
---|
2714 | |
---|
2715 | a = [0.0, 0.0] |
---|
2716 | b = [0.0, 2.0] |
---|
2717 | c = [2.0,0.0] |
---|
2718 | d = [0.0, 4.0] |
---|
2719 | e = [2.0, 2.0] |
---|
2720 | f = [4.0,0.0] |
---|
2721 | |
---|
2722 | points = [a, b, c, d, e, f] |
---|
2723 | #bac, bce, ecf, dbe |
---|
2724 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2725 | |
---|
2726 | domain = Domain(points, vertices) |
---|
2727 | val0 = 2.+2.0/3 |
---|
2728 | val1 = 4.+4.0/3 |
---|
2729 | val2 = 8.+2.0/3 |
---|
2730 | val3 = 2.+8.0/3 |
---|
2731 | |
---|
2732 | domain.set_quantity('elevation', [[0,0,0], [6,0,0], |
---|
2733 | [6,6,6], [6,6,6]]) |
---|
2734 | domain.set_quantity('stage', [[val0, val0, val0], |
---|
2735 | [val1, val1, val1], |
---|
2736 | [val2, val2, val2], |
---|
2737 | [val3, val3, val3]]) |
---|
2738 | |
---|
2739 | E = domain.quantities['elevation'].vertex_values |
---|
2740 | L = domain.quantities['stage'].vertex_values |
---|
2741 | |
---|
2742 | |
---|
2743 | #Check that some stages are not above elevation (within eps) |
---|
2744 | #- so that the limiter has something to work with |
---|
2745 | assert not numpy.alltrue(numpy.alltrue(numpy.greater_equal(L,E-epsilon))) |
---|
2746 | |
---|
2747 | domain._order_ = 1 |
---|
2748 | domain.distribute_to_vertices_and_edges() |
---|
2749 | |
---|
2750 | #Check that all stages are above elevation (within eps) |
---|
2751 | assert numpy.alltrue(numpy.alltrue(numpy.greater_equal(L,E-epsilon))) |
---|
2752 | |
---|
2753 | |
---|
2754 | ##################################################### |
---|
2755 | def test_distribute_basic(self): |
---|
2756 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
2757 | #Assuming no friction and flat bed (0.0) |
---|
2758 | |
---|
2759 | a = [0.0, 0.0] |
---|
2760 | b = [0.0, 2.0] |
---|
2761 | c = [2.0, 0.0] |
---|
2762 | d = [0.0, 4.0] |
---|
2763 | e = [2.0, 2.0] |
---|
2764 | f = [4.0, 0.0] |
---|
2765 | |
---|
2766 | points = [a, b, c, d, e, f] |
---|
2767 | #bac, bce, ecf, dbe |
---|
2768 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2769 | |
---|
2770 | domain = Domain(points, vertices) |
---|
2771 | |
---|
2772 | val0 = 2. |
---|
2773 | val1 = 4. |
---|
2774 | val2 = 8. |
---|
2775 | val3 = 2. |
---|
2776 | |
---|
2777 | domain.set_quantity('stage', [val0, val1, val2, val3], |
---|
2778 | location='centroids') |
---|
2779 | L = domain.quantities['stage'].vertex_values |
---|
2780 | |
---|
2781 | #First order |
---|
2782 | domain._order_ = 1 |
---|
2783 | domain.distribute_to_vertices_and_edges() |
---|
2784 | assert numpy.allclose(L[1], val1) |
---|
2785 | |
---|
2786 | #Second order |
---|
2787 | domain._order_ = 2 |
---|
2788 | domain.beta_w = 0.9 |
---|
2789 | domain.beta_w_dry = 0.9 |
---|
2790 | domain.beta_uh = 0.9 |
---|
2791 | domain.beta_uh_dry = 0.9 |
---|
2792 | domain.beta_vh = 0.9 |
---|
2793 | domain.beta_vh_dry = 0.9 |
---|
2794 | domain.distribute_to_vertices_and_edges() |
---|
2795 | assert numpy.allclose(L[1], [2.2, 4.9, 4.9]) |
---|
2796 | |
---|
2797 | |
---|
2798 | |
---|
2799 | def test_distribute_away_from_bed(self): |
---|
2800 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
2801 | #Assuming no friction and flat bed (0.0) |
---|
2802 | |
---|
2803 | a = [0.0, 0.0] |
---|
2804 | b = [0.0, 2.0] |
---|
2805 | c = [2.0, 0.0] |
---|
2806 | d = [0.0, 4.0] |
---|
2807 | e = [2.0, 2.0] |
---|
2808 | f = [4.0, 0.0] |
---|
2809 | |
---|
2810 | points = [a, b, c, d, e, f] |
---|
2811 | #bac, bce, ecf, dbe |
---|
2812 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2813 | |
---|
2814 | domain = Domain(points, vertices) |
---|
2815 | L = domain.quantities['stage'].vertex_values |
---|
2816 | |
---|
2817 | def stage(x,y): |
---|
2818 | return x**2 |
---|
2819 | |
---|
2820 | domain.set_quantity('stage', stage, location='centroids') |
---|
2821 | |
---|
2822 | domain.quantities['stage'].compute_gradients() |
---|
2823 | |
---|
2824 | a, b = domain.quantities['stage'].get_gradients() |
---|
2825 | |
---|
2826 | assert numpy.allclose(a[1], 3.33333334) |
---|
2827 | assert numpy.allclose(b[1], 0.0) |
---|
2828 | |
---|
2829 | domain._order_ = 1 |
---|
2830 | domain.distribute_to_vertices_and_edges() |
---|
2831 | assert numpy.allclose(L[1], 1.77777778) |
---|
2832 | |
---|
2833 | domain._order_ = 2 |
---|
2834 | domain.beta_w = 0.9 |
---|
2835 | domain.beta_w_dry = 0.9 |
---|
2836 | domain.beta_uh = 0.9 |
---|
2837 | domain.beta_uh_dry = 0.9 |
---|
2838 | domain.beta_vh = 0.9 |
---|
2839 | domain.beta_vh_dry = 0.9 |
---|
2840 | domain.distribute_to_vertices_and_edges() |
---|
2841 | assert numpy.allclose(L[1], [0.57777777, 2.37777778, 2.37777778]) |
---|
2842 | |
---|
2843 | |
---|
2844 | |
---|
2845 | def test_distribute_away_from_bed1(self): |
---|
2846 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
2847 | #Assuming no friction and flat bed (0.0) |
---|
2848 | |
---|
2849 | a = [0.0, 0.0] |
---|
2850 | b = [0.0, 2.0] |
---|
2851 | c = [2.0, 0.0] |
---|
2852 | d = [0.0, 4.0] |
---|
2853 | e = [2.0, 2.0] |
---|
2854 | f = [4.0, 0.0] |
---|
2855 | |
---|
2856 | points = [a, b, c, d, e, f] |
---|
2857 | #bac, bce, ecf, dbe |
---|
2858 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2859 | |
---|
2860 | domain = Domain(points, vertices) |
---|
2861 | L = domain.quantities['stage'].vertex_values |
---|
2862 | |
---|
2863 | def stage(x,y): |
---|
2864 | return x**4+y**2 |
---|
2865 | |
---|
2866 | domain.set_quantity('stage', stage, location='centroids') |
---|
2867 | #print domain.quantities['stage'].centroid_values |
---|
2868 | |
---|
2869 | domain.quantities['stage'].compute_gradients() |
---|
2870 | a, b = domain.quantities['stage'].get_gradients() |
---|
2871 | assert numpy.allclose(a[1], 25.18518519) |
---|
2872 | assert numpy.allclose(b[1], 3.33333333) |
---|
2873 | |
---|
2874 | domain._order_ = 1 |
---|
2875 | domain.distribute_to_vertices_and_edges() |
---|
2876 | assert numpy.allclose(L[1], 4.9382716) |
---|
2877 | |
---|
2878 | domain._order_ = 2 |
---|
2879 | domain.beta_w = 0.9 |
---|
2880 | domain.beta_w_dry = 0.9 |
---|
2881 | domain.beta_uh = 0.9 |
---|
2882 | domain.beta_uh_dry = 0.9 |
---|
2883 | domain.beta_vh = 0.9 |
---|
2884 | domain.beta_vh_dry = 0.9 |
---|
2885 | domain.distribute_to_vertices_and_edges() |
---|
2886 | assert numpy.allclose(L[1], [1.07160494, 6.46058131, 7.28262855]) |
---|
2887 | |
---|
2888 | |
---|
2889 | |
---|
2890 | def test_distribute_near_bed(self): |
---|
2891 | |
---|
2892 | a = [0.0, 0.0] |
---|
2893 | b = [0.0, 2.0] |
---|
2894 | c = [2.0, 0.0] |
---|
2895 | d = [0.0, 4.0] |
---|
2896 | e = [2.0, 2.0] |
---|
2897 | f = [4.0, 0.0] |
---|
2898 | |
---|
2899 | points = [a, b, c, d, e, f] |
---|
2900 | #bac, bce, ecf, dbe |
---|
2901 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2902 | |
---|
2903 | domain = Domain(points, vertices) |
---|
2904 | |
---|
2905 | |
---|
2906 | #Set up for a gradient of (10,0) at mid triangle (bce) |
---|
2907 | def slope(x, y): |
---|
2908 | return 10*x |
---|
2909 | |
---|
2910 | h = 0.1 |
---|
2911 | def stage(x, y): |
---|
2912 | return slope(x, y) + h |
---|
2913 | |
---|
2914 | domain.set_quantity('elevation', slope) |
---|
2915 | domain.set_quantity('stage', stage, location='centroids') |
---|
2916 | |
---|
2917 | #print domain.quantities['elevation'].centroid_values |
---|
2918 | #print domain.quantities['stage'].centroid_values |
---|
2919 | |
---|
2920 | E = domain.quantities['elevation'].vertex_values |
---|
2921 | L = domain.quantities['stage'].vertex_values |
---|
2922 | |
---|
2923 | # Get reference values |
---|
2924 | volumes = [] |
---|
2925 | for i in range(len(L)): |
---|
2926 | volumes.append(sum(L[i])/3) |
---|
2927 | assert numpy.allclose(volumes[i], domain.quantities['stage'].centroid_values[i]) |
---|
2928 | |
---|
2929 | |
---|
2930 | domain._order_ = 1 |
---|
2931 | |
---|
2932 | domain.tight_slope_limiters = 0 |
---|
2933 | domain.distribute_to_vertices_and_edges() |
---|
2934 | assert numpy.allclose(L[1], [0.1, 20.1, 20.1]) |
---|
2935 | for i in range(len(L)): |
---|
2936 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
2937 | |
---|
2938 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
2939 | domain.distribute_to_vertices_and_edges() |
---|
2940 | assert numpy.allclose(L[1], [0.298, 20.001, 20.001]) |
---|
2941 | for i in range(len(L)): |
---|
2942 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
2943 | |
---|
2944 | domain._order_ = 2 |
---|
2945 | |
---|
2946 | domain.tight_slope_limiters = 0 |
---|
2947 | domain.distribute_to_vertices_and_edges() |
---|
2948 | assert numpy.allclose(L[1], [0.1, 20.1, 20.1]) |
---|
2949 | for i in range(len(L)): |
---|
2950 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
2951 | |
---|
2952 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
2953 | domain.distribute_to_vertices_and_edges() |
---|
2954 | assert numpy.allclose(L[1], [0.298, 20.001, 20.001]) |
---|
2955 | for i in range(len(L)): |
---|
2956 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
2957 | |
---|
2958 | |
---|
2959 | |
---|
2960 | def test_distribute_near_bed1(self): |
---|
2961 | |
---|
2962 | a = [0.0, 0.0] |
---|
2963 | b = [0.0, 2.0] |
---|
2964 | c = [2.0, 0.0] |
---|
2965 | d = [0.0, 4.0] |
---|
2966 | e = [2.0, 2.0] |
---|
2967 | f = [4.0, 0.0] |
---|
2968 | |
---|
2969 | points = [a, b, c, d, e, f] |
---|
2970 | #bac, bce, ecf, dbe |
---|
2971 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
2972 | |
---|
2973 | domain = Domain(points, vertices) |
---|
2974 | |
---|
2975 | |
---|
2976 | #Set up for a gradient of (8,2) at mid triangle (bce) |
---|
2977 | def slope(x, y): |
---|
2978 | return x**4+y**2 |
---|
2979 | |
---|
2980 | h = 0.1 |
---|
2981 | def stage(x,y): |
---|
2982 | return slope(x,y)+h |
---|
2983 | |
---|
2984 | domain.set_quantity('elevation', slope) |
---|
2985 | domain.set_quantity('stage', stage) |
---|
2986 | |
---|
2987 | #print domain.quantities['elevation'].centroid_values |
---|
2988 | #print domain.quantities['stage'].centroid_values |
---|
2989 | |
---|
2990 | E = domain.quantities['elevation'].vertex_values |
---|
2991 | L = domain.quantities['stage'].vertex_values |
---|
2992 | |
---|
2993 | # Get reference values |
---|
2994 | volumes = [] |
---|
2995 | for i in range(len(L)): |
---|
2996 | volumes.append(sum(L[i])/3) |
---|
2997 | assert numpy.allclose(volumes[i], domain.quantities['stage'].centroid_values[i]) |
---|
2998 | |
---|
2999 | #print E |
---|
3000 | domain._order_ = 1 |
---|
3001 | |
---|
3002 | domain.tight_slope_limiters = 0 |
---|
3003 | domain.distribute_to_vertices_and_edges() |
---|
3004 | assert numpy.allclose(L[1], [4.1, 16.1, 20.1]) |
---|
3005 | for i in range(len(L)): |
---|
3006 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
3007 | |
---|
3008 | |
---|
3009 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3010 | domain.distribute_to_vertices_and_edges() |
---|
3011 | assert numpy.allclose(L[1], [4.2386, 16.0604, 20.001]) |
---|
3012 | for i in range(len(L)): |
---|
3013 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
3014 | |
---|
3015 | |
---|
3016 | domain._order_ = 2 |
---|
3017 | |
---|
3018 | domain.tight_slope_limiters = 0 |
---|
3019 | domain.distribute_to_vertices_and_edges() |
---|
3020 | assert numpy.allclose(L[1], [4.1, 16.1, 20.1]) |
---|
3021 | for i in range(len(L)): |
---|
3022 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
3023 | |
---|
3024 | domain.tight_slope_limiters = 1 # Allow triangle to be flatter (closer to bed) |
---|
3025 | domain.distribute_to_vertices_and_edges() |
---|
3026 | #print L[1] |
---|
3027 | assert numpy.allclose(L[1], [4.23370103, 16.06529897, 20.001]) or\ |
---|
3028 | numpy.allclose(L[1], [4.18944138, 16.10955862, 20.001]) or\ |
---|
3029 | numpy.allclose(L[1], [4.19351461, 16.10548539, 20.001]) # old limiters |
---|
3030 | |
---|
3031 | for i in range(len(L)): |
---|
3032 | assert numpy.allclose(volumes[i], sum(L[i])/3) |
---|
3033 | |
---|
3034 | |
---|
3035 | def test_second_order_distribute_real_data(self): |
---|
3036 | #Using test data generated by abstract_2d_finite_volumes-2 |
---|
3037 | #Assuming no friction and flat bed (0.0) |
---|
3038 | |
---|
3039 | a = [0.0, 0.0] |
---|
3040 | b = [0.0, 1.0/5] |
---|
3041 | c = [0.0, 2.0/5] |
---|
3042 | d = [1.0/5, 0.0] |
---|
3043 | e = [1.0/5, 1.0/5] |
---|
3044 | f = [1.0/5, 2.0/5] |
---|
3045 | g = [2.0/5, 2.0/5] |
---|
3046 | |
---|
3047 | points = [a, b, c, d, e, f, g] |
---|
3048 | #bae, efb, cbf, feg |
---|
3049 | vertices = [ [1,0,4], [4,5,1], [2,1,5], [5,4,6]] |
---|
3050 | |
---|
3051 | domain = Domain(points, vertices) |
---|
3052 | |
---|
3053 | def slope(x, y): |
---|
3054 | return -x/3 |
---|
3055 | |
---|
3056 | domain.set_quantity('elevation', slope) |
---|
3057 | domain.set_quantity('stage', |
---|
3058 | [0.01298164, 0.00365611, |
---|
3059 | 0.01440365, -0.0381856437096], |
---|
3060 | location='centroids') |
---|
3061 | domain.set_quantity('xmomentum', |
---|
3062 | [0.00670439, 0.01263789, |
---|
3063 | 0.00647805, 0.0178180740668], |
---|
3064 | location='centroids') |
---|
3065 | domain.set_quantity('ymomentum', |
---|
3066 | [-7.23510980e-004, -6.30413883e-005, |
---|
3067 | 6.30413883e-005, 0.000200907255866], |
---|
3068 | location='centroids') |
---|
3069 | |
---|
3070 | E = domain.quantities['elevation'].vertex_values |
---|
3071 | L = domain.quantities['stage'].vertex_values |
---|
3072 | X = domain.quantities['xmomentum'].vertex_values |
---|
3073 | Y = domain.quantities['ymomentum'].vertex_values |
---|
3074 | |
---|
3075 | #print E |
---|
3076 | domain._order_ = 2 |
---|
3077 | domain.beta_w = 0.9 |
---|
3078 | domain.beta_w_dry = 0.9 |
---|
3079 | domain.beta_uh = 0.9 |
---|
3080 | domain.beta_uh_dry = 0.9 |
---|
3081 | domain.beta_vh = 0.9 |
---|
3082 | domain.beta_vh_dry = 0.9 |
---|
3083 | |
---|
3084 | # FIXME (Ole): Need tests where this is commented out |
---|
3085 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
3086 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
3087 | |
---|
3088 | |
---|
3089 | domain.distribute_to_vertices_and_edges() |
---|
3090 | |
---|
3091 | #print L[1,:] |
---|
3092 | #print X[1,:] |
---|
3093 | #print Y[1,:] |
---|
3094 | |
---|
3095 | assert numpy.allclose(L[1,:], [-0.00825735775384, |
---|
3096 | -0.00801881482869, |
---|
3097 | 0.0272445025825]) |
---|
3098 | assert numpy.allclose(X[1,:], [0.0143507718962, |
---|
3099 | 0.0142502147066, |
---|
3100 | 0.00931268339717]) |
---|
3101 | assert numpy.allclose(Y[1,:], [-0.000117062180693, |
---|
3102 | 7.94434448109e-005, |
---|
3103 | -0.000151505429018]) |
---|
3104 | |
---|
3105 | |
---|
3106 | |
---|
3107 | def test_balance_deep_and_shallow(self): |
---|
3108 | """Test that balanced limiters preserve conserved quantites. |
---|
3109 | This test is using old depth based balanced limiters |
---|
3110 | """ |
---|
3111 | import copy |
---|
3112 | |
---|
3113 | a = [0.0, 0.0] |
---|
3114 | b = [0.0, 2.0] |
---|
3115 | c = [2.0, 0.0] |
---|
3116 | d = [0.0, 4.0] |
---|
3117 | e = [2.0, 2.0] |
---|
3118 | f = [4.0, 0.0] |
---|
3119 | |
---|
3120 | points = [a, b, c, d, e, f] |
---|
3121 | |
---|
3122 | #bac, bce, ecf, dbe |
---|
3123 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3124 | |
---|
3125 | domain = Domain(points, elements) |
---|
3126 | domain.check_integrity() |
---|
3127 | |
---|
3128 | #Create a deliberate overshoot |
---|
3129 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3130 | domain.set_quantity('elevation', 0) #Flat bed |
---|
3131 | stage = domain.quantities['stage'] |
---|
3132 | |
---|
3133 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3134 | |
---|
3135 | #Limit |
---|
3136 | domain.tight_slope_limiters = 0 |
---|
3137 | domain.distribute_to_vertices_and_edges() |
---|
3138 | |
---|
3139 | #Assert that quantities are conserved |
---|
3140 | for k in range(len(domain)): |
---|
3141 | assert numpy.allclose (ref_centroid_values[k], |
---|
3142 | numpy.sum(stage.vertex_values[k,:])/3) |
---|
3143 | |
---|
3144 | |
---|
3145 | #Now try with a non-flat bed - closely hugging initial stage in places |
---|
3146 | #This will create alphas in the range [0, 0.478260, 1] |
---|
3147 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3148 | domain.set_quantity('elevation', [[0,0,0], |
---|
3149 | [1.8,1.9,5.9], |
---|
3150 | [4.6,0,0], |
---|
3151 | [0,2,4]]) |
---|
3152 | stage = domain.quantities['stage'] |
---|
3153 | |
---|
3154 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3155 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3156 | |
---|
3157 | #Limit |
---|
3158 | domain.tight_slope_limiters = 0 |
---|
3159 | domain.distribute_to_vertices_and_edges() |
---|
3160 | |
---|
3161 | |
---|
3162 | #Assert that all vertex quantities have changed |
---|
3163 | for k in range(len(domain)): |
---|
3164 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3165 | assert not numpy.allclose (ref_vertex_values[k,:], stage.vertex_values[k,:]) |
---|
3166 | #and assert that quantities are still conserved |
---|
3167 | for k in range(len(domain)): |
---|
3168 | assert numpy.allclose (ref_centroid_values[k], |
---|
3169 | numpy.sum(stage.vertex_values[k,:])/3) |
---|
3170 | |
---|
3171 | |
---|
3172 | # Check actual results |
---|
3173 | assert numpy.allclose (stage.vertex_values, |
---|
3174 | [[2,2,2], |
---|
3175 | [1.93333333, 2.03333333, 6.03333333], |
---|
3176 | [6.93333333, 4.53333333, 4.53333333], |
---|
3177 | [5.33333333, 5.33333333, 5.33333333]]) |
---|
3178 | |
---|
3179 | |
---|
3180 | def test_balance_deep_and_shallow_tight_SL(self): |
---|
3181 | """Test that balanced limiters preserve conserved quantites. |
---|
3182 | This test is using Tight Slope Limiters |
---|
3183 | """ |
---|
3184 | import copy |
---|
3185 | |
---|
3186 | a = [0.0, 0.0] |
---|
3187 | b = [0.0, 2.0] |
---|
3188 | c = [2.0, 0.0] |
---|
3189 | d = [0.0, 4.0] |
---|
3190 | e = [2.0, 2.0] |
---|
3191 | f = [4.0, 0.0] |
---|
3192 | |
---|
3193 | points = [a, b, c, d, e, f] |
---|
3194 | |
---|
3195 | #bac, bce, ecf, dbe |
---|
3196 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3197 | |
---|
3198 | domain = Domain(points, elements) |
---|
3199 | domain.check_integrity() |
---|
3200 | |
---|
3201 | #Create a deliberate overshoot |
---|
3202 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3203 | domain.set_quantity('elevation', 0) #Flat bed |
---|
3204 | stage = domain.quantities['stage'] |
---|
3205 | |
---|
3206 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3207 | |
---|
3208 | #Limit |
---|
3209 | domain.tight_slope_limiters = 1 |
---|
3210 | domain.distribute_to_vertices_and_edges() |
---|
3211 | |
---|
3212 | #Assert that quantities are conserved |
---|
3213 | for k in range(len(domain)): |
---|
3214 | assert numpy.allclose (ref_centroid_values[k], |
---|
3215 | numpy.sum(stage.vertex_values[k,:])/3) |
---|
3216 | |
---|
3217 | |
---|
3218 | #Now try with a non-flat bed - closely hugging initial stage in places |
---|
3219 | #This will create alphas in the range [0, 0.478260, 1] |
---|
3220 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3221 | domain.set_quantity('elevation', [[0,0,0], |
---|
3222 | [1.8,1.9,5.9], |
---|
3223 | [4.6,0,0], |
---|
3224 | [0,2,4]]) |
---|
3225 | stage = domain.quantities['stage'] |
---|
3226 | |
---|
3227 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3228 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3229 | |
---|
3230 | #Limit |
---|
3231 | domain.tight_slope_limiters = 1 |
---|
3232 | domain.distribute_to_vertices_and_edges() |
---|
3233 | |
---|
3234 | |
---|
3235 | #Assert that all vertex quantities have changed |
---|
3236 | for k in range(len(domain)): |
---|
3237 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3238 | assert not numpy.allclose (ref_vertex_values[k,:], stage.vertex_values[k,:]) |
---|
3239 | #and assert that quantities are still conserved |
---|
3240 | for k in range(len(domain)): |
---|
3241 | assert numpy.allclose (ref_centroid_values[k], |
---|
3242 | numpy.sum(stage.vertex_values[k,:])/3) |
---|
3243 | |
---|
3244 | |
---|
3245 | #Also check that Python and C version produce the same |
---|
3246 | # No longer applicable if tight_slope_limiters == 1 |
---|
3247 | #print stage.vertex_values |
---|
3248 | #assert allclose (stage.vertex_values, |
---|
3249 | # [[2,2,2], |
---|
3250 | # [1.93333333, 2.03333333, 6.03333333], |
---|
3251 | # [6.93333333, 4.53333333, 4.53333333], |
---|
3252 | # [5.33333333, 5.33333333, 5.33333333]]) |
---|
3253 | |
---|
3254 | |
---|
3255 | |
---|
3256 | def test_balance_deep_and_shallow_Froude(self): |
---|
3257 | """Test that balanced limiters preserve conserved quantites - |
---|
3258 | and also that excessive Froude numbers are dealt with. |
---|
3259 | This test is using tight slope limiters. |
---|
3260 | """ |
---|
3261 | import copy |
---|
3262 | |
---|
3263 | a = [0.0, 0.0] |
---|
3264 | b = [0.0, 2.0] |
---|
3265 | c = [2.0, 0.0] |
---|
3266 | d = [0.0, 4.0] |
---|
3267 | e = [2.0, 2.0] |
---|
3268 | f = [4.0, 0.0] |
---|
3269 | |
---|
3270 | points = [a, b, c, d, e, f] |
---|
3271 | |
---|
3272 | # bac, bce, ecf, dbe |
---|
3273 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
3274 | |
---|
3275 | domain = Domain(points, elements) |
---|
3276 | domain.check_integrity() |
---|
3277 | domain.tight_slope_limiters = True |
---|
3278 | domain.use_centroid_velocities = True |
---|
3279 | |
---|
3280 | # Create non-flat bed - closely hugging initial stage in places |
---|
3281 | # This will create alphas in the range [0, 0.478260, 1] |
---|
3282 | domain.set_quantity('stage', [[3,0,3], [2,2,6], [5,3,8], [8,3,5]]) |
---|
3283 | domain.set_quantity('elevation', [[0,0,0], |
---|
3284 | [1.8,1.999,5.999], |
---|
3285 | [4.6,0,0], |
---|
3286 | [0,2,4]]) |
---|
3287 | |
---|
3288 | # Create small momenta, that nonetheless will generate large speeds |
---|
3289 | # due to shallow depth at isolated vertices |
---|
3290 | domain.set_quantity('xmomentum', -0.0058) |
---|
3291 | domain.set_quantity('ymomentum', 0.0890) |
---|
3292 | |
---|
3293 | |
---|
3294 | |
---|
3295 | |
---|
3296 | stage = domain.quantities['stage'] |
---|
3297 | elevation = domain.quantities['elevation'] |
---|
3298 | xmomentum = domain.quantities['xmomentum'] |
---|
3299 | ymomentum = domain.quantities['ymomentum'] |
---|
3300 | |
---|
3301 | # Setup triangle #1 to mimick real Froude explosion observed |
---|
3302 | # in the Onslow example 13 Nov 2007. |
---|
3303 | |
---|
3304 | stage.vertex_values[1,:] = [1.6385, 1.6361, 1.2953] |
---|
3305 | elevation.vertex_values[1,:] = [1.6375, 1.6336, 0.4647] |
---|
3306 | xmomentum.vertex_values[1,:] = [-0.0058, -0.0050, -0.0066] |
---|
3307 | ymomentum.vertex_values[1,:] = [0.0890, 0.0890, 0.0890] |
---|
3308 | |
---|
3309 | xmomentum.interpolate() |
---|
3310 | ymomentum.interpolate() |
---|
3311 | stage.interpolate() |
---|
3312 | elevation.interpolate() |
---|
3313 | |
---|
3314 | # Verify interpolation |
---|
3315 | assert numpy.allclose(stage.centroid_values[1], 1.5233) |
---|
3316 | assert numpy.allclose(elevation.centroid_values[1], 1.2452667) |
---|
3317 | assert numpy.allclose(xmomentum.centroid_values[1], -0.0058) |
---|
3318 | assert numpy.allclose(ymomentum.centroid_values[1], 0.089) |
---|
3319 | |
---|
3320 | # Derived quantities |
---|
3321 | depth = stage-elevation |
---|
3322 | u = xmomentum/depth |
---|
3323 | v = ymomentum/depth |
---|
3324 | |
---|
3325 | denom = (depth*g)**0.5 |
---|
3326 | Fx = u/denom |
---|
3327 | Fy = v/denom |
---|
3328 | |
---|
3329 | |
---|
3330 | # Verify against Onslow example (14 Nov 2007) |
---|
3331 | assert numpy.allclose(depth.centroid_values[1], 0.278033) |
---|
3332 | assert numpy.allclose(u.centroid_values[1], -0.0208608) |
---|
3333 | assert numpy.allclose(v.centroid_values[1], 0.3201055) |
---|
3334 | |
---|
3335 | assert numpy.allclose(denom.centroid_values[1], |
---|
3336 | numpy.sqrt(depth.centroid_values[1]*g)) |
---|
3337 | |
---|
3338 | assert numpy.allclose(u.centroid_values[1]/denom.centroid_values[1], |
---|
3339 | -0.012637746977) |
---|
3340 | assert numpy.allclose(Fx.centroid_values[1], |
---|
3341 | u.centroid_values[1]/denom.centroid_values[1]) |
---|
3342 | |
---|
3343 | # Check that Froude numbers are small at centroids. |
---|
3344 | assert numpy.allclose(Fx.centroid_values[1], -0.012637746977) |
---|
3345 | assert numpy.allclose(Fy.centroid_values[1], 0.193924048435) |
---|
3346 | |
---|
3347 | |
---|
3348 | # But Froude numbers are huge at some vertices and edges |
---|
3349 | assert numpy.allclose(Fx.vertex_values[1,:], [-5.85888475e+01, |
---|
3350 | -1.27775313e+01, |
---|
3351 | -2.78511420e-03]) |
---|
3352 | |
---|
3353 | assert numpy.allclose(Fx.edge_values[1,:], [-6.89150773e-03, |
---|
3354 | -7.38672488e-03, |
---|
3355 | -2.35626238e+01]) |
---|
3356 | |
---|
3357 | assert numpy.allclose(Fy.vertex_values[1,:], [8.99035764e+02, |
---|
3358 | 2.27440057e+02, |
---|
3359 | 3.75568430e-02]) |
---|
3360 | |
---|
3361 | assert numpy.allclose(Fy.edge_values[1,:], [1.05748998e-01, |
---|
3362 | 1.06035244e-01, |
---|
3363 | 3.88346947e+02]) |
---|
3364 | |
---|
3365 | |
---|
3366 | # The task is now to arrange the limiters such that Froude numbers |
---|
3367 | # remain under control whil at the same time obeying the conservation |
---|
3368 | # laws. |
---|
3369 | |
---|
3370 | |
---|
3371 | ref_centroid_values = copy.copy(stage.centroid_values[:]) #Copy |
---|
3372 | ref_vertex_values = copy.copy(stage.vertex_values[:]) #Copy |
---|
3373 | |
---|
3374 | # Limit (and invoke balance_deep_and_shallow) |
---|
3375 | domain.tight_slope_limiters = 1 |
---|
3376 | domain.distribute_to_vertices_and_edges() |
---|
3377 | |
---|
3378 | # Redo derived quantities |
---|
3379 | depth = stage-elevation |
---|
3380 | u = xmomentum/depth |
---|
3381 | v = ymomentum/depth |
---|
3382 | |
---|
3383 | # Assert that all vertex velocities stay within one |
---|
3384 | # order of magnitude of centroid velocities. |
---|
3385 | #print u.vertex_values[1,:] |
---|
3386 | #print u.centroid_values[1] |
---|
3387 | |
---|
3388 | assert numpy.alltrue(numpy.absolute(u.vertex_values[1,:]) <= numpy.absolute(u.centroid_values[1])*10) |
---|
3389 | assert numpy.alltrue(numpy.absolute(v.vertex_values[1,:]) <= numpy.absolute(v.centroid_values[1])*10) |
---|
3390 | |
---|
3391 | denom = (depth*g)**0.5 |
---|
3392 | Fx = u/denom |
---|
3393 | Fy = v/denom |
---|
3394 | |
---|
3395 | |
---|
3396 | # Assert that Froude numbers are less than max value (TBA) |
---|
3397 | # at vertices, edges and centroids. |
---|
3398 | from anuga.config import maximum_froude_number |
---|
3399 | assert numpy.alltrue(numpy.absolute(Fx.vertex_values[1,:]) < maximum_froude_number) |
---|
3400 | assert numpy.alltrue(numpy.absolute(Fy.vertex_values[1,:]) < maximum_froude_number) |
---|
3401 | |
---|
3402 | |
---|
3403 | # Assert that all vertex quantities have changed |
---|
3404 | for k in range(len(domain)): |
---|
3405 | #print ref_vertex_values[k,:], stage.vertex_values[k,:] |
---|
3406 | assert not numpy.allclose (ref_vertex_values[k,:], |
---|
3407 | stage.vertex_values[k,:]) |
---|
3408 | |
---|
3409 | # Assert that quantities are still conserved |
---|
3410 | for k in range(len(domain)): |
---|
3411 | assert numpy.allclose (ref_centroid_values[k], |
---|
3412 | sum(stage.vertex_values[k,:])/3) |
---|
3413 | |
---|
3414 | |
---|
3415 | |
---|
3416 | return |
---|
3417 | |
---|
3418 | qwidth = 12 |
---|
3419 | for k in [1]: #range(len(domain)): |
---|
3420 | print 'Triangle %d (C, V, E)' %k |
---|
3421 | |
---|
3422 | print 'stage'.ljust(qwidth), stage.centroid_values[k],\ |
---|
3423 | stage.vertex_values[k,:], stage.edge_values[k,:] |
---|
3424 | print 'elevation'.ljust(qwidth), elevation.centroid_values[k],\ |
---|
3425 | elevation.vertex_values[k,:], elevation.edge_values[k,:] |
---|
3426 | print 'depth'.ljust(qwidth), depth.centroid_values[k],\ |
---|
3427 | depth.vertex_values[k,:], depth.edge_values[k,:] |
---|
3428 | print 'xmomentum'.ljust(qwidth), xmomentum.centroid_values[k],\ |
---|
3429 | xmomentum.vertex_values[k,:], xmomentum.edge_values[k,:] |
---|
3430 | print 'ymomentum'.ljust(qwidth), ymomentum.centroid_values[k],\ |
---|
3431 | ymomentum.vertex_values[k,:], ymomentum.edge_values[k,:] |
---|
3432 | print 'u'.ljust(qwidth),u.centroid_values[k],\ |
---|
3433 | u.vertex_values[k,:], u.edge_values[k,:] |
---|
3434 | print 'v'.ljust(qwidth), v.centroid_values[k],\ |
---|
3435 | v.vertex_values[k,:], v.edge_values[k,:] |
---|
3436 | print 'Fx'.ljust(qwidth), Fx.centroid_values[k],\ |
---|
3437 | Fx.vertex_values[k,:], Fx.edge_values[k,:] |
---|
3438 | print 'Fy'.ljust(qwidth), Fy.centroid_values[k],\ |
---|
3439 | Fy.vertex_values[k,:], Fy.edge_values[k,:] |
---|
3440 | |
---|
3441 | |
---|
3442 | |
---|
3443 | |
---|
3444 | |
---|
3445 | |
---|
3446 | def test_conservation_1(self): |
---|
3447 | """Test that stage is conserved globally |
---|
3448 | |
---|
3449 | This one uses a flat bed, reflective bdries and a suitable |
---|
3450 | initial condition |
---|
3451 | """ |
---|
3452 | from mesh_factory import rectangular |
---|
3453 | |
---|
3454 | #Create basic mesh |
---|
3455 | points, vertices, boundary = rectangular(6, 6) |
---|
3456 | |
---|
3457 | #Create shallow water domain |
---|
3458 | domain = Domain(points, vertices, boundary) |
---|
3459 | domain.smooth = False |
---|
3460 | domain.default_order=2 |
---|
3461 | |
---|
3462 | #IC |
---|
3463 | def x_slope(x, y): |
---|
3464 | return x/3 |
---|
3465 | |
---|
3466 | domain.set_quantity('elevation', 0) |
---|
3467 | domain.set_quantity('friction', 0) |
---|
3468 | domain.set_quantity('stage', x_slope) |
---|
3469 | |
---|
3470 | # Boundary conditions (reflective everywhere) |
---|
3471 | Br = Reflective_boundary(domain) |
---|
3472 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3473 | |
---|
3474 | domain.check_integrity() |
---|
3475 | |
---|
3476 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3477 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3478 | |
---|
3479 | #print initial_xmom |
---|
3480 | |
---|
3481 | #Evolution |
---|
3482 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
3483 | volume = domain.quantities['stage'].get_integral() |
---|
3484 | assert numpy.allclose (volume, initial_volume) |
---|
3485 | |
---|
3486 | #I don't believe that the total momentum should be the same |
---|
3487 | #It starts with zero and ends with zero though |
---|
3488 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
3489 | #print xmom |
---|
3490 | #assert numpy.allclose (xmom, initial_xmom) |
---|
3491 | |
---|
3492 | os.remove(domain.get_name() + '.sww') |
---|
3493 | |
---|
3494 | |
---|
3495 | def test_conservation_2(self): |
---|
3496 | """Test that stage is conserved globally |
---|
3497 | |
---|
3498 | This one uses a slopy bed, reflective bdries and a suitable |
---|
3499 | initial condition |
---|
3500 | """ |
---|
3501 | from mesh_factory import rectangular |
---|
3502 | |
---|
3503 | #Create basic mesh |
---|
3504 | points, vertices, boundary = rectangular(6, 6) |
---|
3505 | |
---|
3506 | #Create shallow water domain |
---|
3507 | domain = Domain(points, vertices, boundary) |
---|
3508 | domain.smooth = False |
---|
3509 | domain.default_order=2 |
---|
3510 | |
---|
3511 | #IC |
---|
3512 | def x_slope(x, y): |
---|
3513 | return x/3 |
---|
3514 | |
---|
3515 | domain.set_quantity('elevation', x_slope) |
---|
3516 | domain.set_quantity('friction', 0) |
---|
3517 | domain.set_quantity('stage', 0.4) #Steady |
---|
3518 | |
---|
3519 | # Boundary conditions (reflective everywhere) |
---|
3520 | Br = Reflective_boundary(domain) |
---|
3521 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3522 | |
---|
3523 | domain.check_integrity() |
---|
3524 | |
---|
3525 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3526 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3527 | |
---|
3528 | #print initial_xmom |
---|
3529 | |
---|
3530 | #Evolution |
---|
3531 | for t in domain.evolve(yieldstep = 0.05, finaltime = 5.0): |
---|
3532 | volume = domain.quantities['stage'].get_integral() |
---|
3533 | assert numpy.allclose (volume, initial_volume) |
---|
3534 | |
---|
3535 | #FIXME: What would we expect from momentum |
---|
3536 | #xmom = domain.quantities['xmomentum'].get_integral() |
---|
3537 | #print xmom |
---|
3538 | #assert allclose (xmom, initial_xmom) |
---|
3539 | |
---|
3540 | os.remove(domain.get_name() + '.sww') |
---|
3541 | |
---|
3542 | def test_conservation_3(self): |
---|
3543 | """Test that stage is conserved globally |
---|
3544 | |
---|
3545 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
3546 | initial condition |
---|
3547 | """ |
---|
3548 | from mesh_factory import rectangular |
---|
3549 | |
---|
3550 | #Create basic mesh |
---|
3551 | points, vertices, boundary = rectangular(2, 1) |
---|
3552 | |
---|
3553 | #Create shallow water domain |
---|
3554 | domain = Domain(points, vertices, boundary) |
---|
3555 | domain.smooth = False |
---|
3556 | domain.default_order = 2 |
---|
3557 | domain.set_quantities_to_be_stored(['stage', 'xmomentum', 'ymomentum']) |
---|
3558 | |
---|
3559 | #IC |
---|
3560 | def x_slope(x, y): |
---|
3561 | z = 0*x |
---|
3562 | for i in range(len(x)): |
---|
3563 | if x[i] < 0.3: |
---|
3564 | z[i] = x[i]/3 |
---|
3565 | if 0.3 <= x[i] < 0.5: |
---|
3566 | z[i] = -0.5 |
---|
3567 | if 0.5 <= x[i] < 0.7: |
---|
3568 | z[i] = 0.39 |
---|
3569 | if 0.7 <= x[i]: |
---|
3570 | z[i] = x[i]/3 |
---|
3571 | return z |
---|
3572 | |
---|
3573 | |
---|
3574 | |
---|
3575 | domain.set_quantity('elevation', x_slope) |
---|
3576 | domain.set_quantity('friction', 0) |
---|
3577 | domain.set_quantity('stage', 0.4) #Steady |
---|
3578 | |
---|
3579 | # Boundary conditions (reflective everywhere) |
---|
3580 | Br = Reflective_boundary(domain) |
---|
3581 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3582 | |
---|
3583 | domain.check_integrity() |
---|
3584 | |
---|
3585 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3586 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3587 | |
---|
3588 | import copy |
---|
3589 | ref_centroid_values =\ |
---|
3590 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
3591 | |
---|
3592 | #print 'ORG', domain.quantities['stage'].centroid_values |
---|
3593 | domain.distribute_to_vertices_and_edges() |
---|
3594 | |
---|
3595 | |
---|
3596 | #print domain.quantities['stage'].centroid_values |
---|
3597 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
3598 | ref_centroid_values) |
---|
3599 | |
---|
3600 | |
---|
3601 | #Check that initial limiter doesn't violate cons quan |
---|
3602 | assert numpy.allclose(domain.quantities['stage'].get_integral(), |
---|
3603 | initial_volume) |
---|
3604 | |
---|
3605 | #Evolution |
---|
3606 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10): |
---|
3607 | volume = domain.quantities['stage'].get_integral() |
---|
3608 | #print t, volume, initial_volume |
---|
3609 | assert numpy.allclose (volume, initial_volume) |
---|
3610 | |
---|
3611 | os.remove(domain.get_name() + '.sww') |
---|
3612 | |
---|
3613 | def test_conservation_4(self): |
---|
3614 | """Test that stage is conserved globally |
---|
3615 | |
---|
3616 | This one uses a larger grid, convoluted bed, reflective bdries and a suitable |
---|
3617 | initial condition |
---|
3618 | """ |
---|
3619 | from mesh_factory import rectangular |
---|
3620 | |
---|
3621 | #Create basic mesh |
---|
3622 | points, vertices, boundary = rectangular(6, 6) |
---|
3623 | |
---|
3624 | #Create shallow water domain |
---|
3625 | domain = Domain(points, vertices, boundary) |
---|
3626 | domain.smooth = False |
---|
3627 | domain.default_order=2 |
---|
3628 | |
---|
3629 | #IC |
---|
3630 | def x_slope(x, y): |
---|
3631 | z = 0*x |
---|
3632 | for i in range(len(x)): |
---|
3633 | if x[i] < 0.3: |
---|
3634 | z[i] = x[i]/3 |
---|
3635 | if 0.3 <= x[i] < 0.5: |
---|
3636 | z[i] = -0.5 |
---|
3637 | if 0.5 <= x[i] < 0.7: |
---|
3638 | #z[i] = 0.3 #OK with beta == 0.2 |
---|
3639 | z[i] = 0.34 #OK with beta == 0.0 |
---|
3640 | #z[i] = 0.35#Fails after 80 timesteps with an error |
---|
3641 | #of the order 1.0e-5 |
---|
3642 | if 0.7 <= x[i]: |
---|
3643 | z[i] = x[i]/3 |
---|
3644 | return z |
---|
3645 | |
---|
3646 | |
---|
3647 | |
---|
3648 | domain.set_quantity('elevation', x_slope) |
---|
3649 | domain.set_quantity('friction', 0) |
---|
3650 | domain.set_quantity('stage', 0.4) #Steady |
---|
3651 | |
---|
3652 | # Boundary conditions (reflective everywhere) |
---|
3653 | Br = Reflective_boundary(domain) |
---|
3654 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3655 | |
---|
3656 | domain.check_integrity() |
---|
3657 | |
---|
3658 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3659 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3660 | |
---|
3661 | import copy |
---|
3662 | ref_centroid_values =\ |
---|
3663 | copy.copy(domain.quantities['stage'].centroid_values) |
---|
3664 | |
---|
3665 | #Test limiter by itself |
---|
3666 | domain.distribute_to_vertices_and_edges() |
---|
3667 | |
---|
3668 | #Check that initial limiter doesn't violate cons quan |
---|
3669 | assert numpy.allclose (domain.quantities['stage'].get_integral(), |
---|
3670 | initial_volume) |
---|
3671 | #NOTE: This would fail if any initial stage was less than the |
---|
3672 | #corresponding bed elevation - but that is reasonable. |
---|
3673 | |
---|
3674 | |
---|
3675 | #Evolution |
---|
3676 | for t in domain.evolve(yieldstep = 0.05, finaltime = 10.0): |
---|
3677 | volume = domain.quantities['stage'].get_integral() |
---|
3678 | |
---|
3679 | #print t, volume, initial_volume |
---|
3680 | |
---|
3681 | assert numpy.allclose (volume, initial_volume) |
---|
3682 | |
---|
3683 | |
---|
3684 | os.remove(domain.get_name() + '.sww') |
---|
3685 | |
---|
3686 | |
---|
3687 | def test_conservation_5(self): |
---|
3688 | """Test that momentum is conserved globally in |
---|
3689 | steady state scenario |
---|
3690 | |
---|
3691 | This one uses a slopy bed, dirichlet and reflective bdries |
---|
3692 | """ |
---|
3693 | from mesh_factory import rectangular |
---|
3694 | |
---|
3695 | # Create basic mesh |
---|
3696 | points, vertices, boundary = rectangular(6, 6) |
---|
3697 | |
---|
3698 | # Create shallow water domain |
---|
3699 | domain = Domain(points, vertices, boundary) |
---|
3700 | domain.smooth = False |
---|
3701 | domain.default_order = 2 |
---|
3702 | |
---|
3703 | # IC |
---|
3704 | def x_slope(x, y): |
---|
3705 | return x/3 |
---|
3706 | |
---|
3707 | domain.set_quantity('elevation', x_slope) |
---|
3708 | domain.set_quantity('friction', 0) |
---|
3709 | domain.set_quantity('stage', 0.4) # Steady |
---|
3710 | |
---|
3711 | # Boundary conditions (reflective everywhere) |
---|
3712 | Br = Reflective_boundary(domain) |
---|
3713 | Bleft = Dirichlet_boundary([0.5,0,0]) |
---|
3714 | Bright = Dirichlet_boundary([0.1,0,0]) |
---|
3715 | domain.set_boundary({'left': Bleft, 'right': Bright, |
---|
3716 | 'top': Br, 'bottom': Br}) |
---|
3717 | |
---|
3718 | domain.check_integrity() |
---|
3719 | |
---|
3720 | initial_volume = domain.quantities['stage'].get_integral() |
---|
3721 | initial_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3722 | |
---|
3723 | |
---|
3724 | # Evolution |
---|
3725 | for t in domain.evolve(yieldstep = 0.05, finaltime = 15.0): |
---|
3726 | stage = domain.quantities['stage'].get_integral() |
---|
3727 | xmom = domain.quantities['xmomentum'].get_integral() |
---|
3728 | ymom = domain.quantities['ymomentum'].get_integral() |
---|
3729 | |
---|
3730 | if numpy.allclose(t, 6): # Steady state reached |
---|
3731 | steady_xmom = domain.quantities['xmomentum'].get_integral() |
---|
3732 | steady_ymom = domain.quantities['ymomentum'].get_integral() |
---|
3733 | steady_stage = domain.quantities['stage'].get_integral() |
---|
3734 | |
---|
3735 | if t > 6: |
---|
3736 | #print '%.2f %14.8f %14.8f' %(t, ymom, steady_ymom) |
---|
3737 | msg = 'xmom=%.2f, steady_xmom=%.2f' %(xmom, steady_xmom) |
---|
3738 | assert numpy.allclose(xmom, steady_xmom), msg |
---|
3739 | assert numpy.allclose(ymom, steady_ymom) |
---|
3740 | assert numpy.allclose(stage, steady_stage) |
---|
3741 | |
---|
3742 | |
---|
3743 | os.remove(domain.get_name() + '.sww') |
---|
3744 | |
---|
3745 | |
---|
3746 | |
---|
3747 | |
---|
3748 | |
---|
3749 | def test_conservation_real(self): |
---|
3750 | """Test that momentum is conserved globally |
---|
3751 | |
---|
3752 | Stephen finally made a test that revealed the problem. |
---|
3753 | This test failed with code prior to 25 July 2005 |
---|
3754 | """ |
---|
3755 | |
---|
3756 | yieldstep = 0.01 |
---|
3757 | finaltime = 0.05 |
---|
3758 | min_depth = 1.0e-2 |
---|
3759 | |
---|
3760 | |
---|
3761 | import sys |
---|
3762 | from os import sep; sys.path.append('..'+sep+'abstract_2d_finite_volumes') |
---|
3763 | from mesh_factory import rectangular |
---|
3764 | |
---|
3765 | |
---|
3766 | #Create shallow water domain |
---|
3767 | points, vertices, boundary = rectangular(10, 10, len1=500, len2=500) |
---|
3768 | domain = Domain(points, vertices, boundary) |
---|
3769 | domain.smooth = False |
---|
3770 | domain.default_order = 1 |
---|
3771 | domain.minimum_allowed_height = min_depth |
---|
3772 | |
---|
3773 | # Set initial condition |
---|
3774 | class Set_IC: |
---|
3775 | """Set an initial condition with a constant value, for x0<x<x1 |
---|
3776 | """ |
---|
3777 | |
---|
3778 | def __init__(self, x0=0.25, x1=0.5, h=1.0): |
---|
3779 | self.x0 = x0 |
---|
3780 | self.x1 = x1 |
---|
3781 | self.h = h |
---|
3782 | |
---|
3783 | def __call__(self, x, y): |
---|
3784 | return self.h*((x>self.x0)&(x<self.x1)) |
---|
3785 | |
---|
3786 | |
---|
3787 | domain.set_quantity('stage', Set_IC(200.0,300.0,5.0)) |
---|
3788 | |
---|
3789 | |
---|
3790 | #Boundaries |
---|
3791 | R = Reflective_boundary(domain) |
---|
3792 | domain.set_boundary( {'left': R, 'right': R, 'top':R, 'bottom': R}) |
---|
3793 | |
---|
3794 | ref = domain.quantities['stage'].get_integral() |
---|
3795 | |
---|
3796 | # Evolution |
---|
3797 | for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): |
---|
3798 | pass |
---|
3799 | #print 'Integral stage = ',\ |
---|
3800 | # domain.quantities['stage'].get_integral(),\ |
---|
3801 | # ' Time = ',domain.time |
---|
3802 | |
---|
3803 | |
---|
3804 | now = domain.quantities['stage'].get_integral() |
---|
3805 | |
---|
3806 | msg = 'Stage not conserved: was %f, now %f' %(ref, now) |
---|
3807 | assert numpy.allclose(ref, now), msg |
---|
3808 | |
---|
3809 | os.remove(domain.get_name() + '.sww') |
---|
3810 | |
---|
3811 | def test_second_order_flat_bed_onestep(self): |
---|
3812 | |
---|
3813 | from mesh_factory import rectangular |
---|
3814 | |
---|
3815 | #Create basic mesh |
---|
3816 | points, vertices, boundary = rectangular(6, 6) |
---|
3817 | |
---|
3818 | #Create shallow water domain |
---|
3819 | domain = Domain(points, vertices, boundary) |
---|
3820 | domain.smooth = False |
---|
3821 | domain.default_order = 2 |
---|
3822 | domain.beta_w = 0.9 |
---|
3823 | domain.beta_w_dry = 0.9 |
---|
3824 | domain.beta_uh = 0.9 |
---|
3825 | domain.beta_uh_dry = 0.9 |
---|
3826 | domain.beta_vh = 0.9 |
---|
3827 | domain.beta_vh_dry = 0.9 |
---|
3828 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
3829 | |
---|
3830 | # Boundary conditions |
---|
3831 | Br = Reflective_boundary(domain) |
---|
3832 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
3833 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3834 | |
---|
3835 | domain.check_integrity() |
---|
3836 | |
---|
3837 | # Evolution |
---|
3838 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
3839 | pass# domain.write_time() |
---|
3840 | |
---|
3841 | # Data from earlier version of abstract_2d_finite_volumes |
---|
3842 | assert numpy.allclose(domain.min_timestep, 0.0396825396825) |
---|
3843 | assert numpy.allclose(domain.max_timestep, 0.0396825396825) |
---|
3844 | |
---|
3845 | assert numpy.allclose(domain.quantities['stage'].centroid_values[:12], |
---|
3846 | [0.00171396, 0.02656103, 0.00241523, 0.02656103, |
---|
3847 | 0.00241523, 0.02656103, 0.00241523, 0.02656103, |
---|
3848 | 0.00241523, 0.02656103, 0.00241523, 0.0272623]) |
---|
3849 | |
---|
3850 | domain.distribute_to_vertices_and_edges() |
---|
3851 | |
---|
3852 | assert numpy.allclose(domain.quantities['stage'].vertex_values[:12,0], |
---|
3853 | [0.0001714, 0.02656103, 0.00024152, |
---|
3854 | 0.02656103, 0.00024152, 0.02656103, |
---|
3855 | 0.00024152, 0.02656103, 0.00024152, |
---|
3856 | 0.02656103, 0.00024152, 0.0272623]) |
---|
3857 | |
---|
3858 | assert numpy.allclose(domain.quantities['stage'].vertex_values[:12,1], |
---|
3859 | [0.00315012, 0.02656103, 0.00024152, 0.02656103, |
---|
3860 | 0.00024152, 0.02656103, 0.00024152, 0.02656103, |
---|
3861 | 0.00024152, 0.02656103, 0.00040506, 0.0272623]) |
---|
3862 | |
---|
3863 | assert numpy.allclose(domain.quantities['stage'].vertex_values[:12,2], |
---|
3864 | [0.00182037, 0.02656103, 0.00676264, |
---|
3865 | 0.02656103, 0.00676264, 0.02656103, |
---|
3866 | 0.00676264, 0.02656103, 0.00676264, |
---|
3867 | 0.02656103, 0.0065991, 0.0272623]) |
---|
3868 | |
---|
3869 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[:12], |
---|
3870 | [0.00113961, 0.01302432, 0.00148672, |
---|
3871 | 0.01302432, 0.00148672, 0.01302432, |
---|
3872 | 0.00148672, 0.01302432, 0.00148672 , |
---|
3873 | 0.01302432, 0.00148672, 0.01337143]) |
---|
3874 | |
---|
3875 | assert numpy.allclose(domain.quantities['ymomentum'].centroid_values[:12], |
---|
3876 | [-2.91240050e-004 , 1.22721531e-004, |
---|
3877 | -1.22721531e-004, 1.22721531e-004 , |
---|
3878 | -1.22721531e-004, 1.22721531e-004, |
---|
3879 | -1.22721531e-004 , 1.22721531e-004, |
---|
3880 | -1.22721531e-004, 1.22721531e-004, |
---|
3881 | -1.22721531e-004, -4.57969873e-005]) |
---|
3882 | |
---|
3883 | os.remove(domain.get_name() + '.sww') |
---|
3884 | |
---|
3885 | |
---|
3886 | def test_second_order_flat_bed_moresteps(self): |
---|
3887 | |
---|
3888 | from mesh_factory import rectangular |
---|
3889 | |
---|
3890 | #Create basic mesh |
---|
3891 | points, vertices, boundary = rectangular(6, 6) |
---|
3892 | |
---|
3893 | #Create shallow water domain |
---|
3894 | domain = Domain(points, vertices, boundary) |
---|
3895 | domain.smooth = False |
---|
3896 | domain.default_order=2 |
---|
3897 | |
---|
3898 | # Boundary conditions |
---|
3899 | Br = Reflective_boundary(domain) |
---|
3900 | Bd = Dirichlet_boundary([0.1, 0., 0.]) |
---|
3901 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3902 | |
---|
3903 | domain.check_integrity() |
---|
3904 | |
---|
3905 | #Evolution |
---|
3906 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
3907 | pass |
---|
3908 | |
---|
3909 | #Data from earlier version of abstract_2d_finite_volumes |
---|
3910 | #assert allclose(domain.min_timestep, 0.0396825396825) |
---|
3911 | #assert allclose(domain.max_timestep, 0.0396825396825) |
---|
3912 | #print domain.quantities['stage'].centroid_values |
---|
3913 | |
---|
3914 | os.remove(domain.get_name() + '.sww') |
---|
3915 | |
---|
3916 | |
---|
3917 | def test_flatbed_first_order(self): |
---|
3918 | from mesh_factory import rectangular |
---|
3919 | |
---|
3920 | #Create basic mesh |
---|
3921 | N = 8 |
---|
3922 | points, vertices, boundary = rectangular(N, N) |
---|
3923 | |
---|
3924 | #Create shallow water domain |
---|
3925 | domain = Domain(points, vertices, boundary) |
---|
3926 | domain.smooth = False |
---|
3927 | domain.default_order=1 |
---|
3928 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
3929 | |
---|
3930 | # Boundary conditions |
---|
3931 | Br = Reflective_boundary(domain) |
---|
3932 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
3933 | |
---|
3934 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3935 | domain.check_integrity() |
---|
3936 | |
---|
3937 | |
---|
3938 | #Evolution |
---|
3939 | for t in domain.evolve(yieldstep = 0.02, finaltime = 0.5): |
---|
3940 | pass |
---|
3941 | #domain.write_time() |
---|
3942 | |
---|
3943 | #FIXME: These numbers were from version before 25/10 |
---|
3944 | #assert allclose(domain.min_timestep, 0.0140413643926) |
---|
3945 | #assert allclose(domain.max_timestep, 0.0140947355753) |
---|
3946 | |
---|
3947 | for i in range(3): |
---|
3948 | #assert allclose(domain.quantities['stage'].edge_values[:4,i], |
---|
3949 | # [0.10730244,0.12337617,0.11200126,0.12605666]) |
---|
3950 | |
---|
3951 | assert numpy.allclose(domain.quantities['xmomentum'].edge_values[:4,i], |
---|
3952 | [0.07610894,0.06901572,0.07284461,0.06819712]) |
---|
3953 | |
---|
3954 | #assert allclose(domain.quantities['ymomentum'].edge_values[:4,i], |
---|
3955 | # [-0.0060238, -0.00157404, -0.00309633, -0.0001637]) |
---|
3956 | |
---|
3957 | |
---|
3958 | os.remove(domain.get_name() + '.sww') |
---|
3959 | |
---|
3960 | def test_flatbed_second_order(self): |
---|
3961 | from mesh_factory import rectangular |
---|
3962 | |
---|
3963 | #Create basic mesh |
---|
3964 | N = 8 |
---|
3965 | points, vertices, boundary = rectangular(N, N) |
---|
3966 | |
---|
3967 | #Create shallow water domain |
---|
3968 | domain = Domain(points, vertices, boundary) |
---|
3969 | domain.smooth = False |
---|
3970 | domain.default_order=2 |
---|
3971 | domain.beta_w = 0.9 |
---|
3972 | domain.beta_w_dry = 0.9 |
---|
3973 | domain.beta_uh = 0.9 |
---|
3974 | domain.beta_uh_dry = 0.9 |
---|
3975 | domain.beta_vh = 0.9 |
---|
3976 | domain.beta_vh_dry = 0.9 |
---|
3977 | #domain.minimum_allowed_height = 0.0 #Makes it like the 'oldstyle' balance |
---|
3978 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
3979 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
3980 | domain.set_maximum_allowed_speed(1.0) |
---|
3981 | |
---|
3982 | # Boundary conditions |
---|
3983 | Br = Reflective_boundary(domain) |
---|
3984 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
3985 | |
---|
3986 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
3987 | domain.check_integrity() |
---|
3988 | |
---|
3989 | # Evolution |
---|
3990 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
3991 | pass |
---|
3992 | |
---|
3993 | msg = 'min step was %f instead of %f' %(domain.min_timestep, |
---|
3994 | 0.0210448446782) |
---|
3995 | |
---|
3996 | assert numpy.allclose(domain.min_timestep, 0.0210448446782), msg |
---|
3997 | assert numpy.allclose(domain.max_timestep, 0.0210448446782) |
---|
3998 | |
---|
3999 | #print domain.quantities['stage'].vertex_values[:4,0] |
---|
4000 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4001 | #print domain.quantities['ymomentum'].vertex_values[:4,0] |
---|
4002 | |
---|
4003 | #FIXME: These numbers were from version before 25/10 |
---|
4004 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
4005 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
4006 | |
---|
4007 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4008 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4009 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4010 | # [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
4011 | |
---|
4012 | assert numpy.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4013 | [ 0.00090581, 0.03685719, 0.00088303, 0.03687313]) |
---|
4014 | |
---|
4015 | |
---|
4016 | |
---|
4017 | #assert numpy.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4018 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4019 | |
---|
4020 | assert numpy.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4021 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4022 | |
---|
4023 | |
---|
4024 | os.remove(domain.get_name() + '.sww') |
---|
4025 | |
---|
4026 | |
---|
4027 | def test_flatbed_second_order_vmax_0(self): |
---|
4028 | from mesh_factory import rectangular |
---|
4029 | |
---|
4030 | #Create basic mesh |
---|
4031 | N = 8 |
---|
4032 | points, vertices, boundary = rectangular(N, N) |
---|
4033 | |
---|
4034 | #Create shallow water domain |
---|
4035 | domain = Domain(points, vertices, boundary) |
---|
4036 | domain.smooth = False |
---|
4037 | domain.default_order=2 |
---|
4038 | domain.beta_w = 0.9 |
---|
4039 | domain.beta_w_dry = 0.9 |
---|
4040 | domain.beta_uh = 0.9 |
---|
4041 | domain.beta_uh_dry = 0.9 |
---|
4042 | domain.beta_vh = 0.9 |
---|
4043 | domain.beta_vh_dry = 0.9 |
---|
4044 | domain.maximum_allowed_speed = 0.0 #Makes it like the 'oldstyle' |
---|
4045 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4046 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
4047 | |
---|
4048 | # Boundary conditions |
---|
4049 | Br = Reflective_boundary(domain) |
---|
4050 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4051 | |
---|
4052 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4053 | domain.check_integrity() |
---|
4054 | |
---|
4055 | #Evolution |
---|
4056 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
4057 | pass |
---|
4058 | |
---|
4059 | |
---|
4060 | assert numpy.allclose(domain.min_timestep, 0.0210448446782) |
---|
4061 | assert numpy.allclose(domain.max_timestep, 0.0210448446782) |
---|
4062 | |
---|
4063 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4064 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4065 | assert numpy.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4066 | [ 0.00064835, 0.03685719, 0.00085073, 0.03687313]) |
---|
4067 | |
---|
4068 | |
---|
4069 | assert numpy.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4070 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4071 | |
---|
4072 | |
---|
4073 | os.remove(domain.get_name() + '.sww') |
---|
4074 | |
---|
4075 | |
---|
4076 | |
---|
4077 | def test_flatbed_second_order_distribute(self): |
---|
4078 | #Use real data from anuga.abstract_2d_finite_volumes 2 |
---|
4079 | #painfully setup and extracted. |
---|
4080 | from mesh_factory import rectangular |
---|
4081 | |
---|
4082 | #Create basic mesh |
---|
4083 | N = 8 |
---|
4084 | points, vertices, boundary = rectangular(N, N) |
---|
4085 | |
---|
4086 | #Create shallow water domain |
---|
4087 | domain = Domain(points, vertices, boundary) |
---|
4088 | domain.smooth = False |
---|
4089 | domain.default_order=domain._order_=2 |
---|
4090 | domain.beta_w = 0.9 |
---|
4091 | domain.beta_w_dry = 0.9 |
---|
4092 | domain.beta_uh = 0.9 |
---|
4093 | domain.beta_uh_dry = 0.9 |
---|
4094 | domain.beta_vh = 0.9 |
---|
4095 | domain.beta_vh_dry = 0.9 |
---|
4096 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4097 | domain.use_centroid_velocities = False # Backwards compatibility (8/5/8) |
---|
4098 | domain.set_maximum_allowed_speed(1.0) |
---|
4099 | |
---|
4100 | # Boundary conditions |
---|
4101 | Br = Reflective_boundary(domain) |
---|
4102 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
4103 | |
---|
4104 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4105 | domain.check_integrity() |
---|
4106 | |
---|
4107 | |
---|
4108 | |
---|
4109 | for V in [False, True]: |
---|
4110 | if V: |
---|
4111 | #Set centroids as if system had been evolved |
---|
4112 | L = numpy.zeros(2*N*N, numpy.float) |
---|
4113 | L[:32] = [7.21205592e-003, 5.35214298e-002, 1.00910824e-002, |
---|
4114 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
4115 | 1.00910824e-002, 5.35439433e-002, 1.00910824e-002, |
---|
4116 | 5.35439433e-002, 1.00910824e-002, 5.35439433e-002, |
---|
4117 | 1.00910824e-002, 5.35393928e-002, 1.02344264e-002, |
---|
4118 | 5.59605058e-002, 0.00000000e+000, 3.31027800e-004, |
---|
4119 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
4120 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
4121 | 0.00000000e+000, 4.37962142e-005, 0.00000000e+000, |
---|
4122 | 4.37962142e-005, 0.00000000e+000, 4.37962142e-005, |
---|
4123 | 0.00000000e+000, 5.57305948e-005] |
---|
4124 | |
---|
4125 | X = numpy.zeros(2*N*N, numpy.float) |
---|
4126 | X[:32] = [6.48351607e-003, 3.68571894e-002, 8.50733285e-003, |
---|
4127 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
4128 | 8.50733285e-003, 3.68731327e-002, 8.50733285e-003, |
---|
4129 | 3.68731327e-002, 8.50733285e-003, 3.68731327e-002, |
---|
4130 | 8.50733285e-003, 3.68693861e-002, 8.65220973e-003, |
---|
4131 | 3.85055387e-002, 0.00000000e+000, 2.86060840e-004, |
---|
4132 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
4133 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
4134 | 0.00000000e+000, 3.58905503e-005, 0.00000000e+000, |
---|
4135 | 3.58905503e-005, 0.00000000e+000, 3.58905503e-005, |
---|
4136 | 0.00000000e+000, 4.57662812e-005] |
---|
4137 | |
---|
4138 | Y = numpy.zeros(2*N*N, numpy.float) |
---|
4139 | Y[:32]=[-1.39463104e-003, 6.15600298e-004, -6.03637382e-004, |
---|
4140 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
4141 | -6.03637382e-004, 6.18272251e-004, -6.03637382e-004, |
---|
4142 | 6.18272251e-004, -6.03637382e-004, 6.18272251e-004, |
---|
4143 | -6.03637382e-004, 6.18599320e-004, -6.74622797e-004, |
---|
4144 | -1.48934756e-004, 0.00000000e+000, -5.35079969e-005, |
---|
4145 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
4146 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
4147 | 0.00000000e+000, -2.57264987e-005, 0.00000000e+000, |
---|
4148 | -2.57264987e-005, 0.00000000e+000, -2.57264987e-005, |
---|
4149 | 0.00000000e+000, -2.57635178e-005] |
---|
4150 | |
---|
4151 | |
---|
4152 | domain.set_quantity('stage', L, location='centroids') |
---|
4153 | domain.set_quantity('xmomentum', X, location='centroids') |
---|
4154 | domain.set_quantity('ymomentum', Y, location='centroids') |
---|
4155 | |
---|
4156 | domain.check_integrity() |
---|
4157 | else: |
---|
4158 | #Evolution |
---|
4159 | for t in domain.evolve(yieldstep = 0.01, finaltime = 0.03): |
---|
4160 | pass |
---|
4161 | assert numpy.allclose(domain.min_timestep, 0.0210448446782) |
---|
4162 | assert numpy.allclose(domain.max_timestep, 0.0210448446782) |
---|
4163 | |
---|
4164 | |
---|
4165 | #Centroids were correct but not vertices. |
---|
4166 | #Hence the check of distribute below. |
---|
4167 | assert numpy.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
4168 | [0.00721206,0.05352143,0.01009108,0.05354394]) |
---|
4169 | |
---|
4170 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
4171 | [0.00648352,0.03685719,0.00850733,0.03687313]) |
---|
4172 | |
---|
4173 | assert numpy.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
4174 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4175 | |
---|
4176 | #print 'C17=', domain.quantities['xmomentum'].centroid_values[17] |
---|
4177 | #print 'C19=', domain.quantities['xmomentum'].centroid_values[19] |
---|
4178 | |
---|
4179 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17],0.00028606084) |
---|
4180 | ##print domain.quantities['xmomentum'].centroid_values[17], V |
---|
4181 | ##print |
---|
4182 | if not V: |
---|
4183 | #FIXME: These numbers were from version before 21/3/6 - |
---|
4184 | #could be recreated by setting maximum_allowed_speed to 0 maybe |
---|
4185 | |
---|
4186 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], 0.0) |
---|
4187 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
4188 | |
---|
4189 | else: |
---|
4190 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.00028606084) |
---|
4191 | |
---|
4192 | import copy |
---|
4193 | XX = copy.copy(domain.quantities['xmomentum'].centroid_values) |
---|
4194 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
4195 | |
---|
4196 | domain.distribute_to_vertices_and_edges() |
---|
4197 | |
---|
4198 | #assert allclose(domain.quantities['xmomentum'].centroid_values, XX) |
---|
4199 | |
---|
4200 | #assert allclose(domain.quantities['xmomentum'].centroid_values[17], |
---|
4201 | # 0.0) |
---|
4202 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[17], 0.000286060839592) |
---|
4203 | |
---|
4204 | |
---|
4205 | #FIXME: These numbers were from version before 25/10 |
---|
4206 | #assert allclose(domain.quantities['stage'].vertex_values[:4,0], |
---|
4207 | # [0.00101913,0.05352143,0.00104852,0.05354394]) |
---|
4208 | |
---|
4209 | assert numpy.allclose(domain.quantities['ymomentum'].vertex_values[:4,0], |
---|
4210 | [-0.00139463,0.0006156,-0.00060364,0.00061827]) |
---|
4211 | |
---|
4212 | |
---|
4213 | assert numpy.allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4214 | [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4215 | |
---|
4216 | |
---|
4217 | #NB NO longer relvant: |
---|
4218 | |
---|
4219 | #This was the culprit. First triangles vertex 0 had an |
---|
4220 | #x-momentum of 0.0064835 instead of 0.00090581 and |
---|
4221 | #third triangle had 0.00850733 instead of 0.00088303 |
---|
4222 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4223 | |
---|
4224 | #print domain.quantities['xmomentum'].vertex_values[:4,0] |
---|
4225 | #assert allclose(domain.quantities['xmomentum'].vertex_values[:4,0], |
---|
4226 | # [0.00090581,0.03685719,0.00088303,0.03687313]) |
---|
4227 | |
---|
4228 | os.remove(domain.get_name() + '.sww') |
---|
4229 | |
---|
4230 | |
---|
4231 | |
---|
4232 | def test_bedslope_problem_first_order(self): |
---|
4233 | |
---|
4234 | from mesh_factory import rectangular |
---|
4235 | |
---|
4236 | #Create basic mesh |
---|
4237 | points, vertices, boundary = rectangular(6, 6) |
---|
4238 | |
---|
4239 | #Create shallow water domain |
---|
4240 | domain = Domain(points, vertices, boundary) |
---|
4241 | domain.smooth = False |
---|
4242 | domain.default_order = 1 |
---|
4243 | |
---|
4244 | #Bed-slope and friction |
---|
4245 | def x_slope(x, y): |
---|
4246 | return -x/3 |
---|
4247 | |
---|
4248 | domain.set_quantity('elevation', x_slope) |
---|
4249 | |
---|
4250 | # Boundary conditions |
---|
4251 | Br = Reflective_boundary(domain) |
---|
4252 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4253 | |
---|
4254 | #Initial condition |
---|
4255 | #domain.set_quantity('stage', Constant_height(x_slope, 0.05)) |
---|
4256 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4257 | domain.check_integrity() |
---|
4258 | |
---|
4259 | #Evolution |
---|
4260 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
4261 | pass# domain.write_time() |
---|
4262 | |
---|
4263 | # FIXME (Ole): Need some other assertion here! |
---|
4264 | #print domain.min_timestep, domain.max_timestep |
---|
4265 | #assert allclose(domain.min_timestep, 0.050010003001) |
---|
4266 | #assert allclose(domain.max_timestep, 0.050010003001) |
---|
4267 | |
---|
4268 | |
---|
4269 | os.remove(domain.get_name() + '.sww') |
---|
4270 | |
---|
4271 | def test_bedslope_problem_first_order_moresteps(self): |
---|
4272 | |
---|
4273 | from mesh_factory import rectangular |
---|
4274 | |
---|
4275 | #Create basic mesh |
---|
4276 | points, vertices, boundary = rectangular(6, 6) |
---|
4277 | |
---|
4278 | #Create shallow water domain |
---|
4279 | domain = Domain(points, vertices, boundary) |
---|
4280 | domain.smooth = False |
---|
4281 | domain.default_order = 1 |
---|
4282 | |
---|
4283 | # FIXME (Ole): Need tests where these two are commented out |
---|
4284 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4285 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4286 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4287 | |
---|
4288 | #Bed-slope and friction |
---|
4289 | def x_slope(x, y): |
---|
4290 | return -x/3 |
---|
4291 | |
---|
4292 | domain.set_quantity('elevation', x_slope) |
---|
4293 | |
---|
4294 | # Boundary conditions |
---|
4295 | Br = Reflective_boundary(domain) |
---|
4296 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4297 | |
---|
4298 | #Initial condition |
---|
4299 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4300 | domain.check_integrity() |
---|
4301 | |
---|
4302 | #Evolution |
---|
4303 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
4304 | pass# domain.write_time() |
---|
4305 | |
---|
4306 | #Data from earlier version of abstract_2d_finite_volumes |
---|
4307 | #print domain.quantities['stage'].centroid_values |
---|
4308 | |
---|
4309 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4310 | [-0.02998628, -0.01520652, -0.03043492, |
---|
4311 | -0.0149132, -0.03004706, -0.01476251, |
---|
4312 | -0.0298215, -0.01467976, -0.02988158, |
---|
4313 | -0.01474662, -0.03036161, -0.01442995, |
---|
4314 | -0.07624583, -0.06297061, -0.07733792, |
---|
4315 | -0.06342237, -0.07695439, -0.06289595, |
---|
4316 | -0.07635559, -0.0626065, -0.07633628, |
---|
4317 | -0.06280072, -0.07739632, -0.06386738, |
---|
4318 | -0.12161738, -0.11028239, -0.1223796, |
---|
4319 | -0.11095953, -0.12189744, -0.11048616, |
---|
4320 | -0.12074535, -0.10987605, -0.12014311, |
---|
4321 | -0.10976691, -0.12096859, -0.11087692, |
---|
4322 | -0.16868259, -0.15868061, -0.16801135, |
---|
4323 | -0.1588003, -0.16674343, -0.15813323, |
---|
4324 | -0.16457595, -0.15693826, -0.16281096, |
---|
4325 | -0.15585154, -0.16283873, -0.15540068, |
---|
4326 | -0.17450362, -0.19919913, -0.18062882, |
---|
4327 | -0.19764131, -0.17783111, -0.19407213, |
---|
4328 | -0.1736915, -0.19053624, -0.17228678, |
---|
4329 | -0.19105634, -0.17920133, -0.1968828, |
---|
4330 | -0.14244395, -0.14604641, -0.14473537, |
---|
4331 | -0.1506107, -0.14510055, -0.14919522, |
---|
4332 | -0.14175896, -0.14560798, -0.13911658, |
---|
4333 | -0.14439383, -0.13924047, -0.14829043]) |
---|
4334 | |
---|
4335 | os.remove(domain.get_name() + '.sww') |
---|
4336 | |
---|
4337 | def test_bedslope_problem_second_order_one_step(self): |
---|
4338 | |
---|
4339 | from mesh_factory import rectangular |
---|
4340 | |
---|
4341 | #Create basic mesh |
---|
4342 | points, vertices, boundary = rectangular(6, 6) |
---|
4343 | |
---|
4344 | #Create shallow water domain |
---|
4345 | domain = Domain(points, vertices, boundary) |
---|
4346 | domain.smooth = False |
---|
4347 | domain.default_order=2 |
---|
4348 | domain.beta_w = 0.9 |
---|
4349 | domain.beta_w_dry = 0.9 |
---|
4350 | domain.beta_uh = 0.9 |
---|
4351 | domain.beta_uh_dry = 0.9 |
---|
4352 | domain.beta_vh = 0.9 |
---|
4353 | domain.beta_vh_dry = 0.9 |
---|
4354 | |
---|
4355 | |
---|
4356 | # FIXME (Ole): Need tests where this is commented out |
---|
4357 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4358 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4359 | |
---|
4360 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4361 | def x_slope(x, y): |
---|
4362 | return -x/3 |
---|
4363 | |
---|
4364 | domain.set_quantity('elevation', x_slope) |
---|
4365 | |
---|
4366 | # Boundary conditions |
---|
4367 | Br = Reflective_boundary(domain) |
---|
4368 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4369 | |
---|
4370 | #Initial condition |
---|
4371 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4372 | domain.check_integrity() |
---|
4373 | |
---|
4374 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4375 | [0.01296296, 0.03148148, 0.01296296, |
---|
4376 | 0.03148148, 0.01296296, 0.03148148, |
---|
4377 | 0.01296296, 0.03148148, 0.01296296, |
---|
4378 | 0.03148148, 0.01296296, 0.03148148, |
---|
4379 | -0.04259259, -0.02407407, -0.04259259, |
---|
4380 | -0.02407407, -0.04259259, -0.02407407, |
---|
4381 | -0.04259259, -0.02407407, -0.04259259, |
---|
4382 | -0.02407407, -0.04259259, -0.02407407, |
---|
4383 | -0.09814815, -0.07962963, -0.09814815, |
---|
4384 | -0.07962963, -0.09814815, -0.07962963, |
---|
4385 | -0.09814815, -0.07962963, -0.09814815, |
---|
4386 | -0.07962963, -0.09814815, -0.07962963, |
---|
4387 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4388 | -0.13518519, -0.1537037, -0.13518519, |
---|
4389 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4390 | -0.13518519, -0.1537037, -0.13518519, |
---|
4391 | -0.20925926, -0.19074074, -0.20925926, |
---|
4392 | -0.19074074, -0.20925926, -0.19074074, |
---|
4393 | -0.20925926, -0.19074074, -0.20925926, |
---|
4394 | -0.19074074, -0.20925926, -0.19074074, |
---|
4395 | -0.26481481, -0.2462963, -0.26481481, |
---|
4396 | -0.2462963, -0.26481481, -0.2462963, |
---|
4397 | -0.26481481, -0.2462963, -0.26481481, |
---|
4398 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4399 | |
---|
4400 | |
---|
4401 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4402 | #domain.distribute_to_vertices_and_edges() |
---|
4403 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4404 | |
---|
4405 | #Evolution |
---|
4406 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.05): |
---|
4407 | #domain.write_time() |
---|
4408 | pass |
---|
4409 | |
---|
4410 | |
---|
4411 | #print domain.quantities['stage'].centroid_values |
---|
4412 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4413 | [0.01290985, 0.02356019, 0.01619096, 0.02356019, 0.01619096, |
---|
4414 | 0.02356019, 0.01619096, 0.02356019, 0.01619096, 0.02356019, |
---|
4415 | 0.01619096, 0.0268413, -0.04411074, -0.0248011, -0.04186556, |
---|
4416 | -0.0248011, -0.04186556, -0.0248011, -0.04186556, -0.0248011, |
---|
4417 | -0.04186556, -0.0248011, -0.04186556, -0.02255593, |
---|
4418 | -0.09966629, -0.08035666, -0.09742112, -0.08035666, |
---|
4419 | -0.09742112, -0.08035666, -0.09742112, -0.08035666, |
---|
4420 | -0.09742112, -0.08035666, -0.09742112, -0.07811149, |
---|
4421 | -0.15522185, -0.13591222, -0.15297667, -0.13591222, |
---|
4422 | -0.15297667, -0.13591222, -0.15297667, -0.13591222, |
---|
4423 | -0.15297667, -0.13591222, -0.15297667, -0.13366704, |
---|
4424 | -0.2107774, -0.19146777, -0.20853223, -0.19146777, |
---|
4425 | -0.20853223, -0.19146777, -0.20853223, -0.19146777, |
---|
4426 | -0.20853223, -0.19146777, -0.20853223, -0.1892226, |
---|
4427 | -0.26120669, -0.24776246, -0.25865535, -0.24776246, |
---|
4428 | -0.25865535, -0.24776246, -0.25865535, -0.24776246, |
---|
4429 | -0.25865535, -0.24776246, -0.25865535, -0.24521113]) |
---|
4430 | |
---|
4431 | os.remove(domain.get_name() + '.sww') |
---|
4432 | |
---|
4433 | def test_bedslope_problem_second_order_two_steps(self): |
---|
4434 | |
---|
4435 | from mesh_factory import rectangular |
---|
4436 | |
---|
4437 | #Create basic mesh |
---|
4438 | points, vertices, boundary = rectangular(6, 6) |
---|
4439 | |
---|
4440 | #Create shallow water domain |
---|
4441 | domain = Domain(points, vertices, boundary) |
---|
4442 | domain.smooth = False |
---|
4443 | domain.default_order=2 |
---|
4444 | domain.beta_w = 0.9 |
---|
4445 | domain.beta_w_dry = 0.9 |
---|
4446 | domain.beta_uh = 0.9 |
---|
4447 | domain.beta_uh_dry = 0.9 |
---|
4448 | domain.beta_vh = 0.9 |
---|
4449 | domain.beta_vh_dry = 0.9 |
---|
4450 | |
---|
4451 | # FIXME (Ole): Need tests where this is commented out |
---|
4452 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4453 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4454 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4455 | |
---|
4456 | |
---|
4457 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4458 | def x_slope(x, y): |
---|
4459 | return -x/3 |
---|
4460 | |
---|
4461 | domain.set_quantity('elevation', x_slope) |
---|
4462 | |
---|
4463 | # Boundary conditions |
---|
4464 | Br = Reflective_boundary(domain) |
---|
4465 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4466 | |
---|
4467 | #Initial condition |
---|
4468 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4469 | domain.check_integrity() |
---|
4470 | |
---|
4471 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4472 | [0.01296296, 0.03148148, 0.01296296, |
---|
4473 | 0.03148148, 0.01296296, 0.03148148, |
---|
4474 | 0.01296296, 0.03148148, 0.01296296, |
---|
4475 | 0.03148148, 0.01296296, 0.03148148, |
---|
4476 | -0.04259259, -0.02407407, -0.04259259, |
---|
4477 | -0.02407407, -0.04259259, -0.02407407, |
---|
4478 | -0.04259259, -0.02407407, -0.04259259, |
---|
4479 | -0.02407407, -0.04259259, -0.02407407, |
---|
4480 | -0.09814815, -0.07962963, -0.09814815, |
---|
4481 | -0.07962963, -0.09814815, -0.07962963, |
---|
4482 | -0.09814815, -0.07962963, -0.09814815, |
---|
4483 | -0.07962963, -0.09814815, -0.07962963, |
---|
4484 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4485 | -0.13518519, -0.1537037, -0.13518519, |
---|
4486 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4487 | -0.13518519, -0.1537037, -0.13518519, |
---|
4488 | -0.20925926, -0.19074074, -0.20925926, |
---|
4489 | -0.19074074, -0.20925926, -0.19074074, |
---|
4490 | -0.20925926, -0.19074074, -0.20925926, |
---|
4491 | -0.19074074, -0.20925926, -0.19074074, |
---|
4492 | -0.26481481, -0.2462963, -0.26481481, |
---|
4493 | -0.2462963, -0.26481481, -0.2462963, |
---|
4494 | -0.26481481, -0.2462963, -0.26481481, |
---|
4495 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4496 | |
---|
4497 | |
---|
4498 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4499 | #domain.distribute_to_vertices_and_edges() |
---|
4500 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4501 | |
---|
4502 | #Evolution |
---|
4503 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
4504 | pass |
---|
4505 | |
---|
4506 | |
---|
4507 | #Data from earlier version of abstract_2d_finite_volumes ft=0.1 |
---|
4508 | assert numpy.allclose(domain.min_timestep, 0.0376895634803) |
---|
4509 | assert numpy.allclose(domain.max_timestep, 0.0415635655309) |
---|
4510 | |
---|
4511 | |
---|
4512 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4513 | [0.00855788, 0.01575204, 0.00994606, 0.01717072, |
---|
4514 | 0.01005985, 0.01716362, 0.01005985, 0.01716299, |
---|
4515 | 0.01007098, 0.01736248, 0.01216452, 0.02026776, |
---|
4516 | -0.04462374, -0.02479045, -0.04199789, -0.0229465, |
---|
4517 | -0.04184033, -0.02295693, -0.04184013, -0.02295675, |
---|
4518 | -0.04184486, -0.0228168, -0.04028876, -0.02036486, |
---|
4519 | -0.10029444, -0.08170809, -0.09772846, -0.08021704, |
---|
4520 | -0.09760006, -0.08022143, -0.09759984, -0.08022124, |
---|
4521 | -0.09760261, -0.08008893, -0.09603914, -0.07758209, |
---|
4522 | -0.15584152, -0.13723138, -0.15327266, -0.13572906, |
---|
4523 | -0.15314427, -0.13573349, -0.15314405, -0.13573331, |
---|
4524 | -0.15314679, -0.13560104, -0.15158523, -0.13310701, |
---|
4525 | -0.21208605, -0.19283913, -0.20955631, -0.19134189, |
---|
4526 | -0.20942821, -0.19134598, -0.20942799, -0.1913458, |
---|
4527 | -0.20943005, -0.19120952, -0.20781177, -0.18869401, |
---|
4528 | -0.25384082, -0.2463294, -0.25047649, -0.24464654, |
---|
4529 | -0.25031159, -0.24464253, -0.25031112, -0.24464253, |
---|
4530 | -0.25031463, -0.24454764, -0.24885323, -0.24286438]) |
---|
4531 | |
---|
4532 | |
---|
4533 | os.remove(domain.get_name() + '.sww') |
---|
4534 | |
---|
4535 | def test_bedslope_problem_second_order_two_yieldsteps(self): |
---|
4536 | |
---|
4537 | from mesh_factory import rectangular |
---|
4538 | |
---|
4539 | #Create basic mesh |
---|
4540 | points, vertices, boundary = rectangular(6, 6) |
---|
4541 | |
---|
4542 | #Create shallow water domain |
---|
4543 | domain = Domain(points, vertices, boundary) |
---|
4544 | domain.smooth = False |
---|
4545 | domain.default_order=2 |
---|
4546 | domain.beta_w = 0.9 |
---|
4547 | domain.beta_w_dry = 0.9 |
---|
4548 | domain.beta_uh = 0.9 |
---|
4549 | domain.beta_uh_dry = 0.9 |
---|
4550 | domain.beta_vh = 0.9 |
---|
4551 | domain.beta_vh_dry = 0.9 |
---|
4552 | |
---|
4553 | # FIXME (Ole): Need tests where this is commented out |
---|
4554 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4555 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4556 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4557 | |
---|
4558 | |
---|
4559 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4560 | def x_slope(x, y): |
---|
4561 | return -x/3 |
---|
4562 | |
---|
4563 | domain.set_quantity('elevation', x_slope) |
---|
4564 | |
---|
4565 | # Boundary conditions |
---|
4566 | Br = Reflective_boundary(domain) |
---|
4567 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4568 | |
---|
4569 | #Initial condition |
---|
4570 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4571 | domain.check_integrity() |
---|
4572 | |
---|
4573 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4574 | [0.01296296, 0.03148148, 0.01296296, |
---|
4575 | 0.03148148, 0.01296296, 0.03148148, |
---|
4576 | 0.01296296, 0.03148148, 0.01296296, |
---|
4577 | 0.03148148, 0.01296296, 0.03148148, |
---|
4578 | -0.04259259, -0.02407407, -0.04259259, |
---|
4579 | -0.02407407, -0.04259259, -0.02407407, |
---|
4580 | -0.04259259, -0.02407407, -0.04259259, |
---|
4581 | -0.02407407, -0.04259259, -0.02407407, |
---|
4582 | -0.09814815, -0.07962963, -0.09814815, |
---|
4583 | -0.07962963, -0.09814815, -0.07962963, |
---|
4584 | -0.09814815, -0.07962963, -0.09814815, |
---|
4585 | -0.07962963, -0.09814815, -0.07962963, |
---|
4586 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4587 | -0.13518519, -0.1537037, -0.13518519, |
---|
4588 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4589 | -0.13518519, -0.1537037, -0.13518519, |
---|
4590 | -0.20925926, -0.19074074, -0.20925926, |
---|
4591 | -0.19074074, -0.20925926, -0.19074074, |
---|
4592 | -0.20925926, -0.19074074, -0.20925926, |
---|
4593 | -0.19074074, -0.20925926, -0.19074074, |
---|
4594 | -0.26481481, -0.2462963, -0.26481481, |
---|
4595 | -0.2462963, -0.26481481, -0.2462963, |
---|
4596 | -0.26481481, -0.2462963, -0.26481481, |
---|
4597 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4598 | |
---|
4599 | |
---|
4600 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4601 | #domain.distribute_to_vertices_and_edges() |
---|
4602 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4603 | |
---|
4604 | #Evolution |
---|
4605 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): #0.05?? |
---|
4606 | #domain.write_time() |
---|
4607 | pass |
---|
4608 | |
---|
4609 | |
---|
4610 | |
---|
4611 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4612 | [0.00855788, 0.01575204, 0.00994606, 0.01717072, 0.01005985, |
---|
4613 | 0.01716362, 0.01005985, 0.01716299, 0.01007098, 0.01736248, |
---|
4614 | 0.01216452, 0.02026776, -0.04462374, -0.02479045, -0.04199789, |
---|
4615 | -0.0229465, -0.04184033, -0.02295693, -0.04184013, |
---|
4616 | -0.02295675, -0.04184486, -0.0228168, -0.04028876, |
---|
4617 | -0.02036486, -0.10029444, -0.08170809, -0.09772846, |
---|
4618 | -0.08021704, -0.09760006, -0.08022143, -0.09759984, |
---|
4619 | -0.08022124, -0.09760261, -0.08008893, -0.09603914, |
---|
4620 | -0.07758209, -0.15584152, -0.13723138, -0.15327266, |
---|
4621 | -0.13572906, -0.15314427, -0.13573349, -0.15314405, |
---|
4622 | -0.13573331, -0.15314679, -0.13560104, -0.15158523, |
---|
4623 | -0.13310701, -0.21208605, -0.19283913, -0.20955631, |
---|
4624 | -0.19134189, -0.20942821, -0.19134598, -0.20942799, |
---|
4625 | -0.1913458, -0.20943005, -0.19120952, -0.20781177, |
---|
4626 | -0.18869401, -0.25384082, -0.2463294, -0.25047649, |
---|
4627 | -0.24464654, -0.25031159, -0.24464253, -0.25031112, |
---|
4628 | -0.24464253, -0.25031463, -0.24454764, -0.24885323, |
---|
4629 | -0.24286438]) |
---|
4630 | |
---|
4631 | os.remove(domain.get_name() + '.sww') |
---|
4632 | |
---|
4633 | def test_bedslope_problem_second_order_more_steps(self): |
---|
4634 | |
---|
4635 | from mesh_factory import rectangular |
---|
4636 | |
---|
4637 | #Create basic mesh |
---|
4638 | points, vertices, boundary = rectangular(6, 6) |
---|
4639 | |
---|
4640 | #Create shallow water domain |
---|
4641 | domain = Domain(points, vertices, boundary) |
---|
4642 | domain.smooth = False |
---|
4643 | domain.default_order=2 |
---|
4644 | domain.beta_w = 0.9 |
---|
4645 | domain.beta_w_dry = 0.9 |
---|
4646 | domain.beta_uh = 0.9 |
---|
4647 | domain.beta_uh_dry = 0.9 |
---|
4648 | domain.beta_vh = 0.9 |
---|
4649 | domain.beta_vh_dry = 0.9 |
---|
4650 | |
---|
4651 | |
---|
4652 | # FIXME (Ole): Need tests where these two are commented out |
---|
4653 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4654 | domain.tight_slope_limiters = 0 # Backwards compatibility (14/4/7) |
---|
4655 | domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) |
---|
4656 | |
---|
4657 | |
---|
4658 | |
---|
4659 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4660 | def x_slope(x, y): |
---|
4661 | return -x/3 |
---|
4662 | |
---|
4663 | domain.set_quantity('elevation', x_slope) |
---|
4664 | |
---|
4665 | # Boundary conditions |
---|
4666 | Br = Reflective_boundary(domain) |
---|
4667 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4668 | |
---|
4669 | #Initial condition |
---|
4670 | domain.set_quantity('stage', expression = 'elevation + 0.05') |
---|
4671 | domain.check_integrity() |
---|
4672 | |
---|
4673 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4674 | [0.01296296, 0.03148148, 0.01296296, |
---|
4675 | 0.03148148, 0.01296296, 0.03148148, |
---|
4676 | 0.01296296, 0.03148148, 0.01296296, |
---|
4677 | 0.03148148, 0.01296296, 0.03148148, |
---|
4678 | -0.04259259, -0.02407407, -0.04259259, |
---|
4679 | -0.02407407, -0.04259259, -0.02407407, |
---|
4680 | -0.04259259, -0.02407407, -0.04259259, |
---|
4681 | -0.02407407, -0.04259259, -0.02407407, |
---|
4682 | -0.09814815, -0.07962963, -0.09814815, |
---|
4683 | -0.07962963, -0.09814815, -0.07962963, |
---|
4684 | -0.09814815, -0.07962963, -0.09814815, |
---|
4685 | -0.07962963, -0.09814815, -0.07962963, |
---|
4686 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4687 | -0.13518519, -0.1537037, -0.13518519, |
---|
4688 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4689 | -0.13518519, -0.1537037, -0.13518519, |
---|
4690 | -0.20925926, -0.19074074, -0.20925926, |
---|
4691 | -0.19074074, -0.20925926, -0.19074074, |
---|
4692 | -0.20925926, -0.19074074, -0.20925926, |
---|
4693 | -0.19074074, -0.20925926, -0.19074074, |
---|
4694 | -0.26481481, -0.2462963, -0.26481481, |
---|
4695 | -0.2462963, -0.26481481, -0.2462963, |
---|
4696 | -0.26481481, -0.2462963, -0.26481481, |
---|
4697 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4698 | |
---|
4699 | |
---|
4700 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4701 | #domain.distribute_to_vertices_and_edges() |
---|
4702 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4703 | |
---|
4704 | #Evolution |
---|
4705 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
4706 | |
---|
4707 | # Check that diagnostics works |
---|
4708 | msg = domain.timestepping_statistics(track_speeds=True) |
---|
4709 | #FIXME(Ole): One might check the contents of msg here. |
---|
4710 | |
---|
4711 | |
---|
4712 | |
---|
4713 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4714 | [-0.02907028, -0.01475478, -0.02973417, -0.01447186, -0.02932665, -0.01428285, |
---|
4715 | -0.02901975, -0.0141361, -0.02898816, -0.01418135, -0.02961409, -0.01403487, |
---|
4716 | -0.07597998, -0.06252591, -0.07664854, -0.06312532, -0.07638287, -0.06265139, |
---|
4717 | -0.07571145, -0.06235231, -0.0756817, -0.06245309, -0.07652292, -0.06289946, |
---|
4718 | -0.12367464, -0.11088981, -0.12237277, -0.11115338, -0.1218934, -0.1107174, |
---|
4719 | -0.12081485, -0.11000491, -0.12038451, -0.11010335, -0.12102113, -0.11012105, |
---|
4720 | -0.16909116, -0.15831543, -0.16730214, -0.15786249, -0.1665493, -0.15697919, |
---|
4721 | -0.16496618, -0.15559852, -0.16338679, -0.15509088, -0.16364092, -0.15424423, |
---|
4722 | -0.18771107, -0.19903904, -0.18903759, -0.19858437, -0.18701552, -0.19697797, |
---|
4723 | -0.1833593, -0.19505871, -0.1818806, -0.19418042, -0.18586159, -0.19576946, |
---|
4724 | -0.13986873, -0.14170053, -0.14132188, -0.14560674, -0.14095617, -0.14373292, |
---|
4725 | -0.13785933, -0.14033364, -0.13592955, -0.13936356, -0.13596008, -0.14216296]) |
---|
4726 | |
---|
4727 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values, |
---|
4728 | [ 0.00831121, 0.00317948, 0.00731797, 0.00334939, 0.00764717, 0.00348053, |
---|
4729 | 0.00788729, 0.00356522, 0.00780649, 0.00341919, 0.00693525, 0.00310375, |
---|
4730 | 0.02166196, 0.01421475, 0.02017737, 0.01316839, 0.02037015, 0.01368659, |
---|
4731 | 0.02106, 0.01399161, 0.02074514, 0.01354935, 0.01887407, 0.0123113, |
---|
4732 | 0.03775083, 0.02855197, 0.03689337, 0.02759782, 0.03732848, 0.02812072, |
---|
4733 | 0.03872545, 0.02913348, 0.03880939, 0.02803804, 0.03546499, 0.0260039, |
---|
4734 | 0.0632131, 0.04730634, 0.0576324, 0.04592336, 0.05790921, 0.04690514, |
---|
4735 | 0.05986467, 0.04871165, 0.06170068, 0.04811572, 0.05657041, 0.04416292, |
---|
4736 | 0.08489642, 0.07188097, 0.07835261, 0.06843406, 0.07986412, 0.0698247, |
---|
4737 | 0.08201071, 0.07216756, 0.08378418, 0.07273624, 0.080399, 0.06645841, |
---|
4738 | 0.01631548, 0.04691608, 0.0206632, 0.044409, 0.02115518, 0.04560305, |
---|
4739 | 0.02160608, 0.04663725, 0.02174734, 0.04795559, 0.02281427, 0.05667111]) |
---|
4740 | |
---|
4741 | |
---|
4742 | assert numpy.allclose(domain.quantities['ymomentum'].centroid_values, |
---|
4743 | [ 1.45876601e-004, -3.24627393e-004, -1.57572719e-004, -2.92790187e-004, |
---|
4744 | -9.90988382e-005, -3.06677335e-004, -1.62493106e-004, -3.71310004e-004, |
---|
4745 | -1.99445058e-004, -3.28493467e-004, 6.68217349e-005, -8.42042805e-006, |
---|
4746 | 5.05093371e-004, -1.42842214e-004, -6.81454718e-005, -5.02084057e-004, |
---|
4747 | -8.50583861e-005, -4.65443981e-004, -1.96406564e-004, -5.88889562e-004, |
---|
4748 | -2.70160173e-004, -5.35485454e-004, 2.60780997e-004, 3.12145471e-005, |
---|
4749 | 5.16189608e-004, 1.07069062e-004, 9.29989252e-005, -3.71211119e-004, |
---|
4750 | 1.16350246e-004, -3.82407830e-004, -1.62077969e-004, -6.30906636e-004, |
---|
4751 | -4.74025708e-004, -6.94463009e-004, 6.15092843e-005, 2.22106820e-004, |
---|
4752 | -6.29589294e-004, 2.43611937e-004, -5.88125094e-004, -6.94293192e-005, |
---|
4753 | -4.17914641e-004, 6.64609019e-005, -7.68334577e-004, -3.40232101e-004, |
---|
4754 | -1.67424308e-003, -7.39485066e-004, -1.59966988e-003, 5.68262838e-005, |
---|
4755 | -1.48470633e-003, -1.84554882e-003, -2.27200099e-003, -1.67506848e-003, |
---|
4756 | -1.95610258e-003, -1.47638801e-003, -1.73779477e-003, -1.85498791e-003, |
---|
4757 | -2.01357843e-003, -2.17675471e-003, -1.65783870e-003, -1.15818681e-003, |
---|
4758 | -1.18663036e-003, -2.94229849e-003, -3.59309018e-003, -5.13496584e-003, |
---|
4759 | -6.17359400e-003, -5.98761937e-003, -6.00540116e-003, -5.01121966e-003, |
---|
4760 | -4.50964850e-003, -3.06319963e-003, 6.08950810e-004, -4.79537921e-004]) |
---|
4761 | |
---|
4762 | os.remove(domain.get_name() + '.sww') |
---|
4763 | |
---|
4764 | |
---|
4765 | |
---|
4766 | def NOtest_bedslope_problem_second_order_more_steps_feb_2007(self): |
---|
4767 | """test_bedslope_problem_second_order_more_steps_feb_2007 |
---|
4768 | |
---|
4769 | Test shallow water finite volumes, using parameters from |
---|
4770 | feb 2007 rather than backward compatibility ad infinitum |
---|
4771 | |
---|
4772 | """ |
---|
4773 | from mesh_factory import rectangular |
---|
4774 | |
---|
4775 | #Create basic mesh |
---|
4776 | points, vertices, boundary = rectangular(6, 6) |
---|
4777 | |
---|
4778 | #Create shallow water domain |
---|
4779 | domain = Domain(points, vertices, boundary) |
---|
4780 | domain.smooth = False |
---|
4781 | domain.default_order = 2 |
---|
4782 | domain.beta_w = 0.9 |
---|
4783 | domain.beta_w_dry = 0.9 |
---|
4784 | domain.beta_uh = 0.9 |
---|
4785 | domain.beta_uh_dry = 0.9 |
---|
4786 | domain.beta_vh = 0.9 |
---|
4787 | domain.beta_vh_dry = 0.9 |
---|
4788 | domain.H0 = 0.001 |
---|
4789 | domain.tight_slope_limiters = 1 |
---|
4790 | |
---|
4791 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4792 | def x_slope(x, y): |
---|
4793 | return -x/3 |
---|
4794 | |
---|
4795 | domain.set_quantity('elevation', x_slope) |
---|
4796 | |
---|
4797 | # Boundary conditions |
---|
4798 | Br = Reflective_boundary(domain) |
---|
4799 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4800 | |
---|
4801 | #Initial condition |
---|
4802 | domain.set_quantity('stage', expression = 'elevation + 0.05') |
---|
4803 | domain.check_integrity() |
---|
4804 | |
---|
4805 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4806 | [0.01296296, 0.03148148, 0.01296296, |
---|
4807 | 0.03148148, 0.01296296, 0.03148148, |
---|
4808 | 0.01296296, 0.03148148, 0.01296296, |
---|
4809 | 0.03148148, 0.01296296, 0.03148148, |
---|
4810 | -0.04259259, -0.02407407, -0.04259259, |
---|
4811 | -0.02407407, -0.04259259, -0.02407407, |
---|
4812 | -0.04259259, -0.02407407, -0.04259259, |
---|
4813 | -0.02407407, -0.04259259, -0.02407407, |
---|
4814 | -0.09814815, -0.07962963, -0.09814815, |
---|
4815 | -0.07962963, -0.09814815, -0.07962963, |
---|
4816 | -0.09814815, -0.07962963, -0.09814815, |
---|
4817 | -0.07962963, -0.09814815, -0.07962963, |
---|
4818 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4819 | -0.13518519, -0.1537037, -0.13518519, |
---|
4820 | -0.1537037 , -0.13518519, -0.1537037, |
---|
4821 | -0.13518519, -0.1537037, -0.13518519, |
---|
4822 | -0.20925926, -0.19074074, -0.20925926, |
---|
4823 | -0.19074074, -0.20925926, -0.19074074, |
---|
4824 | -0.20925926, -0.19074074, -0.20925926, |
---|
4825 | -0.19074074, -0.20925926, -0.19074074, |
---|
4826 | -0.26481481, -0.2462963, -0.26481481, |
---|
4827 | -0.2462963, -0.26481481, -0.2462963, |
---|
4828 | -0.26481481, -0.2462963, -0.26481481, |
---|
4829 | -0.2462963, -0.26481481, -0.2462963]) |
---|
4830 | |
---|
4831 | |
---|
4832 | #print domain.quantities['stage'].extrapolate_second_order() |
---|
4833 | #domain.distribute_to_vertices_and_edges() |
---|
4834 | #print domain.quantities['stage'].vertex_values[:,0] |
---|
4835 | |
---|
4836 | #Evolution |
---|
4837 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.5): |
---|
4838 | pass |
---|
4839 | |
---|
4840 | |
---|
4841 | #print domain.quantities['stage'].centroid_values |
---|
4842 | |
---|
4843 | assert numpy.allclose(domain.quantities['stage'].centroid_values, |
---|
4844 | [-0.03348416, -0.01749303, -0.03299091, -0.01739241, -0.03246447, -0.01732016, |
---|
4845 | -0.03205390, -0.01717833, -0.03146383, -0.01699831, -0.03076577, -0.01671795, |
---|
4846 | -0.07952656, -0.06684763, -0.07721455, -0.06668388, -0.07632976, -0.06600113, |
---|
4847 | -0.07523678, -0.06546373, -0.07447040, -0.06508861, -0.07438723, -0.06359288, |
---|
4848 | -0.12526729, -0.11205668, -0.12179433, -0.11068104, -0.12048395, -0.10968948, |
---|
4849 | -0.11912023, -0.10862628, -0.11784090, -0.10803744, -0.11790629, -0.10742354, |
---|
4850 | -0.16859613, -0.15427413, -0.16664444, -0.15464452, -0.16570816, -0.15327556, |
---|
4851 | -0.16409162, -0.15204092, -0.16264608, -0.15102139, -0.16162736, -0.14969205, |
---|
4852 | -0.18736511, -0.19874036, -0.18811230, -0.19758289, -0.18590182, -0.19580301, |
---|
4853 | -0.18234588, -0.19423215, -0.18100376, -0.19380116, -0.18509710, -0.19501636, |
---|
4854 | -0.13982382, -0.14166819, -0.14132775, -0.14528694, -0.14096905, -0.14351126, |
---|
4855 | -0.13800356, -0.14027920, -0.13613538, -0.13936795, -0.13621902, -0.14204982]) |
---|
4856 | |
---|
4857 | |
---|
4858 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values, |
---|
4859 | [0.00600290, 0.00175780, 0.00591905, 0.00190903, 0.00644462, 0.00203095, |
---|
4860 | 0.00684561, 0.00225089, 0.00708208, 0.00236235, 0.00649095, 0.00222343, |
---|
4861 | 0.02068693, 0.01164034, 0.01983343, 0.01159526, 0.02044611, 0.01233252, |
---|
4862 | 0.02135685, 0.01301289, 0.02161290, 0.01260280, 0.01867612, 0.01133078, |
---|
4863 | 0.04091313, 0.02668283, 0.03634781, 0.02733469, 0.03767692, 0.02836840, |
---|
4864 | 0.03906338, 0.02958073, 0.04025669, 0.02953292, 0.03665616, 0.02583565, |
---|
4865 | 0.06314558, 0.04830935, 0.05663609, 0.04564362, 0.05756200, 0.04739673, |
---|
4866 | 0.05967379, 0.04919083, 0.06124330, 0.04965808, 0.05879240, 0.04629319, |
---|
4867 | 0.08220739, 0.06924725, 0.07713556, 0.06782640, 0.07909499, 0.06992544, |
---|
4868 | 0.08116621, 0.07210181, 0.08281548, 0.07222669, 0.07941059, 0.06755612, |
---|
4869 | 0.01581588, 0.04533609, 0.02017939, 0.04342565, 0.02073232, 0.04476108, |
---|
4870 | 0.02117439, 0.04573358, 0.02129473, 0.04694267, 0.02220398, 0.05533458]) |
---|
4871 | |
---|
4872 | |
---|
4873 | assert numpy.allclose(domain.quantities['ymomentum'].centroid_values, |
---|
4874 | [-7.65882069e-005, -1.46087080e-004, -1.09630102e-004, -7.80950424e-005, |
---|
4875 | -1.15922807e-005, -9.09134899e-005, -1.35994542e-004, -1.95673476e-004, |
---|
4876 | -4.25779199e-004, -2.95890312e-004, -4.00060341e-004, -9.42021290e-005, |
---|
4877 | -3.41372596e-004, -1.54560195e-004, -2.94810038e-004, -1.08844546e-004, |
---|
4878 | -6.97240892e-005, 3.50299623e-005, -2.40159184e-004, -2.01805883e-004, |
---|
4879 | -7.60732405e-004, -5.10897642e-004, -1.00940001e-003, -1.38037759e-004, |
---|
4880 | -1.06169131e-003, -3.12307760e-004, -9.90602307e-004, -4.21634250e-005, |
---|
4881 | -6.02424239e-004, 1.52230578e-004, -7.63833035e-004, -1.10273481e-004, |
---|
4882 | -1.40187071e-003, -5.57831837e-004, -1.63988285e-003, -2.48018092e-004, |
---|
4883 | -1.83309840e-003, -6.19360836e-004, -1.29955242e-003, -3.76237145e-004, |
---|
4884 | -1.00613007e-003, -8.63641918e-005, -1.13604124e-003, -3.90589728e-004, |
---|
4885 | -1.91457355e-003, -9.43783961e-004, -2.28090840e-003, -5.79107025e-004, |
---|
4886 | -1.54091533e-003, -2.39785792e-003, -2.47947427e-003, -2.02694009e-003, |
---|
4887 | -2.10441194e-003, -1.82082650e-003, -1.80229336e-003, -2.10418336e-003, |
---|
4888 | -1.93104408e-003, -2.23200334e-003, -1.57239706e-003, -1.31486358e-003, |
---|
4889 | -1.17564993e-003, -2.85846494e-003, -3.52956754e-003, -5.12658193e-003, |
---|
4890 | -6.24238960e-003, -6.01820113e-003, -6.09602201e-003, -5.04787190e-003, |
---|
4891 | -4.59373845e-003, -3.01393146e-003, 5.08550095e-004, -4.35896549e-004]) |
---|
4892 | |
---|
4893 | os.remove(domain.get_name() + '.sww') |
---|
4894 | |
---|
4895 | |
---|
4896 | def test_temp_play(self): |
---|
4897 | |
---|
4898 | from mesh_factory import rectangular |
---|
4899 | |
---|
4900 | #Create basic mesh |
---|
4901 | points, vertices, boundary = rectangular(5, 5) |
---|
4902 | |
---|
4903 | #Create shallow water domain |
---|
4904 | domain = Domain(points, vertices, boundary) |
---|
4905 | domain.smooth = False |
---|
4906 | domain.default_order=2 |
---|
4907 | domain.beta_w = 0.9 |
---|
4908 | domain.beta_w_dry = 0.9 |
---|
4909 | domain.beta_uh = 0.9 |
---|
4910 | domain.beta_uh_dry = 0.9 |
---|
4911 | domain.beta_vh = 0.9 |
---|
4912 | domain.beta_vh_dry = 0.9 |
---|
4913 | |
---|
4914 | # FIXME (Ole): Need tests where these two are commented out |
---|
4915 | domain.H0 = 0 # Backwards compatibility (6/2/7) |
---|
4916 | domain.tight_slope_limiters = False # Backwards compatibility (14/4/7) |
---|
4917 | domain.use_centroid_velocities = False # Backwards compatibility (7/5/8) |
---|
4918 | domain.use_edge_limiter = False # Backwards compatibility (9/5/8) |
---|
4919 | |
---|
4920 | |
---|
4921 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
4922 | def x_slope(x, y): |
---|
4923 | return -x/3 |
---|
4924 | |
---|
4925 | domain.set_quantity('elevation', x_slope) |
---|
4926 | |
---|
4927 | # Boundary conditions |
---|
4928 | Br = Reflective_boundary(domain) |
---|
4929 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
4930 | |
---|
4931 | #Initial condition |
---|
4932 | domain.set_quantity('stage', expression='elevation+0.05') |
---|
4933 | domain.check_integrity() |
---|
4934 | |
---|
4935 | #Evolution |
---|
4936 | for t in domain.evolve(yieldstep = 0.05, finaltime = 0.1): |
---|
4937 | pass |
---|
4938 | |
---|
4939 | assert numpy.allclose(domain.quantities['stage'].centroid_values[:4], |
---|
4940 | [0.00206836, 0.01296714, 0.00363415, 0.01438924]) |
---|
4941 | #print domain.quantities['xmomentum'].centroid_values[:4] |
---|
4942 | assert numpy.allclose(domain.quantities['xmomentum'].centroid_values[:4], |
---|
4943 | [0.01360154, 0.00671133, 0.01264578, 0.00648503]) |
---|
4944 | assert numpy.allclose(domain.quantities['ymomentum'].centroid_values[:4], |
---|
4945 | [-1.19201077e-003, -7.23647546e-004, |
---|
4946 | -6.39083123e-005, 6.29815168e-005]) |
---|
4947 | |
---|
4948 | os.remove(domain.get_name() + '.sww') |
---|
4949 | |
---|
4950 | def test_complex_bed(self): |
---|
4951 | #No friction is tested here |
---|
4952 | |
---|
4953 | from mesh_factory import rectangular |
---|
4954 | |
---|
4955 | N = 12 |
---|
4956 | points, vertices, boundary = rectangular(N, N/2, len1=1.2,len2=0.6, |
---|
4957 | origin=(-0.07, 0)) |
---|
4958 | |
---|
4959 | |
---|
4960 | domain = Domain(points, vertices, boundary) |
---|
4961 | domain.smooth = False |
---|
4962 | domain.default_order=2 |
---|
4963 | |
---|
4964 | |
---|
4965 | inflow_stage = 0.1 |
---|
4966 | Z = Weir(inflow_stage) |
---|
4967 | domain.set_quantity('elevation', Z) |
---|
4968 | |
---|
4969 | Br = Reflective_boundary(domain) |
---|
4970 | Bd = Dirichlet_boundary([inflow_stage, 0.0, 0.0]) |
---|
4971 | domain.set_boundary({'left': Bd, 'right': Br, 'bottom': Br, 'top': Br}) |
---|
4972 | |
---|
4973 | domain.set_quantity('stage', expression='elevation') |
---|
4974 | |
---|
4975 | for t in domain.evolve(yieldstep = 0.02, finaltime = 0.2): |
---|
4976 | pass |
---|
4977 | |
---|
4978 | |
---|
4979 | #print domain.quantities['stage'].centroid_values |
---|
4980 | |
---|
4981 | #FIXME: These numbers were from version before 25/10 |
---|
4982 | #assert allclose(domain.quantities['stage'].centroid_values, |
---|
4983 | # [3.95822638e-002, 5.61022588e-002, 4.66437868e-002, 5.73081011e-002, |
---|
4984 | # 4.72394613e-002, 5.74684939e-002, 4.74309483e-002, 5.77458084e-002, |
---|
4985 | # 4.80628177e-002, 5.85656225e-002, 4.90498542e-002, 6.02609831e-002, |
---|
4986 | # 1.18470315e-002, 1.75136443e-002, 1.18035266e-002, 2.15565695e-002, |
---|
4987 | # 1.31620268e-002, 2.14351640e-002, 1.32351076e-002, 2.15450687e-002, |
---|
4988 | # 1.36414028e-002, 2.24274619e-002, 1.51689511e-002, 2.21789655e-002, |
---|
4989 | # -7.54337535e-003, -6.86362021e-004, -7.74146760e-003, -1.83756530e-003, |
---|
4990 | # -8.16773628e-003, -4.49916813e-004, -8.08202599e-003, -3.91118720e-004, |
---|
4991 | # -8.10292716e-003, -3.88584984e-004, -7.35226124e-003, 2.73985295e-004, |
---|
4992 | # 1.86166683e-001, 8.74070369e-002, 1.86166712e-001, 8.74035875e-002, |
---|
4993 | # 6.11666935e-002, -3.76173225e-002, -6.38333276e-002, -3.76147365e-002, |
---|
4994 | # 6.11666725e-002, 8.73846774e-002, 1.86166697e-001, 8.74171550e-002, |
---|
4995 | # -4.83333333e-002, 1.18333333e-001, -4.83333333e-002, 1.18333333e-001, |
---|
4996 | # -4.83333333e-002, -6.66666667e-003, -1.73333333e-001, -1.31666667e-001, |
---|
4997 | # -1.73333333e-001, -6.66666667e-003, -4.83333333e-002, 1.18333333e-001, |
---|
4998 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
4999 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
5000 | # -2.48333333e-001, -2.31666667e-001, -2.48333333e-001, -2.31666667e-001, |
---|
5001 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
5002 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
5003 | # -4.65000000e-001, -3.65000000e-001, -4.65000000e-001, -3.65000000e-001, |
---|
5004 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
5005 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
5006 | # -5.98333333e-001, -5.81666667e-001, -5.98333333e-001, -5.81666667e-001, |
---|
5007 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
5008 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
5009 | # -6.48333333e-001, -6.31666667e-001, -6.48333333e-001, -6.31666667e-001, |
---|
5010 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
5011 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
5012 | # -5.31666667e-001, -5.98333333e-001, -5.31666667e-001, -5.98333333e-001, |
---|
5013 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
5014 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
5015 | # -4.98333333e-001, -4.81666667e-001, -4.98333333e-001, -4.81666667e-001, |
---|
5016 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
5017 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001, |
---|
5018 | # -5.48333333e-001, -5.31666667e-001, -5.48333333e-001, -5.31666667e-001]) |
---|
5019 | |
---|
5020 | os.remove(domain.get_name() + '.sww') |
---|
5021 | |
---|
5022 | def test_spatio_temporal_boundary_1(self): |
---|
5023 | """Test that boundary values can be read from file and interpolated |
---|
5024 | in both time and space. |
---|
5025 | |
---|
5026 | Verify that the same steady state solution is arrived at and that |
---|
5027 | time interpolation works. |
---|
5028 | |
---|
5029 | The full solution history is not exactly the same as |
---|
5030 | file boundary must read and interpolate from *smoothed* version |
---|
5031 | as stored in sww. |
---|
5032 | """ |
---|
5033 | import time |
---|
5034 | |
---|
5035 | #Create sww file of simple propagation from left to right |
---|
5036 | #through rectangular domain |
---|
5037 | |
---|
5038 | from mesh_factory import rectangular |
---|
5039 | |
---|
5040 | #Create basic mesh |
---|
5041 | points, vertices, boundary = rectangular(3, 3) |
---|
5042 | |
---|
5043 | #Create shallow water domain |
---|
5044 | domain1 = Domain(points, vertices, boundary) |
---|
5045 | |
---|
5046 | domain1.reduction = mean |
---|
5047 | domain1.smooth = False #Exact result |
---|
5048 | |
---|
5049 | domain1.default_order = 2 |
---|
5050 | domain1.store = True |
---|
5051 | domain1.set_datadir('.') |
---|
5052 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
5053 | |
---|
5054 | #FIXME: This is extremely important! |
---|
5055 | #How can we test if they weren't stored? |
---|
5056 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
5057 | |
---|
5058 | |
---|
5059 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5060 | domain1.set_quantity('elevation', 0) |
---|
5061 | domain1.set_quantity('friction', 0) |
---|
5062 | |
---|
5063 | # Boundary conditions |
---|
5064 | Br = Reflective_boundary(domain1) |
---|
5065 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
5066 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
5067 | #Initial condition |
---|
5068 | domain1.set_quantity('stage', 0) |
---|
5069 | domain1.check_integrity() |
---|
5070 | |
---|
5071 | finaltime = 5 |
---|
5072 | #Evolution (full domain - large steps) |
---|
5073 | for t in domain1.evolve(yieldstep = 0.671, finaltime = finaltime): |
---|
5074 | pass |
---|
5075 | #domain1.write_time() |
---|
5076 | |
---|
5077 | cv1 = domain1.quantities['stage'].centroid_values |
---|
5078 | |
---|
5079 | |
---|
5080 | #Create a triangle shaped domain (reusing coordinates from domain 1), |
---|
5081 | #formed from the lower and right hand boundaries and |
---|
5082 | #the sw-ne diagonal |
---|
5083 | #from domain 1. Call it domain2 |
---|
5084 | |
---|
5085 | points = [ [0,0], [1.0/3,0], [1.0/3,1.0/3], |
---|
5086 | [2.0/3,0], [2.0/3,1.0/3], [2.0/3,2.0/3], |
---|
5087 | [1,0], [1,1.0/3], [1,2.0/3], [1,1]] |
---|
5088 | |
---|
5089 | vertices = [ [1,2,0], [3,4,1], [2,1,4], [4,5,2], |
---|
5090 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
5091 | |
---|
5092 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
5093 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
5094 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
5095 | |
---|
5096 | domain2 = Domain(points, vertices, boundary) |
---|
5097 | |
---|
5098 | domain2.reduction = domain1.reduction |
---|
5099 | domain2.smooth = False |
---|
5100 | domain2.default_order = 2 |
---|
5101 | |
---|
5102 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5103 | domain2.set_quantity('elevation', 0) |
---|
5104 | domain2.set_quantity('friction', 0) |
---|
5105 | domain2.set_quantity('stage', 0) |
---|
5106 | |
---|
5107 | # Boundary conditions |
---|
5108 | Br = Reflective_boundary(domain2) |
---|
5109 | #Bf = Spatio_temporal_boundary(domain1.get_name() + '.' +\ |
---|
5110 | # domain1.format, domain2) |
---|
5111 | Bf = Field_boundary(domain1.get_name() + '.' +\ |
---|
5112 | domain1.format, domain2) |
---|
5113 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
5114 | domain2.check_integrity() |
---|
5115 | |
---|
5116 | |
---|
5117 | |
---|
5118 | #Evolution (small steps) |
---|
5119 | for t in domain2.evolve(yieldstep = 0.0711, finaltime = finaltime): |
---|
5120 | pass |
---|
5121 | |
---|
5122 | |
---|
5123 | #Use output from domain1 as spatio-temporal boundary for domain2 |
---|
5124 | #and verify that results at right hand side are close. |
---|
5125 | |
---|
5126 | cv2 = domain2.quantities['stage'].centroid_values |
---|
5127 | |
---|
5128 | #print take(cv1, (12,14,16)) #Right |
---|
5129 | #print take(cv2, (4,6,8)) |
---|
5130 | #print take(cv1, (0,6,12)) #Bottom |
---|
5131 | #print take(cv2, (0,1,4)) |
---|
5132 | #print take(cv1, (0,8,16)) #Diag |
---|
5133 | #print take(cv2, (0,3,8)) |
---|
5134 | |
---|
5135 | assert numpy.allclose( numpy.take(cv1, (0,8,16)), numpy.take(cv2, (0,3,8))) #Diag |
---|
5136 | assert numpy.allclose( numpy.take(cv1, (0,6,12)), numpy.take(cv2, (0,1,4))) #Bottom |
---|
5137 | assert numpy.allclose( numpy.take(cv1, (12,14,16)), numpy.take(cv2, (4,6,8))) #RHS |
---|
5138 | |
---|
5139 | #Cleanup |
---|
5140 | os.remove(domain1.get_name() + '.' + domain1.format) |
---|
5141 | os.remove(domain2.get_name() + '.' + domain2.format) |
---|
5142 | |
---|
5143 | |
---|
5144 | |
---|
5145 | def test_spatio_temporal_boundary_2(self): |
---|
5146 | """Test that boundary values can be read from file and interpolated |
---|
5147 | in both time and space. |
---|
5148 | This is a more basic test, verifying that boundary object |
---|
5149 | produces the expected results |
---|
5150 | |
---|
5151 | |
---|
5152 | """ |
---|
5153 | import time |
---|
5154 | |
---|
5155 | #Create sww file of simple propagation from left to right |
---|
5156 | #through rectangular domain |
---|
5157 | |
---|
5158 | from mesh_factory import rectangular |
---|
5159 | |
---|
5160 | #Create basic mesh |
---|
5161 | points, vertices, boundary = rectangular(3, 3) |
---|
5162 | |
---|
5163 | #Create shallow water domain |
---|
5164 | domain1 = Domain(points, vertices, boundary) |
---|
5165 | |
---|
5166 | domain1.reduction = mean |
---|
5167 | domain1.smooth = True #To mimic MOST output |
---|
5168 | |
---|
5169 | domain1.default_order = 2 |
---|
5170 | domain1.store = True |
---|
5171 | domain1.set_datadir('.') |
---|
5172 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
5173 | |
---|
5174 | #FIXME: This is extremely important! |
---|
5175 | #How can we test if they weren't stored? |
---|
5176 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
5177 | |
---|
5178 | |
---|
5179 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5180 | domain1.set_quantity('elevation', 0) |
---|
5181 | domain1.set_quantity('friction', 0) |
---|
5182 | |
---|
5183 | # Boundary conditions |
---|
5184 | Br = Reflective_boundary(domain1) |
---|
5185 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
5186 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
5187 | #Initial condition |
---|
5188 | domain1.set_quantity('stage', 0) |
---|
5189 | domain1.check_integrity() |
---|
5190 | |
---|
5191 | finaltime = 5 |
---|
5192 | #Evolution (full domain - large steps) |
---|
5193 | for t in domain1.evolve(yieldstep = 1, finaltime = finaltime): |
---|
5194 | pass |
---|
5195 | #domain1.write_time() |
---|
5196 | |
---|
5197 | |
---|
5198 | #Create an triangle shaped domain (coinciding with some |
---|
5199 | #coordinates from domain 1), |
---|
5200 | #formed from the lower and right hand boundaries and |
---|
5201 | #the sw-ne diagonal |
---|
5202 | #from domain 1. Call it domain2 |
---|
5203 | |
---|
5204 | points = [ [0,0], [1.0/3,0], [1.0/3,1.0/3], |
---|
5205 | [2.0/3,0], [2.0/3,1.0/3], [2.0/3,2.0/3], |
---|
5206 | [1,0], [1,1.0/3], [1,2.0/3], [1,1]] |
---|
5207 | |
---|
5208 | vertices = [ [1,2,0], |
---|
5209 | [3,4,1], [2,1,4], [4,5,2], |
---|
5210 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
5211 | |
---|
5212 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
5213 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
5214 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
5215 | |
---|
5216 | domain2 = Domain(points, vertices, boundary) |
---|
5217 | |
---|
5218 | domain2.reduction = domain1.reduction |
---|
5219 | domain2.smooth = False |
---|
5220 | domain2.default_order = 2 |
---|
5221 | |
---|
5222 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5223 | domain2.set_quantity('elevation', 0) |
---|
5224 | domain2.set_quantity('friction', 0) |
---|
5225 | domain2.set_quantity('stage', 0) |
---|
5226 | |
---|
5227 | |
---|
5228 | #Read results for specific timesteps t=1 and t=2 |
---|
5229 | from Scientific.IO.NetCDF import NetCDFFile |
---|
5230 | fid = NetCDFFile(domain1.get_name() + '.' + domain1.format) |
---|
5231 | |
---|
5232 | x = fid.variables['x'][:] |
---|
5233 | y = fid.variables['y'][:] |
---|
5234 | s1 = fid.variables['stage'][1,:] |
---|
5235 | s2 = fid.variables['stage'][2,:] |
---|
5236 | fid.close() |
---|
5237 | |
---|
5238 | shp = (len(x), 1) |
---|
5239 | points = numpy.concatenate( (numpy.reshape(x, shp), numpy.reshape(y, shp)), axis=1) |
---|
5240 | #The diagonal points of domain 1 are 0, 5, 10, 15 |
---|
5241 | |
---|
5242 | #print points[0], points[5], points[10], points[15] |
---|
5243 | assert numpy.allclose( numpy.take(points, [0,5,10,15]), |
---|
5244 | [[0,0], [1.0/3, 1.0/3], [2.0/3, 2.0/3], [1,1]]) |
---|
5245 | |
---|
5246 | |
---|
5247 | # Boundary conditions |
---|
5248 | Br = Reflective_boundary(domain2) |
---|
5249 | #Bf = Spatio_temporal_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5250 | # domain2) |
---|
5251 | Bf = Field_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5252 | domain2, verbose=False) |
---|
5253 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
5254 | domain2.check_integrity() |
---|
5255 | |
---|
5256 | #Test that interpolation points are the mid points of the all boundary |
---|
5257 | #segments |
---|
5258 | |
---|
5259 | boundary_midpoints = [[1.0/6, 0], [1.0/2, 0], [5.0/6,0], |
---|
5260 | [1.0, 1.0/6], [1.0, 1.0/2], [1.0, 5.0/6], |
---|
5261 | [1.0/6, 1.0/6], [0.5, 0.5], [5.0/6, 5.0/6]] |
---|
5262 | |
---|
5263 | boundary_midpoints.sort() |
---|
5264 | R = Bf.F.interpolation_points.tolist() |
---|
5265 | R.sort() |
---|
5266 | assert numpy.allclose(boundary_midpoints, R) |
---|
5267 | |
---|
5268 | #Check spatially interpolated output at time == 1 |
---|
5269 | domain2.time = 1 |
---|
5270 | |
---|
5271 | #First diagonal midpoint |
---|
5272 | R0 = Bf.evaluate(0,0) |
---|
5273 | assert numpy.allclose(R0[0], (s1[0] + s1[5])/2) |
---|
5274 | |
---|
5275 | #Second diagonal midpoint |
---|
5276 | R0 = Bf.evaluate(3,0) |
---|
5277 | assert numpy.allclose(R0[0], (s1[5] + s1[10])/2) |
---|
5278 | |
---|
5279 | #First diagonal midpoint |
---|
5280 | R0 = Bf.evaluate(8,0) |
---|
5281 | assert numpy.allclose(R0[0], (s1[10] + s1[15])/2) |
---|
5282 | |
---|
5283 | #Check spatially interpolated output at time == 2 |
---|
5284 | domain2.time = 2 |
---|
5285 | |
---|
5286 | #First diagonal midpoint |
---|
5287 | R0 = Bf.evaluate(0,0) |
---|
5288 | assert numpy.allclose(R0[0], (s2[0] + s2[5])/2) |
---|
5289 | |
---|
5290 | #Second diagonal midpoint |
---|
5291 | R0 = Bf.evaluate(3,0) |
---|
5292 | assert numpy.allclose(R0[0], (s2[5] + s2[10])/2) |
---|
5293 | |
---|
5294 | #First diagonal midpoint |
---|
5295 | R0 = Bf.evaluate(8,0) |
---|
5296 | assert numpy.allclose(R0[0], (s2[10] + s2[15])/2) |
---|
5297 | |
---|
5298 | |
---|
5299 | #Now check temporal interpolation |
---|
5300 | |
---|
5301 | domain2.time = 1 + 2.0/3 |
---|
5302 | |
---|
5303 | #First diagonal midpoint |
---|
5304 | R0 = Bf.evaluate(0,0) |
---|
5305 | assert numpy.allclose(R0[0], ((s1[0] + s1[5])/2 + 2.0*(s2[0] + s2[5])/2)/3) |
---|
5306 | |
---|
5307 | #Second diagonal midpoint |
---|
5308 | R0 = Bf.evaluate(3,0) |
---|
5309 | assert numpy.allclose(R0[0], ((s1[5] + s1[10])/2 + 2.0*(s2[5] + s2[10])/2)/3) |
---|
5310 | |
---|
5311 | #First diagonal midpoint |
---|
5312 | R0 = Bf.evaluate(8,0) |
---|
5313 | assert numpy.allclose(R0[0], ((s1[10] + s1[15])/2 + 2.0*(s2[10] + s2[15])/2)/3) |
---|
5314 | |
---|
5315 | |
---|
5316 | |
---|
5317 | #Cleanup |
---|
5318 | os.remove(domain1.get_name() + '.' + domain1.format) |
---|
5319 | |
---|
5320 | |
---|
5321 | def test_spatio_temporal_boundary_3(self): |
---|
5322 | """Test that boundary values can be read from file and interpolated |
---|
5323 | in both time and space. |
---|
5324 | This is a more basic test, verifying that boundary object |
---|
5325 | produces the expected results |
---|
5326 | |
---|
5327 | This tests adjusting using mean_stage |
---|
5328 | |
---|
5329 | """ |
---|
5330 | |
---|
5331 | import time |
---|
5332 | |
---|
5333 | mean_stage = 5.2 # Adjust stage by this amount in boundary |
---|
5334 | |
---|
5335 | #Create sww file of simple propagation from left to right |
---|
5336 | #through rectangular domain |
---|
5337 | |
---|
5338 | from mesh_factory import rectangular |
---|
5339 | |
---|
5340 | #Create basic mesh |
---|
5341 | points, vertices, boundary = rectangular(3, 3) |
---|
5342 | |
---|
5343 | #Create shallow water domain |
---|
5344 | domain1 = Domain(points, vertices, boundary) |
---|
5345 | |
---|
5346 | domain1.reduction = mean |
---|
5347 | domain1.smooth = True #To mimic MOST output |
---|
5348 | |
---|
5349 | domain1.default_order = 2 |
---|
5350 | domain1.store = True |
---|
5351 | domain1.set_datadir('.') |
---|
5352 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
5353 | |
---|
5354 | #FIXME: This is extremely important! |
---|
5355 | #How can we test if they weren't stored? |
---|
5356 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
5357 | |
---|
5358 | |
---|
5359 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5360 | domain1.set_quantity('elevation', 0) |
---|
5361 | domain1.set_quantity('friction', 0) |
---|
5362 | |
---|
5363 | # Boundary conditions |
---|
5364 | Br = Reflective_boundary(domain1) |
---|
5365 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
5366 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
5367 | #Initial condition |
---|
5368 | domain1.set_quantity('stage', 0) |
---|
5369 | domain1.check_integrity() |
---|
5370 | |
---|
5371 | finaltime = 5 |
---|
5372 | #Evolution (full domain - large steps) |
---|
5373 | for t in domain1.evolve(yieldstep = 1, finaltime = finaltime): |
---|
5374 | pass |
---|
5375 | #domain1.write_time() |
---|
5376 | |
---|
5377 | |
---|
5378 | #Create an triangle shaped domain (coinciding with some |
---|
5379 | #coordinates from domain 1), |
---|
5380 | #formed from the lower and right hand boundaries and |
---|
5381 | #the sw-ne diagonal |
---|
5382 | #from domain 1. Call it domain2 |
---|
5383 | |
---|
5384 | points = [ [0,0], |
---|
5385 | [1.0/3,0], [1.0/3,1.0/3], |
---|
5386 | [2.0/3,0], [2.0/3,1.0/3], [2.0/3,2.0/3], |
---|
5387 | [1,0], [1,1.0/3], [1,2.0/3], [1,1]] |
---|
5388 | |
---|
5389 | vertices = [ [1,2,0], |
---|
5390 | [3,4,1], [2,1,4], [4,5,2], |
---|
5391 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
5392 | |
---|
5393 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
5394 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
5395 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
5396 | |
---|
5397 | domain2 = Domain(points, vertices, boundary) |
---|
5398 | |
---|
5399 | domain2.reduction = domain1.reduction |
---|
5400 | domain2.smooth = False |
---|
5401 | domain2.default_order = 2 |
---|
5402 | |
---|
5403 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5404 | domain2.set_quantity('elevation', 0) |
---|
5405 | domain2.set_quantity('friction', 0) |
---|
5406 | domain2.set_quantity('stage', 0) |
---|
5407 | |
---|
5408 | |
---|
5409 | #Read results for specific timesteps t=1 and t=2 |
---|
5410 | from Scientific.IO.NetCDF import NetCDFFile |
---|
5411 | fid = NetCDFFile(domain1.get_name() + '.' + domain1.format) |
---|
5412 | |
---|
5413 | x = fid.variables['x'][:] |
---|
5414 | y = fid.variables['y'][:] |
---|
5415 | s1 = fid.variables['stage'][1,:] |
---|
5416 | s2 = fid.variables['stage'][2,:] |
---|
5417 | fid.close() |
---|
5418 | |
---|
5419 | shp = (len(x), 1) |
---|
5420 | points = numpy.concatenate( (numpy.reshape(x, shp), numpy.reshape(y, shp)), axis=1) |
---|
5421 | #The diagonal points of domain 1 are 0, 5, 10, 15 |
---|
5422 | |
---|
5423 | #print points[0], points[5], points[10], points[15] |
---|
5424 | assert numpy.allclose( numpy.take(points, [0,5,10,15]), |
---|
5425 | [[0,0], [1.0/3, 1.0/3], [2.0/3, 2.0/3], [1,1]]) |
---|
5426 | |
---|
5427 | |
---|
5428 | # Boundary conditions |
---|
5429 | Br = Reflective_boundary(domain2) |
---|
5430 | #Bf = Spatio_temporal_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5431 | # domain2) |
---|
5432 | Bf = Field_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5433 | domain2, mean_stage=mean_stage, verbose=False) |
---|
5434 | |
---|
5435 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
5436 | domain2.check_integrity() |
---|
5437 | |
---|
5438 | #Test that interpolation points are the mid points of the all boundary |
---|
5439 | #segments |
---|
5440 | |
---|
5441 | boundary_midpoints = [[1.0/6, 0], [1.0/2, 0], [5.0/6,0], |
---|
5442 | [1.0, 1.0/6], [1.0, 1.0/2], [1.0, 5.0/6], |
---|
5443 | [1.0/6, 1.0/6], [0.5, 0.5], [5.0/6, 5.0/6]] |
---|
5444 | |
---|
5445 | boundary_midpoints.sort() |
---|
5446 | R = Bf.F.interpolation_points.tolist() |
---|
5447 | R.sort() |
---|
5448 | assert numpy.allclose(boundary_midpoints, R) |
---|
5449 | |
---|
5450 | #Check spatially interpolated output at time == 1 |
---|
5451 | domain2.time = 1 |
---|
5452 | |
---|
5453 | #First diagonal midpoint |
---|
5454 | R0 = Bf.evaluate(0,0) |
---|
5455 | assert numpy.allclose(R0[0], (s1[0] + s1[5])/2 + mean_stage) |
---|
5456 | |
---|
5457 | #Second diagonal midpoint |
---|
5458 | R0 = Bf.evaluate(3,0) |
---|
5459 | assert numpy.allclose(R0[0], (s1[5] + s1[10])/2 + mean_stage) |
---|
5460 | |
---|
5461 | #First diagonal midpoint |
---|
5462 | R0 = Bf.evaluate(8,0) |
---|
5463 | assert numpy.allclose(R0[0], (s1[10] + s1[15])/2 + mean_stage) |
---|
5464 | |
---|
5465 | #Check spatially interpolated output at time == 2 |
---|
5466 | domain2.time = 2 |
---|
5467 | |
---|
5468 | #First diagonal midpoint |
---|
5469 | R0 = Bf.evaluate(0,0) |
---|
5470 | assert numpy.allclose(R0[0], (s2[0] + s2[5])/2 + mean_stage) |
---|
5471 | |
---|
5472 | #Second diagonal midpoint |
---|
5473 | R0 = Bf.evaluate(3,0) |
---|
5474 | assert numpy.allclose(R0[0], (s2[5] + s2[10])/2 + mean_stage) |
---|
5475 | |
---|
5476 | #First diagonal midpoint |
---|
5477 | R0 = Bf.evaluate(8,0) |
---|
5478 | assert numpy.allclose(R0[0], (s2[10] + s2[15])/2 + mean_stage) |
---|
5479 | |
---|
5480 | |
---|
5481 | #Now check temporal interpolation |
---|
5482 | |
---|
5483 | domain2.time = 1 + 2.0/3 |
---|
5484 | |
---|
5485 | #First diagonal midpoint |
---|
5486 | R0 = Bf.evaluate(0,0) |
---|
5487 | assert numpy.allclose(R0[0], ((s1[0] + s1[5])/2 + 2.0*(s2[0] + s2[5])/2)/3 + mean_stage) |
---|
5488 | |
---|
5489 | #Second diagonal midpoint |
---|
5490 | R0 = Bf.evaluate(3,0) |
---|
5491 | assert numpy.allclose(R0[0], ((s1[5] + s1[10])/2 + 2.0*(s2[5] + s2[10])/2)/3 + mean_stage) |
---|
5492 | |
---|
5493 | #First diagonal midpoint |
---|
5494 | R0 = Bf.evaluate(8,0) |
---|
5495 | assert numpy.allclose(R0[0], ((s1[10] + s1[15])/2 + 2.0*(s2[10] + s2[15])/2)/3 + mean_stage) |
---|
5496 | |
---|
5497 | |
---|
5498 | #Cleanup |
---|
5499 | os.remove(domain1.get_name() + '.' + domain1.format) |
---|
5500 | |
---|
5501 | |
---|
5502 | def test_spatio_temporal_boundary_outside(self): |
---|
5503 | """Test that field_boundary catches if a point is outside the sww that defines it |
---|
5504 | """ |
---|
5505 | |
---|
5506 | import time |
---|
5507 | #Create sww file of simple propagation from left to right |
---|
5508 | #through rectangular domain |
---|
5509 | |
---|
5510 | from mesh_factory import rectangular |
---|
5511 | |
---|
5512 | #Create basic mesh |
---|
5513 | points, vertices, boundary = rectangular(3, 3) |
---|
5514 | |
---|
5515 | #Create shallow water domain |
---|
5516 | domain1 = Domain(points, vertices, boundary) |
---|
5517 | |
---|
5518 | domain1.reduction = mean |
---|
5519 | domain1.smooth = True #To mimic MOST output |
---|
5520 | |
---|
5521 | domain1.default_order = 2 |
---|
5522 | domain1.store = True |
---|
5523 | domain1.set_datadir('.') |
---|
5524 | domain1.set_name('spatio_temporal_boundary_source' + str(time.time())) |
---|
5525 | |
---|
5526 | #FIXME: This is extremely important! |
---|
5527 | #How can we test if they weren't stored? |
---|
5528 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
5529 | |
---|
5530 | |
---|
5531 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5532 | domain1.set_quantity('elevation', 0) |
---|
5533 | domain1.set_quantity('friction', 0) |
---|
5534 | |
---|
5535 | # Boundary conditions |
---|
5536 | Br = Reflective_boundary(domain1) |
---|
5537 | Bd = Dirichlet_boundary([0.3,0,0]) |
---|
5538 | domain1.set_boundary({'left': Bd, 'top': Bd, 'right': Br, 'bottom': Br}) |
---|
5539 | #Initial condition |
---|
5540 | domain1.set_quantity('stage', 0) |
---|
5541 | domain1.check_integrity() |
---|
5542 | |
---|
5543 | finaltime = 5 |
---|
5544 | #Evolution (full domain - large steps) |
---|
5545 | for t in domain1.evolve(yieldstep = 1, finaltime = finaltime): |
---|
5546 | pass |
---|
5547 | #domain1.write_time() |
---|
5548 | |
---|
5549 | |
---|
5550 | #Create an triangle shaped domain (coinciding with some |
---|
5551 | #coordinates from domain 1, but one edge outside!), |
---|
5552 | #formed from the lower and right hand boundaries and |
---|
5553 | #the sw-ne diagonal as in the previous test but scaled |
---|
5554 | #in the x direction by a factor of 2 |
---|
5555 | |
---|
5556 | points = [ [0,0], |
---|
5557 | [2.0/3,0], [2.0/3,1.0/3], |
---|
5558 | [4.0/3,0], [4.0/3,1.0/3], [4.0/3,2.0/3], |
---|
5559 | [2,0], [2,1.0/3], [2,2.0/3], [2,1] |
---|
5560 | ] |
---|
5561 | |
---|
5562 | vertices = [ [1,2,0], |
---|
5563 | [3,4,1], [2,1,4], [4,5,2], |
---|
5564 | [6,7,3], [4,3,7], [7,8,4], [5,4,8], [8,9,5]] |
---|
5565 | |
---|
5566 | boundary = { (0,1):'bottom', (1,1):'bottom', (4,1): 'bottom', |
---|
5567 | (4,2):'right', (6,2):'right', (8,2):'right', |
---|
5568 | (0,0):'diagonal', (3,0):'diagonal', (8,0):'diagonal'} |
---|
5569 | |
---|
5570 | domain2 = Domain(points, vertices, boundary) |
---|
5571 | |
---|
5572 | domain2.reduction = domain1.reduction |
---|
5573 | domain2.smooth = False |
---|
5574 | domain2.default_order = 2 |
---|
5575 | |
---|
5576 | #Bed-slope and friction at vertices (and interpolated elsewhere) |
---|
5577 | domain2.set_quantity('elevation', 0) |
---|
5578 | domain2.set_quantity('friction', 0) |
---|
5579 | domain2.set_quantity('stage', 0) |
---|
5580 | |
---|
5581 | |
---|
5582 | #Read results for specific timesteps t=1 and t=2 |
---|
5583 | from Scientific.IO.NetCDF import NetCDFFile |
---|
5584 | fid = NetCDFFile(domain1.get_name() + '.' + domain1.format) |
---|
5585 | |
---|
5586 | x = fid.variables['x'][:] |
---|
5587 | y = fid.variables['y'][:] |
---|
5588 | s1 = fid.variables['stage'][1,:] |
---|
5589 | s2 = fid.variables['stage'][2,:] |
---|
5590 | fid.close() |
---|
5591 | |
---|
5592 | shp = (len(x), 1) |
---|
5593 | points = numpy.concatenate( (numpy.reshape(x, shp), numpy.reshape(y, shp)), axis=1) |
---|
5594 | #The diagonal points of domain 1 are 0, 5, 10, 15 |
---|
5595 | |
---|
5596 | #print points[0], points[5], points[10], points[15] |
---|
5597 | assert numpy.allclose( numpy.take(points, [0,5,10,15]), |
---|
5598 | [[0,0], [1.0/3, 1.0/3], [2.0/3, 2.0/3], [1,1]]) |
---|
5599 | |
---|
5600 | |
---|
5601 | # Boundary conditions |
---|
5602 | Br = Reflective_boundary(domain2) |
---|
5603 | #Bf = Spatio_temporal_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5604 | # domain2) |
---|
5605 | Bf = Field_boundary(domain1.get_name() + '.' + domain1.format, |
---|
5606 | domain2, mean_stage=1, verbose=False) |
---|
5607 | |
---|
5608 | domain2.set_boundary({'right':Br, 'bottom':Br, 'diagonal':Bf}) |
---|
5609 | domain2.check_integrity() |
---|
5610 | |
---|
5611 | try: |
---|
5612 | for t in domain2.evolve(yieldstep = 1, finaltime = finaltime): |
---|
5613 | pass |
---|
5614 | except: |
---|
5615 | pass |
---|
5616 | else: |
---|
5617 | msg = 'This should have caught NAN at boundary' |
---|
5618 | raise Exception, msg |
---|
5619 | |
---|
5620 | |
---|
5621 | #Cleanup |
---|
5622 | os.remove(domain1.get_name() + '.' + domain1.format) |
---|
5623 | |
---|
5624 | |
---|
5625 | |
---|
5626 | |
---|
5627 | def test_extrema(self): |
---|
5628 | """Test that extrema of quantities are computed correctly |
---|
5629 | Extrema are updated at every *internal* timestep |
---|
5630 | """ |
---|
5631 | |
---|
5632 | from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular_cross |
---|
5633 | |
---|
5634 | initial_runup_height = -0.4 |
---|
5635 | final_runup_height = -0.3 |
---|
5636 | |
---|
5637 | |
---|
5638 | #-------------------------------------------------------------- |
---|
5639 | # Setup computational domain |
---|
5640 | #-------------------------------------------------------------- |
---|
5641 | N = 5 |
---|
5642 | points, vertices, boundary = rectangular_cross(N, N) |
---|
5643 | domain = Domain(points, vertices, boundary) |
---|
5644 | domain.set_name('extrema_test') |
---|
5645 | |
---|
5646 | #-------------------------------------------------------------- |
---|
5647 | # Setup initial conditions |
---|
5648 | #-------------------------------------------------------------- |
---|
5649 | def topography(x,y): |
---|
5650 | return -x/2 # linear bed slope |
---|
5651 | |
---|
5652 | |
---|
5653 | domain.set_quantity('elevation', topography) # Use function for elevation |
---|
5654 | domain.set_quantity('friction', 0.) # Zero friction |
---|
5655 | domain.set_quantity('stage', initial_runup_height) # Constant negative initial stage |
---|
5656 | domain.set_quantities_to_be_monitored(['stage', 'stage-elevation'], |
---|
5657 | time_interval = [0.5, 2.7], |
---|
5658 | polygon = [[0,0], [0,1], [1,1], [1,0]]) |
---|
5659 | |
---|
5660 | assert len(domain.quantities_to_be_monitored) == 2 |
---|
5661 | assert domain.quantities_to_be_monitored.has_key('stage') |
---|
5662 | assert domain.quantities_to_be_monitored.has_key('stage-elevation') |
---|
5663 | for key in domain.quantities_to_be_monitored['stage'].keys(): |
---|
5664 | assert domain.quantities_to_be_monitored['stage'][key] is None |
---|
5665 | |
---|
5666 | |
---|
5667 | #-------------------------------------------------------------- |
---|
5668 | # Setup boundary conditions |
---|
5669 | #-------------------------------------------------------------- |
---|
5670 | Br = Reflective_boundary(domain) # Reflective wall |
---|
5671 | Bd = Dirichlet_boundary([final_runup_height, # Constant inflow |
---|
5672 | 0, |
---|
5673 | 0]) |
---|
5674 | |
---|
5675 | # All reflective to begin with (still water) |
---|
5676 | domain.set_boundary({'left': Br, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
5677 | |
---|
5678 | |
---|
5679 | #-------------------------------------------------------------- |
---|
5680 | # Let triangles adjust and check extrema |
---|
5681 | #-------------------------------------------------------------- |
---|
5682 | for t in domain.evolve(yieldstep = 0.1, finaltime = 1.0): |
---|
5683 | domain.quantity_statistics() # Run it silently |
---|
5684 | |
---|
5685 | |
---|
5686 | |
---|
5687 | #-------------------------------------------------------------- |
---|
5688 | # Test extrema |
---|
5689 | #-------------------------------------------------------------- |
---|
5690 | |
---|
5691 | stage = domain.quantities_to_be_monitored['stage'] |
---|
5692 | assert stage['min'] <= stage['max'] |
---|
5693 | |
---|
5694 | #print stage['min'], stage['max'] |
---|
5695 | assert numpy.allclose(stage['min'], initial_runup_height, |
---|
5696 | rtol = 1.0/N) # First order accuracy |
---|
5697 | |
---|
5698 | |
---|
5699 | depth = domain.quantities_to_be_monitored['stage-elevation'] |
---|
5700 | assert depth['min'] <= depth['max'] |
---|
5701 | assert depth['min'] >= 0.0 |
---|
5702 | assert depth['max'] >= 0.0 |
---|
5703 | ##assert depth[1] <= ?? initial_runup_height |
---|
5704 | |
---|
5705 | |
---|
5706 | #-------------------------------------------------------------- |
---|
5707 | # Update boundary to allow inflow |
---|
5708 | #-------------------------------------------------------------- |
---|
5709 | domain.set_boundary({'right': Bd}) |
---|
5710 | |
---|
5711 | |
---|
5712 | #-------------------------------------------------------------- |
---|
5713 | # Evolve system through time |
---|
5714 | #-------------------------------------------------------------- |
---|
5715 | for t in domain.evolve(yieldstep = 0.1, finaltime = 3.0): |
---|
5716 | #domain.write_time() |
---|
5717 | domain.quantity_statistics() # Run it silently |
---|
5718 | |
---|
5719 | |
---|
5720 | #-------------------------------------------------------------- |
---|
5721 | # Test extrema again |
---|
5722 | #-------------------------------------------------------------- |
---|
5723 | |
---|
5724 | stage = domain.quantities_to_be_monitored['stage'] |
---|
5725 | assert stage['min'] <= stage['max'] |
---|
5726 | |
---|
5727 | assert numpy.allclose(stage['min'], initial_runup_height, |
---|
5728 | rtol = 1.0/N) # First order accuracy |
---|
5729 | |
---|
5730 | depth = domain.quantities_to_be_monitored['stage-elevation'] |
---|
5731 | assert depth['min'] <= depth['max'] |
---|
5732 | assert depth['min'] >= 0.0 |
---|
5733 | assert depth['max'] >= 0.0 |
---|
5734 | |
---|
5735 | #Cleanup |
---|
5736 | os.remove(domain.get_name() + '.' + domain.format) |
---|
5737 | |
---|
5738 | |
---|
5739 | |
---|
5740 | def test_tight_slope_limiters(self): |
---|
5741 | """Test that new slope limiters (Feb 2007) don't induce extremely |
---|
5742 | small timesteps. This test actually reveals the problem as it |
---|
5743 | was in March-April 2007 |
---|
5744 | """ |
---|
5745 | |
---|
5746 | import time, os |
---|
5747 | from Scientific.IO.NetCDF import NetCDFFile |
---|
5748 | from data_manager import get_dataobject, extent_sww |
---|
5749 | from mesh_factory import rectangular |
---|
5750 | |
---|
5751 | |
---|
5752 | #Create basic mesh |
---|
5753 | points, vertices, boundary = rectangular(2, 2) |
---|
5754 | |
---|
5755 | #Create shallow water domain |
---|
5756 | domain = Domain(points, vertices, boundary) |
---|
5757 | domain.default_order = 2 |
---|
5758 | |
---|
5759 | # This will pass |
---|
5760 | #domain.tight_slope_limiters = 1 |
---|
5761 | #domain.H0 = 0.01 |
---|
5762 | |
---|
5763 | # This will fail |
---|
5764 | #domain.tight_slope_limiters = 1 |
---|
5765 | #domain.H0 = 0.001 |
---|
5766 | |
---|
5767 | # This will pass provided C extension implements limiting of |
---|
5768 | # momentum in _compute_speeds |
---|
5769 | domain.tight_slope_limiters = 1 |
---|
5770 | domain.H0 = 0.001 |
---|
5771 | domain.protect_against_isolated_degenerate_timesteps = True |
---|
5772 | |
---|
5773 | #Set some field values |
---|
5774 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
5775 | domain.set_quantity('friction', 0.03) |
---|
5776 | |
---|
5777 | |
---|
5778 | ###################### |
---|
5779 | # Boundary conditions |
---|
5780 | B = Transmissive_boundary(domain) |
---|
5781 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
5782 | |
---|
5783 | |
---|
5784 | ###################### |
---|
5785 | #Initial condition - with jumps |
---|
5786 | |
---|
5787 | |
---|
5788 | bed = domain.quantities['elevation'].vertex_values |
---|
5789 | stage = numpy.zeros(bed.shape, numpy.float) |
---|
5790 | |
---|
5791 | h = 0.3 |
---|
5792 | for i in range(stage.shape[0]): |
---|
5793 | if i % 2 == 0: |
---|
5794 | stage[i,:] = bed[i,:] + h |
---|
5795 | else: |
---|
5796 | stage[i,:] = bed[i,:] |
---|
5797 | |
---|
5798 | domain.set_quantity('stage', stage) |
---|
5799 | |
---|
5800 | |
---|
5801 | domain.distribute_to_vertices_and_edges() |
---|
5802 | |
---|
5803 | |
---|
5804 | |
---|
5805 | domain.set_name('tight_limiters') |
---|
5806 | domain.format = 'sww' |
---|
5807 | domain.smooth = True |
---|
5808 | domain.reduction = mean |
---|
5809 | domain.set_datadir('.') |
---|
5810 | domain.smooth = False |
---|
5811 | domain.store = True |
---|
5812 | |
---|
5813 | |
---|
5814 | #Evolution |
---|
5815 | for t in domain.evolve(yieldstep = 0.1, finaltime = 0.3): |
---|
5816 | |
---|
5817 | #domain.write_time(track_speeds=True) |
---|
5818 | stage = domain.quantities['stage'].vertex_values |
---|
5819 | |
---|
5820 | #Get NetCDF |
---|
5821 | fid = NetCDFFile(domain.writer.filename, 'r') |
---|
5822 | stage_file = fid.variables['stage'] |
---|
5823 | |
---|
5824 | fid.close() |
---|
5825 | |
---|
5826 | os.remove(domain.writer.filename) |
---|
5827 | |
---|
5828 | |
---|
5829 | def test_pmesh2Domain(self): |
---|
5830 | import os |
---|
5831 | import tempfile |
---|
5832 | |
---|
5833 | fileName = tempfile.mktemp(".tsh") |
---|
5834 | file = open(fileName,"w") |
---|
5835 | file.write("4 3 # <vertex #> <x> <y> [attributes]\n \ |
---|
5836 | 0 0.0 0.0 0.0 0.0 0.01 \n \ |
---|
5837 | 1 1.0 0.0 10.0 10.0 0.02 \n \ |
---|
5838 | 2 0.0 1.0 0.0 10.0 0.03 \n \ |
---|
5839 | 3 0.5 0.25 8.0 12.0 0.04 \n \ |
---|
5840 | # Vert att title \n \ |
---|
5841 | elevation \n \ |
---|
5842 | stage \n \ |
---|
5843 | friction \n \ |
---|
5844 | 2 # <triangle #> [<vertex #>] [<neigbouring triangle #>] \n\ |
---|
5845 | 0 0 3 2 -1 -1 1 dsg\n\ |
---|
5846 | 1 0 1 3 -1 0 -1 ole nielsen\n\ |
---|
5847 | 4 # <segment #> <vertex #> <vertex #> [boundary tag] \n\ |
---|
5848 | 0 1 0 2 \n\ |
---|
5849 | 1 0 2 3 \n\ |
---|
5850 | 2 2 3 \n\ |
---|
5851 | 3 3 1 1 \n\ |
---|
5852 | 3 0 # <x> <y> [attributes] ...Mesh Vertices... \n \ |
---|
5853 | 0 216.0 -86.0 \n \ |
---|
5854 | 1 160.0 -167.0 \n \ |
---|
5855 | 2 114.0 -91.0 \n \ |
---|
5856 | 3 # <vertex #> <vertex #> [boundary tag] ...Mesh Segments... \n \ |
---|
5857 | 0 0 1 0 \n \ |
---|
5858 | 1 1 2 0 \n \ |
---|
5859 | 2 2 0 0 \n \ |
---|
5860 | 0 # <x> <y> ...Mesh Holes... \n \ |
---|
5861 | 0 # <x> <y> <attribute>...Mesh Regions... \n \ |
---|
5862 | 0 # <x> <y> <attribute>...Mesh Regions, area... \n\ |
---|
5863 | #Geo reference \n \ |
---|
5864 | 56 \n \ |
---|
5865 | 140 \n \ |
---|
5866 | 120 \n") |
---|
5867 | file.close() |
---|
5868 | |
---|
5869 | tags = {} |
---|
5870 | b1 = Dirichlet_boundary(conserved_quantities = numpy.array([0.0])) |
---|
5871 | b2 = Dirichlet_boundary(conserved_quantities = numpy.array([1.0])) |
---|
5872 | b3 = Dirichlet_boundary(conserved_quantities = numpy.array([2.0])) |
---|
5873 | tags["1"] = b1 |
---|
5874 | tags["2"] = b2 |
---|
5875 | tags["3"] = b3 |
---|
5876 | |
---|
5877 | #from anuga.abstract_2d_finite_volumes.pmesh2domain import pmesh_to_domain_instance |
---|
5878 | #domain = pmesh_to_domain_instance(fileName, Domain) |
---|
5879 | |
---|
5880 | domain = Domain(mesh_filename=fileName) |
---|
5881 | #verbose=True, use_cache=True) |
---|
5882 | |
---|
5883 | #print "domain.tagged_elements", domain.tagged_elements |
---|
5884 | ## check the quantities |
---|
5885 | #print domain.quantities['elevation'].vertex_values |
---|
5886 | answer = [[0., 8., 0.], |
---|
5887 | [0., 10., 8.]] |
---|
5888 | assert numpy.allclose(domain.quantities['elevation'].vertex_values, |
---|
5889 | answer) |
---|
5890 | |
---|
5891 | #print domain.quantities['stage'].vertex_values |
---|
5892 | answer = [[0., 12., 10.], |
---|
5893 | [0., 10., 12.]] |
---|
5894 | assert numpy.allclose(domain.quantities['stage'].vertex_values, |
---|
5895 | answer) |
---|
5896 | |
---|
5897 | #print domain.quantities['friction'].vertex_values |
---|
5898 | answer = [[0.01, 0.04, 0.03], |
---|
5899 | [0.01, 0.02, 0.04]] |
---|
5900 | assert numpy.allclose(domain.quantities['friction'].vertex_values, |
---|
5901 | answer) |
---|
5902 | |
---|
5903 | #print domain.quantities['friction'].vertex_values |
---|
5904 | assert numpy.allclose(domain.tagged_elements['dsg'][0],0) |
---|
5905 | assert numpy.allclose(domain.tagged_elements['ole nielsen'][0],1) |
---|
5906 | |
---|
5907 | self.failUnless( domain.boundary[(1, 0)] == '1', |
---|
5908 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5909 | self.failUnless( domain.boundary[(1, 2)] == '2', |
---|
5910 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5911 | self.failUnless( domain.boundary[(0, 1)] == '3', |
---|
5912 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5913 | self.failUnless( domain.boundary[(0, 0)] == 'exterior', |
---|
5914 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5915 | #print "domain.boundary",domain.boundary |
---|
5916 | self.failUnless( len(domain.boundary) == 4, |
---|
5917 | "test_pmesh2Domain Too many boundaries") |
---|
5918 | #FIXME change to use get_xllcorner |
---|
5919 | #print "d.geo_reference.xllcorner",domain.geo_reference.xllcorner |
---|
5920 | self.failUnless(domain.geo_reference.xllcorner == 140.0, |
---|
5921 | "bad geo_referece") |
---|
5922 | |
---|
5923 | |
---|
5924 | #************ |
---|
5925 | |
---|
5926 | |
---|
5927 | domain = Domain(fileName) |
---|
5928 | |
---|
5929 | #print "domain.tagged_elements", domain.tagged_elements |
---|
5930 | ## check the quantities |
---|
5931 | #print domain.quantities['elevation'].vertex_values |
---|
5932 | answer = [[0., 8., 0.], |
---|
5933 | [0., 10., 8.]] |
---|
5934 | assert numpy.allclose(domain.quantities['elevation'].vertex_values, |
---|
5935 | answer) |
---|
5936 | |
---|
5937 | #print domain.quantities['stage'].vertex_values |
---|
5938 | answer = [[0., 12., 10.], |
---|
5939 | [0., 10., 12.]] |
---|
5940 | assert numpy.allclose(domain.quantities['stage'].vertex_values, |
---|
5941 | answer) |
---|
5942 | |
---|
5943 | #print domain.quantities['friction'].vertex_values |
---|
5944 | answer = [[0.01, 0.04, 0.03], |
---|
5945 | [0.01, 0.02, 0.04]] |
---|
5946 | assert numpy.allclose(domain.quantities['friction'].vertex_values, |
---|
5947 | answer) |
---|
5948 | |
---|
5949 | #print domain.quantities['friction'].vertex_values |
---|
5950 | assert numpy.allclose(domain.tagged_elements['dsg'][0],0) |
---|
5951 | assert numpy.allclose(domain.tagged_elements['ole nielsen'][0],1) |
---|
5952 | |
---|
5953 | self.failUnless( domain.boundary[(1, 0)] == '1', |
---|
5954 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5955 | self.failUnless( domain.boundary[(1, 2)] == '2', |
---|
5956 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5957 | self.failUnless( domain.boundary[(0, 1)] == '3', |
---|
5958 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5959 | self.failUnless( domain.boundary[(0, 0)] == 'exterior', |
---|
5960 | "test_tags_to_boundaries failed. Single boundary wasn't added.") |
---|
5961 | #print "domain.boundary",domain.boundary |
---|
5962 | self.failUnless( len(domain.boundary) == 4, |
---|
5963 | "test_pmesh2Domain Too many boundaries") |
---|
5964 | #FIXME change to use get_xllcorner |
---|
5965 | #print "d.geo_reference.xllcorner",domain.geo_reference.xllcorner |
---|
5966 | self.failUnless(domain.geo_reference.xllcorner == 140.0, |
---|
5967 | "bad geo_referece") |
---|
5968 | #************ |
---|
5969 | os.remove(fileName) |
---|
5970 | |
---|
5971 | #------------------------------------------------------------- |
---|
5972 | |
---|
5973 | def test_get_lone_vertices(self): |
---|
5974 | |
---|
5975 | a = [0.0, 0.0] |
---|
5976 | b = [0.0, 2.0] |
---|
5977 | c = [2.0,0.0] |
---|
5978 | d = [0.0, 4.0] |
---|
5979 | e = [2.0, 2.0] |
---|
5980 | f = [4.0,0.0] |
---|
5981 | |
---|
5982 | points = [a, b, c, d, e, f] |
---|
5983 | #bac, bce, ecf, dbe |
---|
5984 | vertices = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
5985 | boundary = { (0, 0): 'Third', |
---|
5986 | (0, 2): 'First', |
---|
5987 | (2, 0): 'Second', |
---|
5988 | (2, 1): 'Second', |
---|
5989 | (3, 1): 'Second', |
---|
5990 | (3, 2): 'Third'} |
---|
5991 | |
---|
5992 | |
---|
5993 | domain = Domain(points, vertices, boundary) |
---|
5994 | #domain.check_integrity() |
---|
5995 | domain.get_lone_vertices() |
---|
5996 | |
---|
5997 | |
---|
5998 | def test_fitting_using_shallow_water_domain(self): |
---|
5999 | |
---|
6000 | #Mesh in zone 56 (absolute coords) |
---|
6001 | |
---|
6002 | x0 = 314036.58727982 |
---|
6003 | y0 = 6224951.2960092 |
---|
6004 | |
---|
6005 | a = [x0+0.0, y0+0.0] |
---|
6006 | b = [x0+0.0, y0+2.0] |
---|
6007 | c = [x0+2.0, y0+0.0] |
---|
6008 | d = [x0+0.0, y0+4.0] |
---|
6009 | e = [x0+2.0, y0+2.0] |
---|
6010 | f = [x0+4.0, y0+0.0] |
---|
6011 | |
---|
6012 | points = [a, b, c, d, e, f] |
---|
6013 | |
---|
6014 | #bac, bce, ecf, dbe |
---|
6015 | elements = [ [1,0,2], [1,2,4], [4,2,5], [3,1,4] ] |
---|
6016 | |
---|
6017 | #absolute going in .. |
---|
6018 | mesh4 = Domain(points, elements, |
---|
6019 | geo_reference = Geo_reference(56, 0, 0)) |
---|
6020 | mesh4.check_integrity() |
---|
6021 | quantity = Quantity(mesh4) |
---|
6022 | |
---|
6023 | #Get (enough) datapoints (relative to georef) |
---|
6024 | data_points_rel = [[ 0.66666667, 0.66666667], |
---|
6025 | [ 1.33333333, 1.33333333], |
---|
6026 | [ 2.66666667, 0.66666667], |
---|
6027 | [ 0.66666667, 2.66666667], |
---|
6028 | [ 0.0, 1.0], |
---|
6029 | [ 0.0, 3.0], |
---|
6030 | [ 1.0, 0.0], |
---|
6031 | [ 1.0, 1.0], |
---|
6032 | [ 1.0, 2.0], |
---|
6033 | [ 1.0, 3.0], |
---|
6034 | [ 2.0, 1.0], |
---|
6035 | [ 3.0, 0.0], |
---|
6036 | [ 3.0, 1.0]] |
---|
6037 | |
---|
6038 | data_geo_spatial = Geospatial_data(data_points_rel, |
---|
6039 | geo_reference = Geo_reference(56, x0, y0)) |
---|
6040 | data_points_absolute = data_geo_spatial.get_data_points(absolute=True) |
---|
6041 | attributes = linear_function(data_points_absolute) |
---|
6042 | att = 'spam_and_eggs' |
---|
6043 | |
---|
6044 | #Create .txt file |
---|
6045 | ptsfile = tempfile.mktemp(".txt") |
---|
6046 | file = open(ptsfile,"w") |
---|
6047 | file.write(" x,y," + att + " \n") |
---|
6048 | for data_point, attribute in map(None, data_points_absolute |
---|
6049 | ,attributes): |
---|
6050 | row = str(data_point[0]) + ',' + str(data_point[1]) \ |
---|
6051 | + ',' + str(attribute) |
---|
6052 | file.write(row + "\n") |
---|
6053 | file.close() |
---|
6054 | |
---|
6055 | #file = open(ptsfile, 'r') |
---|
6056 | #lines = file.readlines() |
---|
6057 | #file.close() |
---|
6058 | |
---|
6059 | |
---|
6060 | #Check that values can be set from file |
---|
6061 | quantity.set_values(filename = ptsfile, |
---|
6062 | attribute_name = att, alpha = 0) |
---|
6063 | answer = linear_function(quantity.domain.get_vertex_coordinates()) |
---|
6064 | |
---|
6065 | assert numpy.allclose(quantity.vertex_values.ravel(), answer) |
---|
6066 | |
---|
6067 | |
---|
6068 | #Check that values can be set from file using default attribute |
---|
6069 | quantity.set_values(filename = ptsfile, alpha = 0) |
---|
6070 | assert numpy.allclose(quantity.vertex_values.ravel(), answer) |
---|
6071 | |
---|
6072 | #Cleanup |
---|
6073 | import os |
---|
6074 | os.remove(ptsfile) |
---|
6075 | |
---|
6076 | |
---|
6077 | |
---|
6078 | if __name__ == "__main__": |
---|
6079 | |
---|
6080 | suite = unittest.makeSuite(Test_Shallow_Water,'test') |
---|
6081 | |
---|
6082 | ## suite = unittest.makeSuite(Test_Shallow_Water,'test_wind_stress_error_condition') |
---|
6083 | #suite = unittest.makeSuite(Test_Shallow_Water,'test_fitting_using_shallow_water_domain') |
---|
6084 | #suite = unittest.makeSuite(Test_Shallow_Water,'test_tight_slope_limiters') |
---|
6085 | #suite = unittest.makeSuite(Test_Shallow_Water,'test_get_maximum_inundation_from_sww') |
---|
6086 | #suite = unittest.makeSuite(Test_Shallow_Water,'test_time_dependent_rainfall_restricted_by_polygon') |
---|
6087 | |
---|
6088 | |
---|
6089 | |
---|
6090 | runner = unittest.TextTestRunner(verbosity=1) |
---|
6091 | runner.run(suite) |
---|