1 | """Example of shallow water wave equation analytical solution |
---|
2 | consists of a symmetrical converging channel with friction and bed slope. |
---|
3 | |
---|
4 | Specific methods pertaining to the 2D shallow water equation |
---|
5 | are imported from shallow_water |
---|
6 | for use with the generic finite volume framework |
---|
7 | |
---|
8 | Copyright 2004 |
---|
9 | Christopher Zoppou, Stephen Roberts, Ole Nielsen, Duncan Gray |
---|
10 | Geoscience Australia, ANU |
---|
11 | |
---|
12 | Specific methods pertaining to the 2D shallow water equation |
---|
13 | are imported from shallow_water |
---|
14 | for use with the generic finite volume framework |
---|
15 | |
---|
16 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
17 | numerical vector named conserved_quantities. |
---|
18 | """ |
---|
19 | |
---|
20 | #----------------------------- |
---|
21 | # Module imports |
---|
22 | import sys, string |
---|
23 | from os import sep |
---|
24 | sys.path.append('..'+sep+'pyvolution') |
---|
25 | |
---|
26 | from shallow_water import Transmissive_boundary, Reflective_boundary, \ |
---|
27 | Dirichlet_boundary |
---|
28 | from shallow_water import Domain |
---|
29 | from pmesh2domain import pmesh_to_domain_instance |
---|
30 | from Numeric import zeros, Float |
---|
31 | |
---|
32 | |
---|
33 | #------------------------------ |
---|
34 | # Domain |
---|
35 | filename = 'MacDonald_77541.tsh' |
---|
36 | print 'Creating domain from', filename |
---|
37 | domain = pmesh_to_domain_instance(filename, Domain) |
---|
38 | print 'Number of triangles = ', len(domain) |
---|
39 | |
---|
40 | domain.default_order = 1 |
---|
41 | domain.smooth = True |
---|
42 | |
---|
43 | #------------------------------------- |
---|
44 | # Provide file name for storing output |
---|
45 | domain.store = True #Store for visualisation purposes |
---|
46 | domain.format = 'sww' #Native netcdf visualisation format |
---|
47 | domain.filename = 'MacDonald_77541' |
---|
48 | |
---|
49 | #------------- |
---|
50 | #Bed Elevation |
---|
51 | fid = open('MacDonald_bed.xya') |
---|
52 | lines = fid.readlines() |
---|
53 | n_bed = len(lines) |
---|
54 | z_bed = zeros(n_bed, Float) |
---|
55 | x_bed = zeros(n_bed, Float) |
---|
56 | |
---|
57 | for line in range(n_bed): |
---|
58 | value = string.split(lines[line]) |
---|
59 | x_bed[line] = float(value[0]) |
---|
60 | z_bed[line] = float(value[1]) |
---|
61 | |
---|
62 | #----------------- |
---|
63 | #Set bed-elevation |
---|
64 | def x_slope(x,y): |
---|
65 | n = x.shape[0] |
---|
66 | z = 0*x |
---|
67 | for i in range(n): |
---|
68 | for j in range(n_bed-1): |
---|
69 | if x[i] >= x_bed[j] and x[i] < x_bed[j+1]: |
---|
70 | z[i] = z_bed[j] + (z_bed[j+1] - z_bed[j])/(x_bed[j+1] - x_bed[j])*(x[i] - x_bed[j]) |
---|
71 | return z |
---|
72 | |
---|
73 | domain.set_quantity('elevation', x_slope) |
---|
74 | |
---|
75 | #--------------------------------------------------------- |
---|
76 | #Decide which quantities are to be stored at each timestep |
---|
77 | domain.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
78 | |
---|
79 | #Reduction operation for get_vertex_values |
---|
80 | from util import mean |
---|
81 | domain.reduction = mean |
---|
82 | |
---|
83 | #-------------------- |
---|
84 | # Boundary Conditions |
---|
85 | upstream_depth = 5.035 - 4.393 |
---|
86 | downstream_depth = 1.5 - 0 |
---|
87 | discharge = 20 |
---|
88 | tags = {} |
---|
89 | tags['Upstream'] = Dirichlet_boundary([upstream_depth, 2, 0.0]) |
---|
90 | tags['external'] = Reflective_boundary(domain) |
---|
91 | tags['Downstream'] = Dirichlet_boundary([downstream_depth, 2, 0.0]) |
---|
92 | domain.set_boundary(tags) |
---|
93 | |
---|
94 | #--------- |
---|
95 | # friction |
---|
96 | domain.set_quantity('friction', 0.02) |
---|
97 | |
---|
98 | #----------------- |
---|
99 | #Initial condition |
---|
100 | domain.set_quantity('elevation', 0.0) |
---|
101 | domain.set_quantity('stage', 0.2) |
---|
102 | |
---|
103 | #----------------- |
---|
104 | #Evolution |
---|
105 | import time |
---|
106 | t0 = time.time() |
---|
107 | for t in domain.evolve(yieldstep = 5, finaltime = 500): |
---|
108 | domain.write_time() |
---|
109 | |
---|
110 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
111 | |
---|
112 | |
---|