1 | """Read in sww file, interpolate at specified locations and plot time series |
---|
2 | |
---|
3 | """ |
---|
4 | from os import sep |
---|
5 | import Numeric |
---|
6 | import project |
---|
7 | from pyvolution.util import file_function |
---|
8 | #from pyvolution.coordinate_transforms.redfearn import degminsec2decimal_degrees, redfearn |
---|
9 | #from coordinate_transforms.redfearn import degminsec2decimal_degrees, redfearn |
---|
10 | from pylab import * |
---|
11 | #from compare_sww import gauge_locations |
---|
12 | |
---|
13 | |
---|
14 | #swwfile = project.newoutputname + '.sww' |
---|
15 | #swwfile = project.outputname |
---|
16 | swwfile = project.outputdir + sep + 'Buildings_3662.sww' |
---|
17 | #Time interval to plot |
---|
18 | tmin = 13000 |
---|
19 | tmax = 21000 |
---|
20 | |
---|
21 | #def get_gauges_from_file(filename): |
---|
22 | # fid = open(filename) |
---|
23 | # lines = fid.readlines() |
---|
24 | # fid.close() |
---|
25 | |
---|
26 | # gauges = [] |
---|
27 | # gaugelocation = [] |
---|
28 | # for line in lines[1:]: |
---|
29 | # fields = line.split(',') |
---|
30 | # my gauge file set up as locationname, easting, northing |
---|
31 | # location = fields[0] |
---|
32 | # easting = float(fields[1]) |
---|
33 | # northing = float(fields[2]) |
---|
34 | #z, easting, northing = redfearn(lat, lon) |
---|
35 | # gauges.append([easting, northing]) |
---|
36 | # gaugelocation.append(location) |
---|
37 | |
---|
38 | #Return gauges and raw data for subsequent storage |
---|
39 | #return gauges, linesfs |
---|
40 | # return gauges, lines, gaugelocation |
---|
41 | |
---|
42 | #gauges, buildings = get_gauges_from_file(project.gauge_filename) |
---|
43 | #gauges, lines, locations = get_gauges_from_file(project.gauge_filename) |
---|
44 | |
---|
45 | gauge_depth = Numeric.arrayrange(0, 700, 50) |
---|
46 | gauge_breadth = 100 |
---|
47 | gauge_locations = [] |
---|
48 | |
---|
49 | for GD in gauge_depth: |
---|
50 | gauge_location = [GD,gauge_breadth] |
---|
51 | gauge_locations.append(gauge_location) |
---|
52 | |
---|
53 | |
---|
54 | #Read model output |
---|
55 | quantities = ['stage', 'elevation', 'xmomentum', 'ymomentum'] |
---|
56 | f = file_function(swwfile, |
---|
57 | quantities = quantities, |
---|
58 | interpolation_points = gauge_locations, |
---|
59 | verbose = True, |
---|
60 | use_cache = True) |
---|
61 | |
---|
62 | T=[150] |
---|
63 | |
---|
64 | from math import sqrt |
---|
65 | N = len(gauge_locations) |
---|
66 | for k, g in enumerate(gauge_locations): |
---|
67 | if k%((N+10)/10)==0: # diagnostics - print 10 lines |
---|
68 | print 'Doing row %d of %d' %(k, N) |
---|
69 | |
---|
70 | model_time = [] |
---|
71 | stages = [] |
---|
72 | elevations = [] |
---|
73 | momenta = [] |
---|
74 | velocity = [] |
---|
75 | |
---|
76 | max_depth = 0 |
---|
77 | max_momentum = 0 |
---|
78 | max_velocity = 0 |
---|
79 | for t in T: |
---|
80 | #for i, t in enumerate(f.T): # T is a list of times |
---|
81 | #if tmin < t < tmax: |
---|
82 | w = f(t, point_id = k)[0] |
---|
83 | z = f(t, point_id = k)[1] |
---|
84 | uh = f(t, point_id = k)[2] |
---|
85 | vh = f(t, point_id = k)[3] |
---|
86 | #myloc = locations[k] |
---|
87 | |
---|
88 | m = sqrt(uh*uh + vh*vh) #Absolute momentum |
---|
89 | vel = sqrt(uh*uh + vh*vh) / (w-z + 1.e-30) #Absolute velocity |
---|
90 | print vel |
---|
91 | #dep = w-z |
---|
92 | #vel = sqrt(uh*uh + vh*vh) / dep #Absolute velocity |
---|
93 | |
---|
94 | model_time.append(t) |
---|
95 | stages.append(w) |
---|
96 | elevations.append(z) #Should be constant over time |
---|
97 | momenta.append(m) |
---|
98 | velocity.append(vel) |
---|
99 | |
---|
100 | if w-z > max_depth: |
---|
101 | max_depth = w-z |
---|
102 | if m > max_momentum: |
---|
103 | max_momentum = m |
---|
104 | if vel > max_velocity: |
---|
105 | max_velocity = vel |
---|
106 | print 'max speed', max_velocity |
---|
107 | |
---|
108 | |
---|
109 | |
---|
110 | #Plot only those gauges that have been inundated by more than a threshold |
---|
111 | #if max_depth < 0.2: |
---|
112 | # print 'Skipping gauge %d' %k |
---|
113 | # continue |
---|
114 | |
---|
115 | ion() |
---|
116 | hold(False) |
---|
117 | |
---|
118 | if elevations[0] < -10: |
---|
119 | #plot(model_time, stages, '-b') |
---|
120 | plot(stages, elevations, '-b') |
---|
121 | else: |
---|
122 | plot(model_time, stages, '-b', |
---|
123 | model_time, elevations, '-k') |
---|
124 | name = 'Gauge_%d: (%.1f, %.1f)' %(k, g[0], g[1]) |
---|
125 | #name = 'Gauge_%d: (%.1f, %.1f) Location: %s' %(k, g[0], g[1], myloc) |
---|
126 | title(name) |
---|
127 | |
---|
128 | title('%s (stage)' %name) |
---|
129 | xlabel('time [s]') |
---|
130 | ylabel('elevation [m]') |
---|
131 | legend(('Stage', 'Bed = %.1f' %elevations[0]), |
---|
132 | shadow=True, |
---|
133 | loc='upper right') |
---|
134 | savefig('Gauge_%d_stage' %k) # savefig('Gauge_%s_stage' %myloc) |
---|
135 | |
---|
136 | raw_input('Next') |
---|
137 | |
---|
138 | |
---|
139 | #Momentum plot |
---|
140 | ion() |
---|
141 | hold(False) |
---|
142 | plot(model_time, momenta, '-r') |
---|
143 | title(name) |
---|
144 | |
---|
145 | title('%s (momentum)' %name) |
---|
146 | xlabel('time [s]') |
---|
147 | ylabel('sqrt( uh^2 + vh^2 ) [m^2/s]') |
---|
148 | savefig('Gauge_%d_momentum' %k) |
---|
149 | #savefig('Gauge_%s_momentum' %myloc) |
---|
150 | |
---|
151 | raw_input('Next') |
---|
152 | |
---|
153 | #Speed plot |
---|
154 | ion() |
---|
155 | hold(False) |
---|
156 | plot(model_time, velocity, '-r') |
---|
157 | title(name) |
---|
158 | |
---|
159 | title('%s (velocity)' %name) |
---|
160 | xlabel('time [s]') |
---|
161 | ylabel('sqrt( uh^2 + vh^2 ) / depth [m/s]') |
---|
162 | savefig('Gauge_%d_speed' %k) |
---|
163 | #savefig('Gauge_%s_speed' %myloc) |
---|
164 | |
---|
165 | raw_input('Next') |
---|
166 | |
---|
167 | |
---|
168 | show() |
---|
169 | |
---|