import os from math import sqrt, pi from shallow_water_1d import * from Numeric import allclose, array, zeros, ones, Float, take, sqrt from config import g, epsilon def analytical_sol(C,t): #t = 0.0 # time (s) g = 9.81 # gravity (m/s^2) h1 = 10.0 # depth upstream (m) h0 = 5.0 # depth downstream (m) L = 2000.0 # length of stream/domain (m) n = len(C) # number of cells u = zeros(n,Float) h = zeros(n,Float) x = C-L/2 #x = zeros(n,Float) #for i in range(n): # x[i] = C[i]-1000.0 # Upstream and downstream boundary conditions are set to the intial water # depth for all time. # Calculate Shock Speed h2 = 7.2692044 S2 = 2*h2/(h2-h0)*(sqrt(g*h1)-sqrt(g*h2)) u2 = S2 - g*h0/(4*S2)*(1+sqrt(1+8*S2*S2/(g*h0))) #t=50 #x = (-L/2:L/2) for i in range(n): # Calculate Analytical Solution at time t > 0 u3 = 2/3*(sqrt(g*h1)+x[i]/t) h3 = 4/(9*g)*(sqrt(g*h1)-x[i]/(2*t))*(sqrt(g*h1)-x[i]/(2*t)) if ( x[i] <= -t*sqrt(g*h1) ): u[i] = 0.0 h[i] = h1 elif ( x[i] <= t*(u2-sqrt(g*h2)) ): u[i] = u3 h[i] = h3 elif ( x[i] < t*S2 ): u[i] = u2 h[i] = h2 else: u[i] = 0.0 h[i] = h0 return h , u*h def newLinePlot(title='Simple Plot'): import Gnuplot g = Gnuplot.Gnuplot(persist=1) g.title(title) g('set data style linespoints') g.xlabel('x') g.ylabel('y') return g def linePlot(g,x1,y1,x2,y2): import Gnuplot plot1 = Gnuplot.PlotItems.Data(x1.flat,y1.flat,with="linespoints") plot2 = Gnuplot.PlotItems.Data(x2.flat,y2.flat, with="lines 3") g.plot(plot1,plot2) #g.plot(Gnuplot.PlotItems.Data(x1.flat,y1.flat),with="linespoints") #g.plot(Gnuplot.PlotItems.Data(x2.flat,y2.flat), with="lines") debug = False print "TEST 1D-SOLUTION I" L = 2000.0 # Length of channel (m) N = 100 # Number of compuational cells cell_len = L/N # Origin = 0.0 points = zeros(N+1,Float) for i in range(N+1): points[i] = i*cell_len domain = Domain(points) def stage(x): y = zeros(len(x),Float) for i in range(len(x)): if x[i]<=1000.0: y[i] = 10.0 else: y[i] = 5.0 return y domain.set_quantity('stage', stage) domain.order = 2 domain.default_order = 2 domain.cfl = 0.8 #domain.beta = 0.0 print "domain.order", domain.order if (debug == True): area = domain.areas for i in range(len(area)): if area != 20: print "Cell Areas are Wrong" L = domain.quantities['stage'].vertex_values print "Initial Stage" print L domain.set_boundary({'exterior': Reflective_boundary(domain)}) X = domain.vertices C = domain.centroids plot1 = newLinePlot("Stage") plot2 = newLinePlot("Momentum") import time t0 = time.time() yieldstep = 1.0 finaltime = 50.0 for t in domain.evolve(yieldstep = yieldstep, finaltime = finaltime): domain.write_time() if t > 0.0: StageQ = domain.quantities['stage'].vertex_values y , my = analytical_sol(X.flat,domain.time) linePlot(plot1,X,StageQ,X,y) MomentumQ = domain.quantities['xmomentum'].vertex_values linePlot(plot2,X,MomentumQ,X,my) #raw_input('press_return') #pass print 'That took %.2f seconds' %(time.time()-t0) C = domain.quantities['stage'].centroid_values if (debug == True): L = domain.quantities['stage'].vertex_values print "Final Stage Vertex Values" print L print "Final Stage Centroid Values" print C #f = file('test_solution_I.out', 'w') #for i in range(N): # f.write(str(C[i])) # f.write("\n") #f.close