[3293] | 1 | // Python - C extension module for shallow_water.py |
---|
| 2 | // |
---|
| 3 | // To compile (Python2.3): |
---|
| 4 | // gcc -c domain_ext.c -I/usr/include/python2.3 -o domain_ext.o -Wall -O |
---|
| 5 | // gcc -shared domain_ext.o -o domain_ext.so |
---|
| 6 | // |
---|
| 7 | // or use python compile.py |
---|
| 8 | // |
---|
| 9 | // See the module shallow_water.py |
---|
| 10 | // |
---|
| 11 | // |
---|
| 12 | // Ole Nielsen, GA 2004 |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | #include "Python.h" |
---|
| 16 | #include "Numeric/arrayobject.h" |
---|
| 17 | #include "math.h" |
---|
| 18 | #include <stdio.h> |
---|
| 19 | |
---|
| 20 | //Shared code snippets |
---|
| 21 | #include "util_ext.h" |
---|
| 22 | |
---|
| 23 | const double pi = 3.14159265358979; |
---|
| 24 | |
---|
| 25 | // Computational function for rotation |
---|
| 26 | int _rotate(double *q, double n1, double n2) { |
---|
| 27 | /*Rotate the momentum component q (q[1], q[2]) |
---|
| 28 | from x,y coordinates to coordinates based on normal vector (n1, n2). |
---|
| 29 | |
---|
| 30 | Result is returned in array 3x1 r |
---|
| 31 | To rotate in opposite direction, call rotate with (q, n1, -n2) |
---|
| 32 | |
---|
| 33 | Contents of q are changed by this function */ |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | double q1, q2; |
---|
| 37 | |
---|
| 38 | //Shorthands |
---|
| 39 | q1 = q[1]; //uh momentum |
---|
| 40 | q2 = q[2]; //vh momentum |
---|
| 41 | |
---|
| 42 | //Rotate |
---|
| 43 | q[1] = n1*q1 + n2*q2; |
---|
| 44 | q[2] = -n2*q1 + n1*q2; |
---|
| 45 | |
---|
| 46 | return 0; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | int find_qmin_and_qmax(double dq0, double dq1, double dq2, double *qmin, double *qmax){ |
---|
| 50 | //Considering the centroid of an FV triangle and the vertices of its auxiliary triangle, find |
---|
| 51 | //qmin=min(q)-qc and qmax=max(q)-qc, where min(q) and max(q) are respectively min and max over the |
---|
| 52 | //four values (at the centroid of the FV triangle and the auxiliary triangle vertices), |
---|
| 53 | //and qc is the centroid |
---|
| 54 | //dq0=q(vertex0)-q(centroid of FV triangle) |
---|
| 55 | //dq1=q(vertex1)-q(vertex0) |
---|
| 56 | //dq2=q(vertex2)-q(vertex0) |
---|
| 57 | if (dq0>=0.0){ |
---|
| 58 | if (dq1>=dq2){ |
---|
| 59 | if (dq1>=0.0) |
---|
| 60 | *qmax=dq0+dq1; |
---|
| 61 | else |
---|
| 62 | *qmax=dq0; |
---|
| 63 | if ((*qmin=dq0+dq2)<0) |
---|
| 64 | ;//qmin is already set to correct value |
---|
| 65 | else |
---|
| 66 | *qmin=0.0; |
---|
| 67 | } |
---|
| 68 | else{//dq1<dq2 |
---|
| 69 | if (dq2>0) |
---|
| 70 | *qmax=dq0+dq2; |
---|
| 71 | else |
---|
| 72 | *qmax=dq0; |
---|
| 73 | if ((*qmin=dq0+dq1)<0) |
---|
| 74 | ;//qmin is the correct value |
---|
| 75 | else |
---|
| 76 | *qmin=0.0; |
---|
| 77 | } |
---|
| 78 | } |
---|
| 79 | else{//dq0<0 |
---|
| 80 | if (dq1<=dq2){ |
---|
| 81 | if (dq1<0.0) |
---|
| 82 | *qmin=dq0+dq1; |
---|
| 83 | else |
---|
| 84 | *qmin=dq0; |
---|
| 85 | if ((*qmax=dq0+dq2)>0.0) |
---|
| 86 | ;//qmax is already set to the correct value |
---|
| 87 | else |
---|
| 88 | *qmax=0.0; |
---|
| 89 | } |
---|
| 90 | else{//dq1>dq2 |
---|
| 91 | if (dq2<0.0) |
---|
| 92 | *qmin=dq0+dq2; |
---|
| 93 | else |
---|
| 94 | *qmin=dq0; |
---|
| 95 | if ((*qmax=dq0+dq1)>0.0) |
---|
| 96 | ;//qmax is already set to the correct value |
---|
| 97 | else |
---|
| 98 | *qmax=0.0; |
---|
| 99 | } |
---|
| 100 | } |
---|
| 101 | return 0; |
---|
| 102 | } |
---|
| 103 | |
---|
| 104 | int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){ |
---|
| 105 | //given provisional jumps dqv from the FV triangle centroid to its vertices and |
---|
| 106 | //jumps qmin (qmax) between the centroid of the FV triangle and the |
---|
| 107 | //minimum (maximum) of the values at the centroid of the FV triangle and the auxiliary triangle vertices, |
---|
| 108 | //calculate a multiplicative factor phi by which the provisional vertex jumps are to be limited |
---|
| 109 | int i; |
---|
| 110 | double r=1000.0, r0=1.0, phi=1.0; |
---|
| 111 | static double TINY = 1.0e-100;//to avoid machine accuracy problems. |
---|
| 112 | //Any provisional jump with magnitude < TINY does not contribute to the limiting process. |
---|
| 113 | for (i=0;i<3;i++){ |
---|
| 114 | if (dqv[i]<-TINY) |
---|
| 115 | r0=qmin/dqv[i]; |
---|
| 116 | if (dqv[i]>TINY) |
---|
| 117 | r0=qmax/dqv[i]; |
---|
| 118 | r=min(r0,r); |
---|
| 119 | // |
---|
| 120 | } |
---|
| 121 | phi=min(r*beta_w,1.0); |
---|
| 122 | for (i=0;i<3;i++) |
---|
| 123 | dqv[i]=dqv[i]*phi; |
---|
| 124 | return 0; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | // Computational function for flux computation (using stage w=z+h) |
---|
| 128 | int flux_function(double *q_left, double *q_right, |
---|
| 129 | double z_left, double z_right, |
---|
| 130 | double n1, double n2, |
---|
| 131 | double epsilon, double g, |
---|
| 132 | double *edgeflux, double *max_speed) { |
---|
| 133 | |
---|
| 134 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
| 135 | cast in terms of the 'stage', w = h+z using |
---|
| 136 | the 'central scheme' as described in |
---|
| 137 | |
---|
| 138 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 139 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 140 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 141 | |
---|
| 142 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 143 | */ |
---|
| 144 | |
---|
| 145 | int i; |
---|
| 146 | |
---|
| 147 | double w_left, h_left, uh_left, vh_left, u_left; |
---|
| 148 | double w_right, h_right, uh_right, vh_right, u_right; |
---|
| 149 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
| 150 | double denom, z; |
---|
| 151 | double q_left_copy[3], q_right_copy[3]; |
---|
| 152 | double flux_right[3], flux_left[3]; |
---|
| 153 | |
---|
| 154 | //Copy conserved quantities to protect from modification |
---|
| 155 | for (i=0; i<3; i++) { |
---|
| 156 | q_left_copy[i] = q_left[i]; |
---|
| 157 | q_right_copy[i] = q_right[i]; |
---|
| 158 | } |
---|
| 159 | |
---|
| 160 | //Align x- and y-momentum with x-axis |
---|
| 161 | _rotate(q_left_copy, n1, n2); |
---|
| 162 | _rotate(q_right_copy, n1, n2); |
---|
| 163 | |
---|
| 164 | z = (z_left+z_right)/2; //Take average of field values |
---|
| 165 | |
---|
| 166 | //Compute speeds in x-direction |
---|
| 167 | w_left = q_left_copy[0]; // h+z |
---|
| 168 | h_left = w_left-z; |
---|
| 169 | uh_left = q_left_copy[1]; |
---|
| 170 | |
---|
| 171 | if (h_left < epsilon) { |
---|
| 172 | h_left = 0.0; //Could have been negative |
---|
| 173 | u_left = 0.0; |
---|
| 174 | } else { |
---|
| 175 | u_left = uh_left/h_left; |
---|
| 176 | } |
---|
| 177 | |
---|
| 178 | w_right = q_right_copy[0]; |
---|
| 179 | h_right = w_right-z; |
---|
| 180 | uh_right = q_right_copy[1]; |
---|
| 181 | |
---|
| 182 | if (h_right < epsilon) { |
---|
| 183 | h_right = 0.0; //Could have been negative |
---|
| 184 | u_right = 0.0; |
---|
| 185 | } else { |
---|
| 186 | u_right = uh_right/h_right; |
---|
| 187 | } |
---|
| 188 | |
---|
| 189 | //Momentum in y-direction |
---|
| 190 | vh_left = q_left_copy[2]; |
---|
| 191 | vh_right = q_right_copy[2]; |
---|
| 192 | |
---|
| 193 | |
---|
| 194 | //Maximal and minimal wave speeds |
---|
| 195 | soundspeed_left = sqrt(g*h_left); |
---|
| 196 | soundspeed_right = sqrt(g*h_right); |
---|
| 197 | |
---|
| 198 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
| 199 | if (s_max < 0.0) s_max = 0.0; |
---|
| 200 | |
---|
| 201 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
| 202 | if (s_min > 0.0) s_min = 0.0; |
---|
| 203 | |
---|
| 204 | //Flux formulas |
---|
| 205 | flux_left[0] = u_left*h_left; |
---|
| 206 | flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; |
---|
| 207 | flux_left[2] = u_left*vh_left; |
---|
| 208 | |
---|
| 209 | flux_right[0] = u_right*h_right; |
---|
| 210 | flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; |
---|
| 211 | flux_right[2] = u_right*vh_right; |
---|
| 212 | |
---|
| 213 | |
---|
| 214 | //Flux computation |
---|
| 215 | denom = s_max-s_min; |
---|
| 216 | if (denom == 0.0) { |
---|
| 217 | for (i=0; i<3; i++) edgeflux[i] = 0.0; |
---|
| 218 | *max_speed = 0.0; |
---|
| 219 | } else { |
---|
| 220 | for (i=0; i<3; i++) { |
---|
| 221 | edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; |
---|
| 222 | edgeflux[i] += s_max*s_min*(q_right_copy[i]-q_left_copy[i]); |
---|
| 223 | edgeflux[i] /= denom; |
---|
| 224 | } |
---|
| 225 | |
---|
| 226 | //Maximal wavespeed |
---|
| 227 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
| 228 | |
---|
| 229 | //Rotate back |
---|
| 230 | _rotate(edgeflux, n1, -n2); |
---|
| 231 | } |
---|
| 232 | return 0; |
---|
| 233 | } |
---|
| 234 | |
---|
| 235 | void _manning_friction(double g, double eps, int N, |
---|
| 236 | double* w, double* z, |
---|
| 237 | double* uh, double* vh, |
---|
| 238 | double* eta, double* xmom, double* ymom) { |
---|
| 239 | |
---|
| 240 | int k; |
---|
| 241 | double S, h; |
---|
| 242 | |
---|
| 243 | for (k=0; k<N; k++) { |
---|
| 244 | if (eta[k] > eps) { |
---|
| 245 | h = w[k]-z[k]; |
---|
| 246 | if (h >= eps) { |
---|
| 247 | S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); |
---|
| 248 | //S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) |
---|
| 249 | S /= exp(7.0/3.0*log(h)); //seems to save about 15% over manning_friction |
---|
| 250 | //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | //Update momentum |
---|
| 254 | xmom[k] += S*uh[k]; |
---|
| 255 | ymom[k] += S*vh[k]; |
---|
| 256 | } |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | int _balance_deep_and_shallow(int N, |
---|
| 264 | double* wc, |
---|
| 265 | double* zc, |
---|
| 266 | double* hc, |
---|
| 267 | double* wv, |
---|
| 268 | double* zv, |
---|
| 269 | double* hv, |
---|
| 270 | double* hvbar, |
---|
| 271 | double* xmomc, |
---|
| 272 | double* ymomc, |
---|
| 273 | double* xmomv, |
---|
| 274 | double* ymomv) { |
---|
| 275 | |
---|
| 276 | int k, k3, i; |
---|
| 277 | double dz, hmin, alpha; |
---|
| 278 | |
---|
| 279 | //Compute linear combination between w-limited stages and |
---|
| 280 | //h-limited stages close to the bed elevation. |
---|
| 281 | |
---|
| 282 | for (k=0; k<N; k++) { |
---|
| 283 | // Compute maximal variation in bed elevation |
---|
| 284 | // This quantitiy is |
---|
| 285 | // dz = max_i abs(z_i - z_c) |
---|
| 286 | // and it is independent of dimension |
---|
| 287 | // In the 1d case zc = (z0+z1)/2 |
---|
| 288 | // In the 2d case zc = (z0+z1+z2)/3 |
---|
| 289 | |
---|
| 290 | k3 = 3*k; |
---|
| 291 | |
---|
| 292 | //FIXME: Try with this one precomputed |
---|
| 293 | dz = 0.0; |
---|
| 294 | hmin = hv[k3]; |
---|
| 295 | for (i=0; i<3; i++) { |
---|
| 296 | dz = max(dz, fabs(zv[k3+i]-zc[k])); |
---|
| 297 | hmin = min(hmin, hv[k3+i]); |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | |
---|
| 301 | //Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 302 | //stage and alpha==1 means using the w-limited stage as |
---|
| 303 | //computed by the gradient limiter (both 1st or 2nd order) |
---|
| 304 | // |
---|
| 305 | //If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 306 | //If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | if (dz > 0.0) |
---|
| 310 | //if (hmin<0.0) |
---|
| 311 | // alpha = 0.0; |
---|
| 312 | //else |
---|
| 313 | // alpha = max( min( hc[k]/dz, 1.0), 0.0 ); |
---|
| 314 | alpha = max( min( 2.0*hmin/dz, 1.0), 0.0 ); |
---|
| 315 | else |
---|
| 316 | alpha = 1.0; //Flat bed |
---|
| 317 | |
---|
| 318 | //alpha = 1.0; |
---|
| 319 | |
---|
| 320 | //printf("dz = %.3f, alpha = %.8f\n", dz, alpha); |
---|
| 321 | |
---|
| 322 | // Let |
---|
| 323 | // |
---|
| 324 | // wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 325 | // wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 326 | // |
---|
| 327 | // |
---|
| 328 | // where i=0,1,2 denotes the vertex ids |
---|
| 329 | // |
---|
| 330 | // Weighted balance between w-limited and h-limited stage is |
---|
| 331 | // |
---|
| 332 | // wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 333 | // |
---|
| 334 | // It follows that the updated wvi is |
---|
| 335 | // wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 336 | // |
---|
| 337 | // Momentum is balanced between constant and limited |
---|
| 338 | |
---|
| 339 | if (alpha < 1) { |
---|
| 340 | for (i=0; i<3; i++) { |
---|
| 341 | wv[k3+i] = zv[k3+i] + (1-alpha)*hvbar[k3+i] + alpha*hv[k3+i]; |
---|
| 342 | |
---|
| 343 | //Update momentum as a linear combination of |
---|
| 344 | //xmomc and ymomc (shallow) and momentum |
---|
| 345 | //from extrapolator xmomv and ymomv (deep). |
---|
| 346 | xmomv[k3+i] = (1-alpha)*xmomc[k] + alpha*xmomv[k3+i]; |
---|
| 347 | ymomv[k3+i] = (1-alpha)*ymomc[k] + alpha*ymomv[k3+i]; |
---|
| 348 | } |
---|
| 349 | } |
---|
| 350 | } |
---|
| 351 | return 0; |
---|
| 352 | } |
---|
| 353 | |
---|
| 354 | |
---|
| 355 | |
---|
| 356 | int _protect(int N, |
---|
| 357 | double minimum_allowed_height, |
---|
| 358 | double epsilon, |
---|
| 359 | double* wc, |
---|
| 360 | double* zc, |
---|
| 361 | double* xmomc, |
---|
| 362 | double* ymomc) { |
---|
| 363 | |
---|
| 364 | int k; |
---|
| 365 | double hc; |
---|
| 366 | |
---|
| 367 | //Protect against initesimal and negative heights |
---|
| 368 | |
---|
| 369 | for (k=0; k<N; k++) { |
---|
| 370 | hc = wc[k] - zc[k]; |
---|
| 371 | |
---|
| 372 | if (hc < minimum_allowed_height) { |
---|
| 373 | if (hc < epsilon) wc[k] = zc[k]; //Contain 'lost mass' error |
---|
| 374 | xmomc[k] = 0.0; |
---|
| 375 | ymomc[k] = 0.0; |
---|
| 376 | } |
---|
| 377 | |
---|
| 378 | } |
---|
| 379 | return 0; |
---|
| 380 | } |
---|
| 381 | |
---|
| 382 | |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | int _assign_wind_field_values(int N, |
---|
| 386 | double* xmom_update, |
---|
| 387 | double* ymom_update, |
---|
| 388 | double* s_vec, |
---|
| 389 | double* phi_vec, |
---|
| 390 | double cw) { |
---|
| 391 | |
---|
| 392 | //Assign windfield values to momentum updates |
---|
| 393 | |
---|
| 394 | int k; |
---|
| 395 | double S, s, phi, u, v; |
---|
| 396 | |
---|
| 397 | for (k=0; k<N; k++) { |
---|
| 398 | |
---|
| 399 | s = s_vec[k]; |
---|
| 400 | phi = phi_vec[k]; |
---|
| 401 | |
---|
| 402 | //Convert to radians |
---|
| 403 | phi = phi*pi/180; |
---|
| 404 | |
---|
| 405 | //Compute velocity vector (u, v) |
---|
| 406 | u = s*cos(phi); |
---|
| 407 | v = s*sin(phi); |
---|
| 408 | |
---|
| 409 | //Compute wind stress |
---|
| 410 | S = cw * sqrt(u*u + v*v); |
---|
| 411 | xmom_update[k] += S*u; |
---|
| 412 | ymom_update[k] += S*v; |
---|
| 413 | } |
---|
| 414 | return 0; |
---|
| 415 | } |
---|
| 416 | |
---|
| 417 | |
---|
| 418 | |
---|
| 419 | /////////////////////////////////////////////////////////////////// |
---|
| 420 | // Gateways to Python |
---|
| 421 | |
---|
| 422 | PyObject *gravity(PyObject *self, PyObject *args) { |
---|
| 423 | // |
---|
| 424 | // gravity(g, h, v, x, xmom, ymom) |
---|
| 425 | // |
---|
| 426 | |
---|
| 427 | |
---|
| 428 | PyArrayObject *h, *v, *x, *xmom, *ymom; |
---|
| 429 | int k, i, N, k3, k6; |
---|
| 430 | double g, avg_h, zx, zy; |
---|
| 431 | double x0, y0, x1, y1, x2, y2, z0, z1, z2; |
---|
| 432 | |
---|
| 433 | if (!PyArg_ParseTuple(args, "dOOOOO", |
---|
| 434 | &g, &h, &v, &x, |
---|
| 435 | &xmom, &ymom)) |
---|
| 436 | return NULL; |
---|
| 437 | |
---|
| 438 | N = h -> dimensions[0]; |
---|
| 439 | for (k=0; k<N; k++) { |
---|
| 440 | k3 = 3*k; // base index |
---|
| 441 | k6 = 6*k; // base index |
---|
| 442 | |
---|
| 443 | avg_h = 0.0; |
---|
| 444 | for (i=0; i<3; i++) { |
---|
| 445 | avg_h += ((double *) h -> data)[k3+i]; |
---|
| 446 | } |
---|
| 447 | avg_h /= 3; |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | //Compute bed slope |
---|
| 451 | x0 = ((double*) x -> data)[k6 + 0]; |
---|
| 452 | y0 = ((double*) x -> data)[k6 + 1]; |
---|
| 453 | x1 = ((double*) x -> data)[k6 + 2]; |
---|
| 454 | y1 = ((double*) x -> data)[k6 + 3]; |
---|
| 455 | x2 = ((double*) x -> data)[k6 + 4]; |
---|
| 456 | y2 = ((double*) x -> data)[k6 + 5]; |
---|
| 457 | |
---|
| 458 | |
---|
| 459 | z0 = ((double*) v -> data)[k3 + 0]; |
---|
| 460 | z1 = ((double*) v -> data)[k3 + 1]; |
---|
| 461 | z2 = ((double*) v -> data)[k3 + 2]; |
---|
| 462 | |
---|
| 463 | _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); |
---|
| 464 | |
---|
| 465 | //Update momentum |
---|
| 466 | ((double*) xmom -> data)[k] += -g*zx*avg_h; |
---|
| 467 | ((double*) ymom -> data)[k] += -g*zy*avg_h; |
---|
| 468 | } |
---|
| 469 | |
---|
| 470 | return Py_BuildValue(""); |
---|
| 471 | } |
---|
| 472 | |
---|
| 473 | |
---|
| 474 | PyObject *manning_friction(PyObject *self, PyObject *args) { |
---|
| 475 | // |
---|
| 476 | // manning_friction(g, eps, h, uh, vh, eta, xmom_update, ymom_update) |
---|
| 477 | // |
---|
| 478 | |
---|
| 479 | |
---|
| 480 | PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; |
---|
| 481 | int N; |
---|
| 482 | double g, eps; |
---|
| 483 | |
---|
| 484 | if (!PyArg_ParseTuple(args, "ddOOOOOOO", |
---|
| 485 | &g, &eps, &w, &z, &uh, &vh, &eta, |
---|
| 486 | &xmom, &ymom)) |
---|
| 487 | return NULL; |
---|
| 488 | |
---|
| 489 | N = w -> dimensions[0]; |
---|
| 490 | _manning_friction(g, eps, N, |
---|
| 491 | (double*) w -> data, |
---|
| 492 | (double*) z -> data, |
---|
| 493 | (double*) uh -> data, |
---|
| 494 | (double*) vh -> data, |
---|
| 495 | (double*) eta -> data, |
---|
| 496 | (double*) xmom -> data, |
---|
| 497 | (double*) ymom -> data); |
---|
| 498 | |
---|
| 499 | return Py_BuildValue(""); |
---|
| 500 | } |
---|
| 501 | |
---|
| 502 | PyObject *extrapolate_second_order_sw(PyObject *self, PyObject *args) { |
---|
| 503 | /*Compute the vertex values based on a linear reconstruction on each triangle |
---|
| 504 | These values are calculated as follows: |
---|
| 505 | 1) For each triangle not adjacent to a boundary, we consider the auxiliary triangle |
---|
| 506 | formed by the centroids of its three neighbours. |
---|
| 507 | 2) For each conserved quantity, we integrate around the auxiliary triangle's boundary the product |
---|
| 508 | of the quantity and the outward normal vector. Dividing by the triangle area gives (a,b), the average |
---|
| 509 | of the vector (q_x,q_y) on the auxiliary triangle. We suppose that the linear reconstruction on the |
---|
| 510 | original triangle has gradient (a,b). |
---|
| 511 | 3) Provisional vertex junmps dqv[0,1,2] are computed and these are then limited by calling the functions |
---|
| 512 | find_qmin_and_qmax and limit_gradient |
---|
| 513 | |
---|
| 514 | Python call: |
---|
| 515 | extrapolate_second_order_sw(domain.surrogate_neighbours, |
---|
| 516 | domain.number_of_boundaries |
---|
| 517 | domain.centroid_coordinates, |
---|
| 518 | Stage.centroid_values |
---|
| 519 | Xmom.centroid_values |
---|
| 520 | Ymom.centroid_values |
---|
| 521 | domain.vertex_coordinates, |
---|
| 522 | Stage.vertex_values, |
---|
| 523 | Xmom.vertex_values, |
---|
| 524 | Ymom.vertex_values) |
---|
| 525 | |
---|
| 526 | Post conditions: |
---|
| 527 | The vertices of each triangle have values from a limited linear reconstruction |
---|
| 528 | based on centroid values |
---|
| 529 | |
---|
| 530 | */ |
---|
| 531 | PyArrayObject *surrogate_neighbours, |
---|
| 532 | *number_of_boundaries, |
---|
| 533 | *centroid_coordinates, |
---|
| 534 | *stage_centroid_values, |
---|
| 535 | *xmom_centroid_values, |
---|
| 536 | *ymom_centroid_values, |
---|
| 537 | *vertex_coordinates, |
---|
| 538 | *stage_vertex_values, |
---|
| 539 | *xmom_vertex_values, |
---|
| 540 | *ymom_vertex_values; |
---|
| 541 | PyObject *domain, *Tmp; |
---|
| 542 | //Local variables |
---|
| 543 | double a, b;//gradient vector, not stored but used to calculate vertex values from centroids |
---|
| 544 | int number_of_elements,k,k0,k1,k2,k3,k6,coord_index,i; |
---|
| 545 | double x,y,x0,y0,x1,y1,x2,y2,xv0,yv0,xv1,yv1,xv2,yv2;//vertices of the auxiliary triangle |
---|
| 546 | double dx1,dx2,dy1,dy2,dxv0,dxv1,dxv2,dyv0,dyv1,dyv2,dq0,dq1,dq2,area2; |
---|
| 547 | double dqv[3], qmin, qmax, beta_w;//provisional jumps from centroids to v'tices and safety factor re limiting |
---|
| 548 | //by which these jumps are limited |
---|
| 549 | // Convert Python arguments to C |
---|
| 550 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 551 | &domain, |
---|
| 552 | &surrogate_neighbours, |
---|
| 553 | &number_of_boundaries, |
---|
| 554 | ¢roid_coordinates, |
---|
| 555 | &stage_centroid_values, |
---|
| 556 | &xmom_centroid_values, |
---|
| 557 | &ymom_centroid_values, |
---|
| 558 | &vertex_coordinates, |
---|
| 559 | &stage_vertex_values, |
---|
| 560 | &xmom_vertex_values, |
---|
| 561 | &ymom_vertex_values)) { |
---|
| 562 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 563 | return NULL; |
---|
| 564 | } |
---|
| 565 | |
---|
| 566 | //get the safety factor beta_w, set in the config.py file. This is used in the limiting process |
---|
| 567 | Tmp = PyObject_GetAttrString(domain, "beta_w"); |
---|
| 568 | if (!Tmp) |
---|
| 569 | return NULL; |
---|
| 570 | beta_w = PyFloat_AsDouble(Tmp); |
---|
| 571 | Py_DECREF(Tmp); |
---|
| 572 | number_of_elements = stage_centroid_values -> dimensions[0]; |
---|
| 573 | for (k=0; k<number_of_elements; k++) { |
---|
| 574 | k3=k*3; |
---|
| 575 | k6=k*6; |
---|
| 576 | |
---|
| 577 | if (((long *) number_of_boundaries->data)[k]==3){/*no neighbours, set gradient on the triangle to zero*/ |
---|
| 578 | ((double *) stage_vertex_values->data)[k3]=((double *)stage_centroid_values->data)[k]; |
---|
| 579 | ((double *) stage_vertex_values->data)[k3+1]=((double *)stage_centroid_values->data)[k]; |
---|
| 580 | ((double *) stage_vertex_values->data)[k3+2]=((double *)stage_centroid_values->data)[k]; |
---|
| 581 | ((double *) xmom_vertex_values->data)[k3]=((double *)xmom_centroid_values->data)[k]; |
---|
| 582 | ((double *) xmom_vertex_values->data)[k3+1]=((double *)xmom_centroid_values->data)[k]; |
---|
| 583 | ((double *) xmom_vertex_values->data)[k3+2]=((double *)xmom_centroid_values->data)[k]; |
---|
| 584 | ((double *) ymom_vertex_values->data)[k3]=((double *)ymom_centroid_values->data)[k]; |
---|
| 585 | ((double *) ymom_vertex_values->data)[k3+1]=((double *)ymom_centroid_values->data)[k]; |
---|
| 586 | ((double *) ymom_vertex_values->data)[k3+2]=((double *)ymom_centroid_values->data)[k]; |
---|
| 587 | continue; |
---|
| 588 | } |
---|
| 589 | else {//we will need centroid coordinates and vertex coordinates of the triangle |
---|
| 590 | //get the vertex coordinates of the FV triangle |
---|
| 591 | xv0=((double *)vertex_coordinates->data)[k6]; yv0=((double *)vertex_coordinates->data)[k6+1]; |
---|
| 592 | xv1=((double *)vertex_coordinates->data)[k6+2]; yv1=((double *)vertex_coordinates->data)[k6+3]; |
---|
| 593 | xv2=((double *)vertex_coordinates->data)[k6+4]; yv2=((double *)vertex_coordinates->data)[k6+5]; |
---|
| 594 | //get the centroid coordinates of the FV triangle |
---|
| 595 | coord_index=2*k; |
---|
| 596 | x=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 597 | y=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 598 | //store x- and y- differentials for the vertices of the FV triangle relative to the centroid |
---|
| 599 | dxv0=xv0-x; dxv1=xv1-x; dxv2=xv2-x; |
---|
| 600 | dyv0=yv0-y; dyv1=yv1-y; dyv2=yv2-y; |
---|
| 601 | } |
---|
| 602 | if (((long *)number_of_boundaries->data)[k]<=1){ |
---|
| 603 | //if no boundaries, auxiliary triangle is formed from the centroids of the three neighbours |
---|
| 604 | //if one boundary, auxiliary triangle is formed from this centroid and its two neighbours |
---|
| 605 | k0=((long *)surrogate_neighbours->data)[k3]; |
---|
| 606 | k1=((long *)surrogate_neighbours->data)[k3+1]; |
---|
| 607 | k2=((long *)surrogate_neighbours->data)[k3+2]; |
---|
| 608 | //get the auxiliary triangle's vertex coordinates (really the centroids of neighbouring triangles) |
---|
| 609 | coord_index=2*k0; |
---|
| 610 | x0=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 611 | y0=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 612 | coord_index=2*k1; |
---|
| 613 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 614 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 615 | coord_index=2*k2; |
---|
| 616 | x2=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 617 | y2=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 618 | //store x- and y- differentials for the vertices of the auxiliary triangle |
---|
| 619 | dx1=x1-x0; dx2=x2-x0; |
---|
| 620 | dy1=y1-y0; dy2=y2-y0; |
---|
| 621 | //calculate 2*area of the auxiliary triangle |
---|
| 622 | area2 = dy2*dx1 - dy1*dx2;//the triangle is guaranteed to be counter-clockwise |
---|
| 623 | //If the mesh is 'weird' near the boundary, the trianlge might be flat or clockwise: |
---|
| 624 | if (area2<=0) |
---|
| 625 | return NULL; |
---|
| 626 | |
---|
| 627 | //### stage ### |
---|
| 628 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 629 | dq0=((double *)stage_centroid_values->data)[k0]-((double *)stage_centroid_values->data)[k]; |
---|
| 630 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 631 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k0]; |
---|
| 632 | dq2=((double *)stage_centroid_values->data)[k2]-((double *)stage_centroid_values->data)[k0]; |
---|
| 633 | //calculate the gradient of stage on the auxiliary triangle |
---|
| 634 | a = dy2*dq1 - dy1*dq2; |
---|
| 635 | a /= area2; |
---|
| 636 | b = dx1*dq2 - dx2*dq1; |
---|
| 637 | b /= area2; |
---|
| 638 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 639 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 640 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 641 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 642 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 643 | //and compute jumps from the centroid to the min and max |
---|
| 644 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 645 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 646 | for (i=0;i<3;i++) |
---|
| 647 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 648 | |
---|
| 649 | //### xmom ### |
---|
| 650 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 651 | dq0=((double *)xmom_centroid_values->data)[k0]-((double *)xmom_centroid_values->data)[k]; |
---|
| 652 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 653 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 654 | dq2=((double *)xmom_centroid_values->data)[k2]-((double *)xmom_centroid_values->data)[k0]; |
---|
| 655 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 656 | a = dy2*dq1 - dy1*dq2; |
---|
| 657 | a /= area2; |
---|
| 658 | b = dx1*dq2 - dx2*dq1; |
---|
| 659 | b /= area2; |
---|
| 660 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 661 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 662 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 663 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 664 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 665 | //and compute jumps from the centroid to the min and max |
---|
| 666 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 667 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 668 | for (i=0;i<3;i++) |
---|
| 669 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 670 | |
---|
| 671 | //### ymom ### |
---|
| 672 | //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid |
---|
| 673 | dq0=((double *)ymom_centroid_values->data)[k0]-((double *)ymom_centroid_values->data)[k]; |
---|
| 674 | //calculate differentials between the vertices of the auxiliary triangle |
---|
| 675 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 676 | dq2=((double *)ymom_centroid_values->data)[k2]-((double *)ymom_centroid_values->data)[k0]; |
---|
| 677 | //calculate the gradient of xmom on the auxiliary triangle |
---|
| 678 | a = dy2*dq1 - dy1*dq2; |
---|
| 679 | a /= area2; |
---|
| 680 | b = dx1*dq2 - dx2*dq1; |
---|
| 681 | b /= area2; |
---|
| 682 | //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited |
---|
| 683 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 684 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 685 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 686 | //now we want to find min and max of the centroid and the vertices of the auxiliary triangle |
---|
| 687 | //and compute jumps from the centroid to the min and max |
---|
| 688 | find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); |
---|
| 689 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 690 | for (i=0;i<3;i++) |
---|
| 691 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 692 | }//if (number_of_boundaries[k]<=1) |
---|
| 693 | else{//number_of_boundaries==2 |
---|
| 694 | //one internal neighbour and gradient is in direction of the neighbour's centroid |
---|
| 695 | //find the only internal neighbour |
---|
| 696 | for (k2=k3;k2<k3+3;k2++){//k2 just indexes the edges of triangle k |
---|
| 697 | if (((long *)surrogate_neighbours->data)[k2]!=k)//find internal neighbour of triabngle k |
---|
| 698 | break; |
---|
| 699 | } |
---|
| 700 | if ((k2==k3+3))//if we didn't find an internal neighbour |
---|
| 701 | return NULL;//error |
---|
| 702 | k1=((long *)surrogate_neighbours->data)[k2]; |
---|
| 703 | //the coordinates of the triangle are already (x,y). Get centroid of the neighbour (x1,y1) |
---|
| 704 | coord_index=2*k1; |
---|
| 705 | x1=((double *)centroid_coordinates->data)[coord_index]; |
---|
| 706 | y1=((double *)centroid_coordinates->data)[coord_index+1]; |
---|
| 707 | //compute x- and y- distances between the centroid of the FV triangle and that of its neighbour |
---|
| 708 | dx1=x1-x; dy1=y1-y; |
---|
| 709 | //set area2 as the square of the distance |
---|
| 710 | area2=dx1*dx1+dy1*dy1; |
---|
| 711 | //set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which |
---|
| 712 | //respectively correspond to the x- and y- gradients of the conserved quantities |
---|
| 713 | dx2=1.0/area2; |
---|
| 714 | dy2=dx2*dy1; |
---|
| 715 | dx2*=dx1; |
---|
| 716 | |
---|
| 717 | //## stage ### |
---|
| 718 | //compute differentials |
---|
| 719 | dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k]; |
---|
| 720 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 721 | a=dq1*dx2; |
---|
| 722 | b=dq1*dy2; |
---|
| 723 | //calculate provisional vertex jumps, to be limited |
---|
| 724 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 725 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 726 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 727 | //now limit the jumps |
---|
| 728 | if (dq1>=0.0){ |
---|
| 729 | qmin=0.0; |
---|
| 730 | qmax=dq1; |
---|
| 731 | } |
---|
| 732 | else{ |
---|
| 733 | qmin=dq1; |
---|
| 734 | qmax=0.0; |
---|
| 735 | } |
---|
| 736 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 737 | for (i=0;i<3;i++) |
---|
| 738 | ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; |
---|
| 739 | |
---|
| 740 | //## xmom ### |
---|
| 741 | //compute differentials |
---|
| 742 | dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k]; |
---|
| 743 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 744 | a=dq1*dx2; |
---|
| 745 | b=dq1*dy2; |
---|
| 746 | //calculate provisional vertex jumps, to be limited |
---|
| 747 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 748 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 749 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 750 | //now limit the jumps |
---|
| 751 | if (dq1>=0.0){ |
---|
| 752 | qmin=0.0; |
---|
| 753 | qmax=dq1; |
---|
| 754 | } |
---|
| 755 | else{ |
---|
| 756 | qmin=dq1; |
---|
| 757 | qmax=0.0; |
---|
| 758 | } |
---|
| 759 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 760 | for (i=0;i<3;i++) |
---|
| 761 | ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; |
---|
| 762 | |
---|
| 763 | //## ymom ### |
---|
| 764 | //compute differentials |
---|
| 765 | dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k]; |
---|
| 766 | //calculate the gradient between the centroid of the FV triangle and that of its neighbour |
---|
| 767 | a=dq1*dx2; |
---|
| 768 | b=dq1*dy2; |
---|
| 769 | //calculate provisional vertex jumps, to be limited |
---|
| 770 | dqv[0]=a*dxv0+b*dyv0; |
---|
| 771 | dqv[1]=a*dxv1+b*dyv1; |
---|
| 772 | dqv[2]=a*dxv2+b*dyv2; |
---|
| 773 | //now limit the jumps |
---|
| 774 | if (dq1>=0.0){ |
---|
| 775 | qmin=0.0; |
---|
| 776 | qmax=dq1; |
---|
| 777 | } |
---|
| 778 | else{ |
---|
| 779 | qmin=dq1; |
---|
| 780 | qmax=0.0; |
---|
| 781 | } |
---|
| 782 | limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited |
---|
| 783 | for (i=0;i<3;i++) |
---|
| 784 | ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; |
---|
| 785 | }//else [number_of_boudaries==2] |
---|
| 786 | }//for k=0 to number_of_elements-1 |
---|
| 787 | return Py_BuildValue(""); |
---|
| 788 | }//extrapolate_second-order_sw |
---|
| 789 | |
---|
| 790 | PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) { |
---|
| 791 | // |
---|
| 792 | // r = rotate(q, normal, direction=1) |
---|
| 793 | // |
---|
| 794 | // Where q is assumed to be a Float numeric array of length 3 and |
---|
| 795 | // normal a Float numeric array of length 2. |
---|
| 796 | |
---|
| 797 | |
---|
| 798 | PyObject *Q, *Normal; |
---|
| 799 | PyArrayObject *q, *r, *normal; |
---|
| 800 | |
---|
| 801 | static char *argnames[] = {"q", "normal", "direction", NULL}; |
---|
| 802 | int dimensions[1], i, direction=1; |
---|
| 803 | double n1, n2; |
---|
| 804 | |
---|
| 805 | // Convert Python arguments to C |
---|
| 806 | if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|i", argnames, |
---|
| 807 | &Q, &Normal, &direction)) |
---|
| 808 | return NULL; |
---|
| 809 | |
---|
| 810 | //Input checks (convert sequences into numeric arrays) |
---|
| 811 | q = (PyArrayObject *) |
---|
| 812 | PyArray_ContiguousFromObject(Q, PyArray_DOUBLE, 0, 0); |
---|
| 813 | normal = (PyArrayObject *) |
---|
| 814 | PyArray_ContiguousFromObject(Normal, PyArray_DOUBLE, 0, 0); |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | if (normal -> dimensions[0] != 2) { |
---|
| 818 | PyErr_SetString(PyExc_RuntimeError, "Normal vector must have 2 components"); |
---|
| 819 | return NULL; |
---|
| 820 | } |
---|
| 821 | |
---|
| 822 | //Allocate space for return vector r (don't DECREF) |
---|
| 823 | dimensions[0] = 3; |
---|
| 824 | r = (PyArrayObject *) PyArray_FromDims(1, dimensions, PyArray_DOUBLE); |
---|
| 825 | |
---|
| 826 | //Copy |
---|
| 827 | for (i=0; i<3; i++) { |
---|
| 828 | ((double *) (r -> data))[i] = ((double *) (q -> data))[i]; |
---|
| 829 | } |
---|
| 830 | |
---|
| 831 | //Get normal and direction |
---|
| 832 | n1 = ((double *) normal -> data)[0]; |
---|
| 833 | n2 = ((double *) normal -> data)[1]; |
---|
| 834 | if (direction == -1) n2 = -n2; |
---|
| 835 | |
---|
| 836 | //Rotate |
---|
| 837 | _rotate((double *) r -> data, n1, n2); |
---|
| 838 | |
---|
| 839 | //Release numeric arrays |
---|
| 840 | Py_DECREF(q); |
---|
| 841 | Py_DECREF(normal); |
---|
| 842 | |
---|
| 843 | //return result using PyArray to avoid memory leak |
---|
| 844 | return PyArray_Return(r); |
---|
| 845 | } |
---|
| 846 | |
---|
| 847 | PyObject *compute_fluxes(PyObject *self, PyObject *args) { |
---|
| 848 | /*Compute all fluxes and the timestep suitable for all volumes |
---|
| 849 | in domain. |
---|
| 850 | |
---|
| 851 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 852 | |
---|
| 853 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 854 | Resulting flux is then scaled by area and stored in |
---|
| 855 | explicit_update for each of the three conserved quantities |
---|
| 856 | stage, xmomentum and ymomentum |
---|
| 857 | |
---|
| 858 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 859 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 860 | those is computed as the next overall timestep. |
---|
| 861 | |
---|
| 862 | Python call: |
---|
| 863 | domain.timestep = compute_fluxes(timestep, |
---|
| 864 | domain.epsilon, |
---|
| 865 | domain.g, |
---|
| 866 | domain.neighbours, |
---|
| 867 | domain.neighbour_edges, |
---|
| 868 | domain.normals, |
---|
| 869 | domain.edgelengths, |
---|
| 870 | domain.radii, |
---|
| 871 | domain.areas, |
---|
| 872 | Stage.edge_values, |
---|
| 873 | Xmom.edge_values, |
---|
| 874 | Ymom.edge_values, |
---|
| 875 | Bed.edge_values, |
---|
| 876 | Stage.boundary_values, |
---|
| 877 | Xmom.boundary_values, |
---|
| 878 | Ymom.boundary_values, |
---|
| 879 | Stage.explicit_update, |
---|
| 880 | Xmom.explicit_update, |
---|
| 881 | Ymom.explicit_update, |
---|
| 882 | already_computed_flux) |
---|
| 883 | |
---|
| 884 | |
---|
| 885 | Post conditions: |
---|
| 886 | domain.explicit_update is reset to computed flux values |
---|
| 887 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 888 | |
---|
| 889 | |
---|
| 890 | */ |
---|
| 891 | |
---|
| 892 | |
---|
| 893 | PyArrayObject *neighbours, *neighbour_edges, |
---|
| 894 | *normals, *edgelengths, *radii, *areas, |
---|
| 895 | *stage_edge_values, |
---|
| 896 | *xmom_edge_values, |
---|
| 897 | *ymom_edge_values, |
---|
| 898 | *bed_edge_values, |
---|
| 899 | *stage_boundary_values, |
---|
| 900 | *xmom_boundary_values, |
---|
| 901 | *ymom_boundary_values, |
---|
| 902 | *stage_explicit_update, |
---|
| 903 | *xmom_explicit_update, |
---|
| 904 | *ymom_explicit_update, |
---|
| 905 | *already_computed_flux;//tracks whether the flux across an edge has already been computed |
---|
| 906 | |
---|
| 907 | |
---|
| 908 | //Local variables |
---|
| 909 | double timestep, max_speed, epsilon, g; |
---|
| 910 | double normal[2], ql[3], qr[3], zl, zr; |
---|
| 911 | double edgeflux[3]; //Work arrays for summing up fluxes |
---|
| 912 | |
---|
| 913 | int number_of_elements, k, i, m, n; |
---|
| 914 | int ki, nm=0, ki2; //Index shorthands |
---|
| 915 | static long call=1; |
---|
| 916 | |
---|
| 917 | |
---|
| 918 | // Convert Python arguments to C |
---|
| 919 | if (!PyArg_ParseTuple(args, "dddOOOOOOOOOOOOOOOOO", |
---|
| 920 | ×tep, |
---|
| 921 | &epsilon, |
---|
| 922 | &g, |
---|
| 923 | &neighbours, |
---|
| 924 | &neighbour_edges, |
---|
| 925 | &normals, |
---|
| 926 | &edgelengths, &radii, &areas, |
---|
| 927 | &stage_edge_values, |
---|
| 928 | &xmom_edge_values, |
---|
| 929 | &ymom_edge_values, |
---|
| 930 | &bed_edge_values, |
---|
| 931 | &stage_boundary_values, |
---|
| 932 | &xmom_boundary_values, |
---|
| 933 | &ymom_boundary_values, |
---|
| 934 | &stage_explicit_update, |
---|
| 935 | &xmom_explicit_update, |
---|
| 936 | &ymom_explicit_update, |
---|
| 937 | &already_computed_flux)) { |
---|
| 938 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 939 | return NULL; |
---|
| 940 | } |
---|
| 941 | number_of_elements = stage_edge_values -> dimensions[0]; |
---|
| 942 | call++;//a static local variable to which already_computed_flux is compared |
---|
| 943 | //set explicit_update to zero for all conserved_quantities. |
---|
| 944 | //This assumes compute_fluxes called before forcing terms |
---|
| 945 | for (k=0; k<number_of_elements; k++) { |
---|
| 946 | ((double *) stage_explicit_update -> data)[k]=0.0; |
---|
| 947 | ((double *) xmom_explicit_update -> data)[k]=0.0; |
---|
| 948 | ((double *) ymom_explicit_update -> data)[k]=0.0; |
---|
| 949 | } |
---|
| 950 | //Loop through neighbours and compute edge flux for each |
---|
| 951 | for (k=0; k<number_of_elements; k++) { |
---|
| 952 | for (i=0; i<3; i++) { |
---|
| 953 | ki = k*3+i; |
---|
| 954 | if (((long *) already_computed_flux->data)[ki]==call)//we've already computed the flux across this edge |
---|
| 955 | continue; |
---|
| 956 | ql[0] = ((double *) stage_edge_values -> data)[ki]; |
---|
| 957 | ql[1] = ((double *) xmom_edge_values -> data)[ki]; |
---|
| 958 | ql[2] = ((double *) ymom_edge_values -> data)[ki]; |
---|
| 959 | zl = ((double *) bed_edge_values -> data)[ki]; |
---|
| 960 | |
---|
| 961 | //Quantities at neighbour on nearest face |
---|
| 962 | n = ((long *) neighbours -> data)[ki]; |
---|
| 963 | if (n < 0) { |
---|
| 964 | m = -n-1; //Convert negative flag to index |
---|
| 965 | qr[0] = ((double *) stage_boundary_values -> data)[m]; |
---|
| 966 | qr[1] = ((double *) xmom_boundary_values -> data)[m]; |
---|
| 967 | qr[2] = ((double *) ymom_boundary_values -> data)[m]; |
---|
| 968 | zr = zl; //Extend bed elevation to boundary |
---|
| 969 | } else { |
---|
| 970 | m = ((long *) neighbour_edges -> data)[ki]; |
---|
| 971 | nm = n*3+m; |
---|
| 972 | qr[0] = ((double *) stage_edge_values -> data)[nm]; |
---|
| 973 | qr[1] = ((double *) xmom_edge_values -> data)[nm]; |
---|
| 974 | qr[2] = ((double *) ymom_edge_values -> data)[nm]; |
---|
| 975 | zr = ((double *) bed_edge_values -> data)[nm]; |
---|
| 976 | } |
---|
| 977 | // Outward pointing normal vector |
---|
| 978 | // normal = domain.normals[k, 2*i:2*i+2] |
---|
| 979 | ki2 = 2*ki; //k*6 + i*2 |
---|
| 980 | normal[0] = ((double *) normals -> data)[ki2]; |
---|
| 981 | normal[1] = ((double *) normals -> data)[ki2+1]; |
---|
| 982 | //Edge flux computation |
---|
| 983 | flux_function(ql, qr, zl, zr, |
---|
| 984 | normal[0], normal[1], |
---|
| 985 | epsilon, g, |
---|
| 986 | edgeflux, &max_speed); |
---|
| 987 | //update triangle k |
---|
| 988 | ((long *) already_computed_flux->data)[ki]=call; |
---|
| 989 | ((double *) stage_explicit_update -> data)[k] -= edgeflux[0]*((double *) edgelengths -> data)[ki]; |
---|
| 990 | ((double *) xmom_explicit_update -> data)[k] -= edgeflux[1]*((double *) edgelengths -> data)[ki]; |
---|
| 991 | ((double *) ymom_explicit_update -> data)[k] -= edgeflux[2]*((double *) edgelengths -> data)[ki]; |
---|
| 992 | //update the neighbour n |
---|
| 993 | if (n>=0){ |
---|
| 994 | ((long *) already_computed_flux->data)[nm]=call; |
---|
| 995 | ((double *) stage_explicit_update -> data)[n] += edgeflux[0]*((double *) edgelengths -> data)[nm]; |
---|
| 996 | ((double *) xmom_explicit_update -> data)[n] += edgeflux[1]*((double *) edgelengths -> data)[nm]; |
---|
| 997 | ((double *) ymom_explicit_update -> data)[n] += edgeflux[2]*((double *) edgelengths -> data)[nm]; |
---|
| 998 | } |
---|
| 999 | ///for (j=0; j<3; j++) { |
---|
| 1000 | ///flux[j] -= edgeflux[j]*((double *) edgelengths -> data)[ki]; |
---|
| 1001 | ///} |
---|
| 1002 | //Update timestep |
---|
| 1003 | //timestep = min(timestep, domain.radii[k]/max_speed) |
---|
| 1004 | //FIXME: SR Add parameter for CFL condition |
---|
| 1005 | if (max_speed > epsilon) { |
---|
| 1006 | timestep = min(timestep, ((double *) radii -> data)[k]/max_speed); |
---|
| 1007 | //maxspeed in flux_function is calculated as max(|u+a|,|u-a|) |
---|
| 1008 | if (n>=0) |
---|
| 1009 | timestep = min(timestep, ((double *) radii -> data)[n]/max_speed); |
---|
| 1010 | } |
---|
| 1011 | } // end for i |
---|
| 1012 | //Normalise by area and store for when all conserved |
---|
| 1013 | //quantities get updated |
---|
| 1014 | ((double *) stage_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1015 | ((double *) xmom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1016 | ((double *) ymom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; |
---|
| 1017 | } //end for k |
---|
| 1018 | return Py_BuildValue("d", timestep); |
---|
| 1019 | } |
---|
| 1020 | |
---|
| 1021 | PyObject *protect(PyObject *self, PyObject *args) { |
---|
| 1022 | // |
---|
| 1023 | // protect(minimum_allowed_height, wc, zc, xmomc, ymomc) |
---|
| 1024 | |
---|
| 1025 | |
---|
| 1026 | PyArrayObject |
---|
| 1027 | *wc, //Stage at centroids |
---|
| 1028 | *zc, //Elevation at centroids |
---|
| 1029 | *xmomc, //Momentums at centroids |
---|
| 1030 | *ymomc; |
---|
| 1031 | |
---|
| 1032 | |
---|
| 1033 | int N; |
---|
| 1034 | double minimum_allowed_height, epsilon; |
---|
| 1035 | |
---|
| 1036 | // Convert Python arguments to C |
---|
| 1037 | if (!PyArg_ParseTuple(args, "ddOOOO", |
---|
| 1038 | &minimum_allowed_height, |
---|
| 1039 | &epsilon, |
---|
| 1040 | &wc, &zc, &xmomc, &ymomc)) |
---|
| 1041 | return NULL; |
---|
| 1042 | |
---|
| 1043 | N = wc -> dimensions[0]; |
---|
| 1044 | |
---|
| 1045 | _protect(N, |
---|
| 1046 | minimum_allowed_height, |
---|
| 1047 | epsilon, |
---|
| 1048 | (double*) wc -> data, |
---|
| 1049 | (double*) zc -> data, |
---|
| 1050 | (double*) xmomc -> data, |
---|
| 1051 | (double*) ymomc -> data); |
---|
| 1052 | |
---|
| 1053 | return Py_BuildValue(""); |
---|
| 1054 | } |
---|
| 1055 | |
---|
| 1056 | |
---|
| 1057 | |
---|
| 1058 | PyObject *balance_deep_and_shallow(PyObject *self, PyObject *args) { |
---|
| 1059 | // |
---|
| 1060 | // balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, |
---|
| 1061 | // xmomc, ymomc, xmomv, ymomv) |
---|
| 1062 | |
---|
| 1063 | |
---|
| 1064 | PyArrayObject |
---|
| 1065 | *wc, //Stage at centroids |
---|
| 1066 | *zc, //Elevation at centroids |
---|
| 1067 | *hc, //Height at centroids |
---|
| 1068 | *wv, //Stage at vertices |
---|
| 1069 | *zv, //Elevation at vertices |
---|
| 1070 | *hv, //Depths at vertices |
---|
| 1071 | *hvbar, //h-Limited depths at vertices |
---|
| 1072 | *xmomc, //Momentums at centroids and vertices |
---|
| 1073 | *ymomc, |
---|
| 1074 | *xmomv, |
---|
| 1075 | *ymomv; |
---|
| 1076 | |
---|
| 1077 | int N; //, err; |
---|
| 1078 | |
---|
| 1079 | // Convert Python arguments to C |
---|
| 1080 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 1081 | &wc, &zc, &hc, |
---|
| 1082 | &wv, &zv, &hv, &hvbar, |
---|
| 1083 | &xmomc, &ymomc, &xmomv, &ymomv)) |
---|
| 1084 | return NULL; |
---|
| 1085 | |
---|
| 1086 | N = wc -> dimensions[0]; |
---|
| 1087 | |
---|
| 1088 | _balance_deep_and_shallow(N, |
---|
| 1089 | (double*) wc -> data, |
---|
| 1090 | (double*) zc -> data, |
---|
| 1091 | (double*) hc -> data, |
---|
| 1092 | (double*) wv -> data, |
---|
| 1093 | (double*) zv -> data, |
---|
| 1094 | (double*) hv -> data, |
---|
| 1095 | (double*) hvbar -> data, |
---|
| 1096 | (double*) xmomc -> data, |
---|
| 1097 | (double*) ymomc -> data, |
---|
| 1098 | (double*) xmomv -> data, |
---|
| 1099 | (double*) ymomv -> data); |
---|
| 1100 | |
---|
| 1101 | |
---|
| 1102 | return Py_BuildValue(""); |
---|
| 1103 | } |
---|
| 1104 | |
---|
| 1105 | |
---|
| 1106 | |
---|
| 1107 | PyObject *h_limiter(PyObject *self, PyObject *args) { |
---|
| 1108 | |
---|
| 1109 | PyObject *domain, *Tmp; |
---|
| 1110 | PyArrayObject |
---|
| 1111 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1112 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1113 | *neighbours; |
---|
| 1114 | |
---|
| 1115 | int k, i, n, N, k3; |
---|
| 1116 | int dimensions[2]; |
---|
| 1117 | double beta_h; //Safety factor (see config.py) |
---|
| 1118 | double *hmin, *hmax, hn; |
---|
| 1119 | |
---|
| 1120 | // Convert Python arguments to C |
---|
| 1121 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1122 | return NULL; |
---|
| 1123 | |
---|
| 1124 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1125 | |
---|
| 1126 | //Get safety factor beta_h |
---|
| 1127 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1128 | if (!Tmp) |
---|
| 1129 | return NULL; |
---|
| 1130 | |
---|
| 1131 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1132 | |
---|
| 1133 | Py_DECREF(Tmp); |
---|
| 1134 | |
---|
| 1135 | N = hc -> dimensions[0]; |
---|
| 1136 | |
---|
| 1137 | //Create hvbar |
---|
| 1138 | dimensions[0] = N; |
---|
| 1139 | dimensions[1] = 3; |
---|
| 1140 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1141 | |
---|
| 1142 | |
---|
| 1143 | //Find min and max of this and neighbour's centroid values |
---|
| 1144 | hmin = malloc(N * sizeof(double)); |
---|
| 1145 | hmax = malloc(N * sizeof(double)); |
---|
| 1146 | for (k=0; k<N; k++) { |
---|
| 1147 | k3=k*3; |
---|
| 1148 | |
---|
| 1149 | hmin[k] = ((double*) hc -> data)[k]; |
---|
| 1150 | hmax[k] = hmin[k]; |
---|
| 1151 | |
---|
| 1152 | for (i=0; i<3; i++) { |
---|
| 1153 | n = ((long*) neighbours -> data)[k3+i]; |
---|
| 1154 | |
---|
| 1155 | //Initialise hvbar with values from hv |
---|
| 1156 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1157 | |
---|
| 1158 | if (n >= 0) { |
---|
| 1159 | hn = ((double*) hc -> data)[n]; //Neighbour's centroid value |
---|
| 1160 | |
---|
| 1161 | hmin[k] = min(hmin[k], hn); |
---|
| 1162 | hmax[k] = max(hmax[k], hn); |
---|
| 1163 | } |
---|
| 1164 | } |
---|
| 1165 | } |
---|
| 1166 | |
---|
| 1167 | // Call underlying standard routine |
---|
| 1168 | _limit(N, beta_h, (double*) hc -> data, (double*) hvbar -> data, hmin, hmax); |
---|
| 1169 | |
---|
| 1170 | // // //Py_DECREF(domain); //FIXME: NEcessary? |
---|
| 1171 | free(hmin); |
---|
| 1172 | free(hmax); |
---|
| 1173 | |
---|
| 1174 | //return result using PyArray to avoid memory leak |
---|
| 1175 | return PyArray_Return(hvbar); |
---|
| 1176 | //return Py_BuildValue(""); |
---|
| 1177 | } |
---|
| 1178 | |
---|
| 1179 | PyObject *h_limiter_sw(PyObject *self, PyObject *args) { |
---|
| 1180 | //a faster version of h_limiter above |
---|
| 1181 | PyObject *domain, *Tmp; |
---|
| 1182 | PyArrayObject |
---|
| 1183 | *hv, *hc, //Depth at vertices and centroids |
---|
| 1184 | *hvbar, //Limited depth at vertices (return values) |
---|
| 1185 | *neighbours; |
---|
| 1186 | |
---|
| 1187 | int k, i, N, k3,k0,k1,k2; |
---|
| 1188 | int dimensions[2]; |
---|
| 1189 | double beta_h; //Safety factor (see config.py) |
---|
| 1190 | double hmin, hmax, dh[3]; |
---|
| 1191 | // Convert Python arguments to C |
---|
| 1192 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 1193 | return NULL; |
---|
| 1194 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 1195 | |
---|
| 1196 | //Get safety factor beta_h |
---|
| 1197 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 1198 | if (!Tmp) |
---|
| 1199 | return NULL; |
---|
| 1200 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 1201 | |
---|
| 1202 | Py_DECREF(Tmp); |
---|
| 1203 | |
---|
| 1204 | N = hc -> dimensions[0]; |
---|
| 1205 | |
---|
| 1206 | //Create hvbar |
---|
| 1207 | dimensions[0] = N; |
---|
| 1208 | dimensions[1] = 3; |
---|
| 1209 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 1210 | for (k=0;k<N;k++){ |
---|
| 1211 | k3=k*3; |
---|
| 1212 | //get the ids of the neighbours |
---|
| 1213 | k0 = ((long*) neighbours -> data)[k3]; |
---|
| 1214 | k1 = ((long*) neighbours -> data)[k3+1]; |
---|
| 1215 | k2 = ((long*) neighbours -> data)[k3+2]; |
---|
| 1216 | //set hvbar provisionally |
---|
| 1217 | for (i=0;i<3;i++){ |
---|
| 1218 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 1219 | dh[i]=((double*) hvbar -> data)[k3+i]-((double*) hc -> data)[k]; |
---|
| 1220 | } |
---|
| 1221 | hmin=((double*) hc -> data)[k]; |
---|
| 1222 | hmax=hmin; |
---|
| 1223 | if (k0>=0){ |
---|
| 1224 | hmin=min(hmin,((double*) hc -> data)[k0]); |
---|
| 1225 | hmax=max(hmax,((double*) hc -> data)[k0]); |
---|
| 1226 | } |
---|
| 1227 | if (k1>=0){ |
---|
| 1228 | hmin=min(hmin,((double*) hc -> data)[k1]); |
---|
| 1229 | hmax=max(hmax,((double*) hc -> data)[k1]); |
---|
| 1230 | } |
---|
| 1231 | if (k2>=0){ |
---|
| 1232 | hmin=min(hmin,((double*) hc -> data)[k2]); |
---|
| 1233 | hmax=max(hmax,((double*) hc -> data)[k2]); |
---|
| 1234 | } |
---|
| 1235 | hmin-=((double*) hc -> data)[k]; |
---|
| 1236 | hmax-=((double*) hc -> data)[k]; |
---|
| 1237 | limit_gradient(dh,hmin,hmax,beta_h); |
---|
| 1238 | for (i=0;i<3;i++) |
---|
| 1239 | ((double*) hvbar -> data)[k3+i] = ((double*) hc -> data)[k]+dh[i]; |
---|
| 1240 | } |
---|
| 1241 | return PyArray_Return(hvbar); |
---|
| 1242 | } |
---|
| 1243 | |
---|
| 1244 | PyObject *assign_windfield_values(PyObject *self, PyObject *args) { |
---|
| 1245 | // |
---|
| 1246 | // assign_windfield_values(xmom_update, ymom_update, |
---|
| 1247 | // s_vec, phi_vec, self.const) |
---|
| 1248 | |
---|
| 1249 | |
---|
| 1250 | |
---|
| 1251 | PyArrayObject //(one element per triangle) |
---|
| 1252 | *s_vec, //Speeds |
---|
| 1253 | *phi_vec, //Bearings |
---|
| 1254 | *xmom_update, //Momentum updates |
---|
| 1255 | *ymom_update; |
---|
| 1256 | |
---|
| 1257 | |
---|
| 1258 | int N; |
---|
| 1259 | double cw; |
---|
| 1260 | |
---|
| 1261 | // Convert Python arguments to C |
---|
| 1262 | if (!PyArg_ParseTuple(args, "OOOOd", |
---|
| 1263 | &xmom_update, |
---|
| 1264 | &ymom_update, |
---|
| 1265 | &s_vec, &phi_vec, |
---|
| 1266 | &cw)) |
---|
| 1267 | return NULL; |
---|
| 1268 | |
---|
| 1269 | N = xmom_update -> dimensions[0]; |
---|
| 1270 | |
---|
| 1271 | _assign_wind_field_values(N, |
---|
| 1272 | (double*) xmom_update -> data, |
---|
| 1273 | (double*) ymom_update -> data, |
---|
| 1274 | (double*) s_vec -> data, |
---|
| 1275 | (double*) phi_vec -> data, |
---|
| 1276 | cw); |
---|
| 1277 | |
---|
| 1278 | return Py_BuildValue(""); |
---|
| 1279 | } |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | |
---|
| 1283 | |
---|
| 1284 | ////////////////////////////////////////// |
---|
| 1285 | // Method table for python module |
---|
| 1286 | static struct PyMethodDef MethodTable[] = { |
---|
| 1287 | /* The cast of the function is necessary since PyCFunction values |
---|
| 1288 | * only take two PyObject* parameters, and rotate() takes |
---|
| 1289 | * three. |
---|
| 1290 | */ |
---|
| 1291 | |
---|
| 1292 | {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1293 | {"extrapolate_second_order_sw", extrapolate_second_order_sw, METH_VARARGS, "Print out"}, |
---|
| 1294 | {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"}, |
---|
| 1295 | {"gravity", gravity, METH_VARARGS, "Print out"}, |
---|
| 1296 | {"manning_friction", manning_friction, METH_VARARGS, "Print out"}, |
---|
| 1297 | {"balance_deep_and_shallow", balance_deep_and_shallow, |
---|
| 1298 | METH_VARARGS, "Print out"}, |
---|
| 1299 | {"h_limiter", h_limiter, |
---|
| 1300 | METH_VARARGS, "Print out"}, |
---|
| 1301 | {"h_limiter_sw", h_limiter_sw, |
---|
| 1302 | METH_VARARGS, "Print out"}, |
---|
| 1303 | {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1304 | {"assign_windfield_values", assign_windfield_values, |
---|
| 1305 | METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 1306 | //{"distribute_to_vertices_and_edges", |
---|
| 1307 | // distribute_to_vertices_and_edges, METH_VARARGS}, |
---|
| 1308 | //{"update_conserved_quantities", |
---|
| 1309 | // update_conserved_quantities, METH_VARARGS}, |
---|
| 1310 | //{"set_initialcondition", |
---|
| 1311 | // set_initialcondition, METH_VARARGS}, |
---|
| 1312 | {NULL, NULL} |
---|
| 1313 | }; |
---|
| 1314 | |
---|
| 1315 | // Module initialisation |
---|
| 1316 | void initshallow_water_ext(void){ |
---|
| 1317 | Py_InitModule("shallow_water_ext", MethodTable); |
---|
| 1318 | |
---|
| 1319 | import_array(); //Necessary for handling of NumPY structures |
---|
| 1320 | } |
---|