[2277] | 1 | %\newcommand{\code}[1]{{\small \tt #1}} %For use with one-line code snippets |
---|
| 2 | |
---|
[2274] | 3 | \documentclass{report} |
---|
| 4 | |
---|
[2277] | 5 | |
---|
[2274] | 6 | \title{AnuGA User Manual} |
---|
[2284] | 7 | \author{Howard Silcock, Ole Nielsen, Duncan Gray, Jane Sexton} |
---|
[2274] | 8 | |
---|
| 9 | % Can we get rid of indenting and put a blank line before each para? |
---|
| 10 | % Find out how to change date format |
---|
| 11 | % Relabel sections, subsections |
---|
| 12 | |
---|
| 13 | \setlength{\parindent}{0mm} %\setlength{\parskip}{3pt} |
---|
| 14 | \setlength{\oddsidemargin}{0.6in}\setlength{\evensidemargin}{0.6in} |
---|
| 15 | \addtolength{\textheight}{1in} \addtolength{\textwidth}{0.5in} |
---|
| 16 | \setlength{\marginparwidth}{0in} |
---|
| 17 | \setlength{\topmargin}{0mm}\setlength{\headheight}{0in} |
---|
| 18 | |
---|
| 19 | \begin{document} |
---|
| 20 | \maketitle |
---|
| 21 | |
---|
[2285] | 22 | |
---|
| 23 | %Subversion keywords: |
---|
| 24 | % |
---|
| 25 | %$LastChangedDate: 2006-01-13 16:43:01 +1100 (Fri, 13 Jan 2006) $ |
---|
| 26 | %$LastChangedRevision: 2206 $ |
---|
| 27 | %$LastChangedBy: steve $ |
---|
| 28 | |
---|
[2274] | 29 | \section*{Introduction} |
---|
| 30 | |
---|
[2283] | 31 | \textbf{AnuGA} is a hydrodynamic modelling tool that |
---|
| 32 | allows users to model realistic flow problems in complex geometries. Examples include dam breaks or |
---|
| 33 | the effects of natural hazards such as riverine flooding, storm surges and tsunami. |
---|
[2274] | 34 | |
---|
[2283] | 35 | The user must specify a study area represented by a mesh of triangular |
---|
| 36 | cells, the topography and bathymetry, frictional resistance, initial |
---|
| 37 | values for water level (called {\emph{stage} within Anuga), boundary |
---|
| 38 | conditions and forces such as windstress or pressure gradients if |
---|
| 39 | applicable. |
---|
| 40 | |
---|
| 41 | Anuga tracks the evolution of water depth and horizontal momentum |
---|
| 42 | within each cell over time by solving the shallow water wave equation |
---|
| 43 | governing equation using a finite-volume method. |
---|
| 44 | |
---|
| 45 | Anuga cannot model details of breaking waves, flow under ceilings such |
---|
| 46 | as pipes, turbulence and vortices, vertical convection or viscous |
---|
| 47 | flows. |
---|
| 48 | |
---|
| 49 | Anuga also incorporates a mesh generator, called \texttt{pmesh}, that |
---|
| 50 | allows the user to set up the geometry of the problem interactively as |
---|
| 51 | well as tools for interpolation and surface fitting, and a number of |
---|
| 52 | auxiliary tools for visualising and interrogating the model output. |
---|
| 53 | |
---|
| 54 | Most AnuGA components are written in the object-oriented programming |
---|
| 55 | language Python and most users will interact with Anuga by writing |
---|
| 56 | small Python programs based on the Anuga library |
---|
| 57 | functions. Computationally intensive components are written for |
---|
| 58 | efficiency in C routines working directly with the Numerical Python |
---|
| 59 | structures. |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | |
---|
[2274] | 64 | \subsection*{Purpose} |
---|
| 65 | |
---|
| 66 | The purpose of this user manual is to introduce the new user to |
---|
| 67 | the software, describe what it can do and give step-by-step |
---|
| 68 | instructions for setting up, configuring and running the software. |
---|
| 69 | |
---|
| 70 | \subsection*{Scope} |
---|
| 71 | |
---|
| 72 | This manual covers only what is needed to operate the software |
---|
| 73 | after installation. It does not includes instructions for |
---|
| 74 | installing the software or detailed API documentation, both of |
---|
| 75 | which will be covered in separate publications. |
---|
| 76 | |
---|
| 77 | \subsection*{Audience} |
---|
| 78 | |
---|
[2283] | 79 | Readers are assumed to be familiar with the operating environment |
---|
[2274] | 80 | and have a general understanding of the problem background, as |
---|
| 81 | well as enough programming experience to adapt the code to |
---|
| 82 | different requirements, as described in this manual, and to |
---|
| 83 | understand the basic terminology of object-oriented programming. |
---|
| 84 | |
---|
| 85 | \subsection*{Structure of This Manual} |
---|
| 86 | |
---|
| 87 | This manual is structured as follows: |
---|
| 88 | |
---|
| 89 | \begin{itemize} |
---|
[2283] | 90 | \item Background (What Anuga does) |
---|
| 91 | \item A \emph{Getting Started} section |
---|
| 92 | \item Anuga's overall architecture, components and file formats |
---|
[2284] | 93 | \item Detailed descriptions of the user interface |
---|
[2274] | 94 | \end{itemize} |
---|
| 95 | |
---|
| 96 | |
---|
| 97 | \pagebreak\section*{Getting Started} |
---|
| 98 | |
---|
| 99 | This section is designed to assist the reader to get started with |
---|
| 100 | \textbf{AnuGA} by working through a simple example. What follows |
---|
| 101 | is a discussion of the structure and operation of the file |
---|
| 102 | \texttt{bedslope.py}, with just enough detail to allow the reader |
---|
| 103 | to appreciate what's involved in setting up a scenario like the |
---|
| 104 | one it depicts. |
---|
| 105 | |
---|
| 106 | \subsection*{Overview} |
---|
| 107 | |
---|
| 108 | This example carries out the solution of the shallow-water wave |
---|
| 109 | equation in the simple case of a configuration comprising a flat |
---|
| 110 | bed, sloping at a fixed angle in one direction and having a |
---|
[2283] | 111 | constant depth across each line in the perpendicular direction. |
---|
| 112 | |
---|
[2274] | 113 | The example demonstrates many of the basic ideas involved in |
---|
| 114 | setting up a more complex scenario. In the general case the user |
---|
| 115 | specifies the geometry (bathymetry and topography), the initial |
---|
| 116 | water level, boundary conditions such as tide, and any forcing |
---|
| 117 | terms that may drive the system such as wind stress or atmospheric |
---|
| 118 | pressure gradients. Frictional resistance from the different |
---|
| 119 | terrains in the model is represented by predefined forcing |
---|
[2283] | 120 | terms. The boundary is reflective on three sides and a time dependent wave on one side. |
---|
| 121 | |
---|
[2274] | 122 | The present example, as it represents a simple scenario, does not |
---|
| 123 | include any forcing term, nor is the data taken from a file as it |
---|
| 124 | would be in many typical cases. The quantities involved in the |
---|
| 125 | present problem are: |
---|
| 126 | \begin{itemize} |
---|
| 127 | \item elevation |
---|
| 128 | \item friction |
---|
| 129 | \item depth |
---|
| 130 | \item stage |
---|
| 131 | \end{itemize} |
---|
| 132 | |
---|
| 133 | %\emph{[More details of the problem background]} |
---|
| 134 | |
---|
| 135 | \subsection*{Outline of the Program} |
---|
| 136 | |
---|
| 137 | In outline, \texttt{bedslope.py} performs the following steps: |
---|
| 138 | |
---|
| 139 | \begin{enumerate} |
---|
| 140 | |
---|
| 141 | \item Sets up a triangular mesh. |
---|
| 142 | |
---|
| 143 | \item Sets certain parameters governing the mode of |
---|
[2283] | 144 | operation of the model-specifying, for instance, where to store the model output. |
---|
[2274] | 145 | |
---|
[2283] | 146 | |
---|
[2274] | 147 | \item Inputs various quantities describing physical measurements, such |
---|
[2283] | 148 | as the elevation, to be specified at each mesh point (vertex). |
---|
[2274] | 149 | |
---|
| 150 | \item Sets up the boundary conditions. |
---|
| 151 | |
---|
| 152 | \item Carries out the evolution of the model through a series of time |
---|
| 153 | steps and outputs the results, providing a results file that can |
---|
| 154 | be visualised. |
---|
| 155 | |
---|
| 156 | \end{enumerate} |
---|
| 157 | |
---|
| 158 | \subsection*{The Code} |
---|
| 159 | |
---|
| 160 | For reference we include below the complete code listing for |
---|
| 161 | \texttt{bedslope.py}. Subsequent paragraphs provide a `commentary' |
---|
[2283] | 162 | that describes each step of the program and explains it significance. |
---|
[2274] | 163 | |
---|
[2283] | 164 | |
---|
| 165 | %\emph{[Can't work out how to prevent \LaTeX (or WinEdt) from |
---|
| 166 | %wrapping lines, even in \emph{verbatim} mode, without putting} |
---|
| 167 | %\verb+\\+\emph{s at the ends of lines!]} |
---|
| 168 | |
---|
[2277] | 169 | {\scriptsize \begin{verbatim} |
---|
| 170 | from pyvolution.mesh_factory import rectangular |
---|
[2274] | 171 | from pyvolution.shallow_water import Domain, Reflective_boundary, |
---|
| 172 | Dirichlet_boundary, Time_boundary, Transmissive_boundary |
---|
| 173 | |
---|
| 174 | #Create basic mesh |
---|
| 175 | points, vertices, boundary = rectangular(10,10) |
---|
| 176 | |
---|
[2277] | 177 | #Create shallow water domain |
---|
| 178 | domain = Domain(points, vertices,boundary) |
---|
[2274] | 179 | domain.smooth = False domain.visualise = False |
---|
| 180 | domain.store = True domain.filename = 'bedslope' |
---|
| 181 | domain.default_order = 2 |
---|
| 182 | |
---|
| 183 | ####################### |
---|
| 184 | # Initial conditions |
---|
| 185 | def f(x,y): |
---|
| 186 | return -x/2 |
---|
| 187 | |
---|
| 188 | domain.set_quantity('elevation', f) |
---|
| 189 | domain.set_quantity('friction', 0.1) |
---|
| 190 | |
---|
| 191 | h = 0.05 # Constant depth |
---|
| 192 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
| 193 | |
---|
| 194 | |
---|
[2277] | 195 | # Boundary conditions |
---|
| 196 | from math import sin, pi |
---|
| 197 | Br = Reflective_boundary(domain) |
---|
| 198 | Bt = Transmissive_boundary(domain) |
---|
| 199 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
[2274] | 200 | |
---|
| 201 | Bw = Time_boundary(domain=domain, |
---|
| 202 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
| 203 | |
---|
| 204 | |
---|
[2277] | 205 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
[2274] | 206 | |
---|
| 207 | |
---|
[2277] | 208 | ###################### |
---|
[2274] | 209 | #Evolution |
---|
| 210 | |
---|
| 211 | domain.check_integrity() |
---|
| 212 | |
---|
| 213 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
| 214 | domain.write_time() |
---|
| 215 | |
---|
| 216 | |
---|
[2277] | 217 | \end{verbatim}} |
---|
[2274] | 218 | |
---|
| 219 | |
---|
| 220 | \subsection*{Establishing the Mesh} |
---|
| 221 | |
---|
| 222 | The first task is to set up the triangular mesh to be used for the |
---|
| 223 | scenario. This is carried out through the statement: |
---|
| 224 | |
---|
[2277] | 225 | {\small \begin{verbatim} |
---|
[2283] | 226 | points, vertices, boundary = rectangular(10, 10) |
---|
[2277] | 227 | \end{verbatim}} |
---|
[2274] | 228 | |
---|
| 229 | The function \texttt{rectangular} is imported from a module |
---|
| 230 | \texttt{mesh\_factory} defined elsewhere. (\textbf{AnuGA} also |
---|
| 231 | contains several other schemes that can be used for setting up |
---|
| 232 | meshes, but we shall not discuss these now.) The above assignment |
---|
| 233 | sets up a $10 \times 10$ rectangular mesh, triangulated in a |
---|
| 234 | specific way. In general, the assignment |
---|
| 235 | |
---|
[2277] | 236 | {\small \begin{verbatim} |
---|
[2274] | 237 | points, vertices, boundary = rectangular(m, n) |
---|
[2277] | 238 | \end{verbatim}} |
---|
[2274] | 239 | |
---|
| 240 | returns: |
---|
| 241 | |
---|
| 242 | \begin{itemize} |
---|
| 243 | |
---|
| 244 | \item a list \texttt{points} of length $N$, where $N = (m + 1)(n + 1)$, |
---|
| 245 | comprising the coordinates $(x, y)$ of each of the $N$ mesh |
---|
| 246 | points, |
---|
| 247 | |
---|
| 248 | \item a list \texttt{vertices} of length $2mn$ (each entry specifies the three |
---|
| 249 | vertices of one of the triangles used in the triangulation) , and |
---|
| 250 | |
---|
| 251 | \item a dictionary \texttt{boundary}, used to tag the triangle edges on |
---|
| 252 | the boundaries. Each key corresponds to a triangle edge on one of |
---|
| 253 | the four boundaries and its value is one of \texttt{`left'}, |
---|
| 254 | \texttt{`right'}, \texttt{`top'} and \texttt{`bottom'}, indicating |
---|
| 255 | which boundary the edge in question belongs to. |
---|
| 256 | |
---|
| 257 | \end{itemize} |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | \subsection*{Initialising the domain} |
---|
| 261 | |
---|
| 262 | These variables are then used to set up a data structure |
---|
| 263 | \texttt{domain}, through the assignment: |
---|
| 264 | |
---|
[2277] | 265 | {\small \begin{verbatim} |
---|
[2274] | 266 | domain = Domain(points, vertices, boundary) |
---|
[2277] | 267 | \end{verbatim}} |
---|
[2274] | 268 | |
---|
| 269 | This uses a Python class \texttt{Domain}, imported from |
---|
| 270 | \texttt{shallow\_water}, which is an extension of a more generic |
---|
| 271 | class of the same name in the module \texttt{domain}, and inherits |
---|
| 272 | some methods from the generic class but has others specific to the |
---|
| 273 | shallow-water scenarios in which it is used. The following lines |
---|
| 274 | set certain key options governing the domain: \emph{[more details |
---|
| 275 | of what these do]} |
---|
| 276 | |
---|
[2277] | 277 | {\scriptsize \begin{verbatim} |
---|
[2274] | 278 | domain.smooth = False |
---|
| 279 | domain.visualise = False |
---|
| 280 | domain.store = True |
---|
| 281 | domain.filename = 'bedslope' |
---|
| 282 | domain.default_order = 2 |
---|
[2277] | 283 | \end{verbatim}} |
---|
[2274] | 284 | |
---|
| 285 | |
---|
| 286 | \subsection*{Specifying the Quantities} |
---|
| 287 | |
---|
[2283] | 288 | The next task is to specify a number of quantities that we wish to set |
---|
| 289 | for each mesh point. The class \texttt{Domain} has a method |
---|
[2274] | 290 | \texttt{set\_quantity}, used to specify these quantities. It is a |
---|
[2283] | 291 | particularly flexible method that allows the user to set quantities in |
---|
| 292 | a variety of ways---using constants, functions, numeric arrays or |
---|
| 293 | expressions involving other quantities, arbitrary data points with |
---|
| 294 | associated values, all of which can be passed as arguments. All |
---|
| 295 | quantities can be initialised using \texttt{set\_quantity}. For |
---|
| 296 | conserved quantities (\texttt{stage, xmomentum, ymomentum}) this is |
---|
| 297 | called the \emph{initial condition}, for other quantities that aren't |
---|
| 298 | updated by the equation, the same interface is used to assign their |
---|
| 299 | values. The code in the present example demonstrates a number of forms |
---|
| 300 | in which we can invoke \texttt{set\_quantity}. |
---|
[2274] | 301 | |
---|
| 302 | |
---|
| 303 | \subsubsection*{Elevation} |
---|
| 304 | |
---|
| 305 | The elevation is set using a function, defined through the |
---|
| 306 | statements below, which is specific to this example and specifies |
---|
| 307 | a particularly simple initial configuration for demonstration |
---|
| 308 | purposes: |
---|
| 309 | |
---|
[2277] | 310 | {\small \begin{verbatim} |
---|
[2274] | 311 | def f(x,y): |
---|
| 312 | return -x/2 |
---|
[2277] | 313 | \end{verbatim}} |
---|
[2274] | 314 | |
---|
| 315 | This simply associates an elevation with each point $(x, y)$ of |
---|
| 316 | the plane. It specifies that the bed slopes linearly in the $x$ |
---|
| 317 | direction, with slope $-\frac{1}{2}$, and is constant in the $y$ |
---|
| 318 | direction.\\ %[screen shot?] |
---|
| 319 | \\ |
---|
| 320 | Once the function $f$ is specified, the quantity |
---|
| 321 | \texttt{elevation} is assigned through the simple statement: |
---|
| 322 | |
---|
[2277] | 323 | {\small \begin{verbatim} |
---|
[2274] | 324 | \begin{verbatim} |
---|
| 325 | domain.set_quantity('elevation', f) |
---|
[2277] | 326 | \end{verbatim}} |
---|
[2274] | 327 | |
---|
| 328 | |
---|
| 329 | \subsubsection*{Friction} |
---|
| 330 | |
---|
| 331 | The assignment of the friction quantity demonstrates another way |
---|
| 332 | we can use \texttt{set\_quantity} to set quantities---namely, |
---|
| 333 | assign them to a constant numerical value: |
---|
| 334 | |
---|
[2277] | 335 | {\small \begin{verbatim} |
---|
[2274] | 336 | domain.set_quantity('friction', 0.1) |
---|
[2277] | 337 | \end{verbatim}} |
---|
[2274] | 338 | |
---|
| 339 | This just specifies that the Manning friction coefficient is set |
---|
| 340 | to 0.1 at every mesh point. |
---|
| 341 | |
---|
| 342 | \subsubsection*{Depth} |
---|
| 343 | |
---|
| 344 | Assigning depth illustrates a more complex way to use |
---|
| 345 | \texttt{set\_quantity}, introducing an expression involving other |
---|
| 346 | quantities: |
---|
| 347 | |
---|
[2277] | 348 | {\small \begin{verbatim} |
---|
[2274] | 349 | h = 0.05 \# Constant depth |
---|
| 350 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
[2277] | 351 | \end{verbatim}} |
---|
[2274] | 352 | |
---|
| 353 | Here the quantity \texttt{stage} is defined by taking the quantity |
---|
| 354 | elevation already defined and adding a constant value $h = 0.05$ |
---|
| 355 | to it everywhere. This expresses the fact that the water depth is |
---|
| 356 | everywhere constant, so the surface is a constant height above the |
---|
| 357 | elevation of the bed. |
---|
| 358 | |
---|
| 359 | \subsubsection*{Boundary Conditions} |
---|
| 360 | |
---|
| 361 | The boundary conditions are specified as follows: |
---|
| 362 | |
---|
[2277] | 363 | {\small \begin{verbatim} |
---|
[2274] | 364 | Br = Reflective_boundary(domain) |
---|
| 365 | |
---|
| 366 | Bt = Transmissive_boundary(domain) |
---|
| 367 | |
---|
| 368 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
| 369 | |
---|
| 370 | Bw = Time_boundary(domain=domain, |
---|
| 371 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
[2277] | 372 | \end{verbatim}} |
---|
[2274] | 373 | |
---|
| 374 | The effect of these statements is to set up four alternative |
---|
| 375 | boundary conditions and store them in variables that can be |
---|
| 376 | assigned as needed. Each boundary condition specifies the |
---|
| 377 | behaviour at a boundary in terms of the behaviour in neighbouring |
---|
| 378 | elements. The boundary conditions may be briefly described as |
---|
| 379 | follows: |
---|
| 380 | |
---|
| 381 | \begin{description} |
---|
[2283] | 382 | \item[Reflective boundary] Returns same \texttt{stage} as |
---|
| 383 | as present in its neighbour volume but momentum vector reversed 180 degrees (reflected). |
---|
| 384 | Specific to the shallow water equation as it works with the |
---|
| 385 | momentum quantities assumed to be the second and third conserved |
---|
| 386 | quantities. |
---|
[2274] | 387 | \item[Transmissive boundary]Returns same conserved quantities as |
---|
| 388 | those present in its neighbour volume. |
---|
| 389 | \item[Dirichlet boundary]Specifies a fixed value at the |
---|
| 390 | boundary. |
---|
| 391 | \item[Time boundary.]A Dirichlet boundary whose behaviour varies with time. |
---|
| 392 | \end{description} |
---|
| 393 | |
---|
| 394 | Once the four boundary types have been specified through the |
---|
| 395 | statements above, they can be applied through a statement of the |
---|
| 396 | form |
---|
| 397 | |
---|
[2277] | 398 | {\small \begin{verbatim} |
---|
| 399 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
| 400 | \end{verbatim}} |
---|
[2274] | 401 | |
---|
| 402 | This statement stipulates that, in the current example, the left |
---|
| 403 | boundary is fixed, with an elevation of 0.2, while the other |
---|
| 404 | boundaries are all reflective. |
---|
| 405 | |
---|
| 406 | |
---|
| 407 | \subsection*{Evolution} |
---|
| 408 | |
---|
| 409 | The final statement \nopagebreak[3] |
---|
[2277] | 410 | {\small \begin{verbatim} |
---|
[2274] | 411 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
| 412 | domain.write_time() |
---|
[2277] | 413 | \end{verbatim}} |
---|
[2274] | 414 | |
---|
| 415 | is the key step that causes the configuration of the domain to |
---|
| 416 | `evolve' in accordance with the model embodied in the code, over a |
---|
| 417 | series of steps indicated by the values of \texttt{yieldstep} and |
---|
| 418 | \texttt{finaltime}, which can be altered as required. |
---|
[2283] | 419 | The yieldstep control the time interval between model output. Behind the scenes more timesteps are generally taken. |
---|
[2274] | 420 | |
---|
| 421 | |
---|
[2283] | 422 | |
---|
| 423 | |
---|
[2274] | 424 | \subsection*{Output} |
---|
| 425 | |
---|
| 426 | %Give details here of the form of the output and explain how it can |
---|
| 427 | %be used with swollen. Include screen shots.// |
---|
| 428 | |
---|
| 429 | The output is a NetCDF file with the extension \texttt{.sww}. It |
---|
| 430 | contains stage and momentum information and can be used with the |
---|
[2283] | 431 | \texttt{swollen} visualisation package to generate a visual display. |
---|
[2274] | 432 | |
---|
| 433 | |
---|
| 434 | \subsection*{How to Run the Code} |
---|
| 435 | |
---|
| 436 | The code can be run in various ways: |
---|
| 437 | |
---|
| 438 | \begin{itemize} |
---|
[2283] | 439 | \item{from a Windows command line} as in \texttt{python bedslope.py} |
---|
[2274] | 440 | |
---|
| 441 | \item{within the Python IDLE environment} |
---|
| 442 | |
---|
| 443 | \item{within emacs} |
---|
| 444 | |
---|
[2283] | 445 | \item{from a Linux command line} as in \texttt{python bedslope.py} |
---|
[2274] | 446 | \end{itemize} |
---|
| 447 | |
---|
| 448 | |
---|
| 449 | |
---|
| 450 | |
---|
| 451 | \pagebreak\section*{Glossary} |
---|
| 452 | |
---|
| 453 | \begin{description} |
---|
| 454 | |
---|
| 455 | \item[AnuGA] |
---|
[2283] | 456 | |
---|
| 457 | \item[Conserved quantity] |
---|
[2274] | 458 | |
---|
| 459 | \item[Default order] |
---|
| 460 | |
---|
| 461 | \item[Domain] |
---|
| 462 | |
---|
| 463 | \item[Dirichlet boundary] |
---|
| 464 | |
---|
| 465 | \item[Elevation] |
---|
| 466 | |
---|
| 467 | \item[Evolution] |
---|
| 468 | |
---|
[2283] | 469 | \item[Forcing term] |
---|
[2274] | 470 | |
---|
| 471 | \item[IDLE] |
---|
| 472 | |
---|
| 473 | \item[Manning friction coefficient] |
---|
[2283] | 474 | |
---|
| 475 | \item[Mesh] |
---|
[2274] | 476 | |
---|
| 477 | \item[NetCDF] |
---|
| 478 | |
---|
| 479 | \item[pmesh] |
---|
| 480 | |
---|
| 481 | \item[pyvolution] |
---|
| 482 | |
---|
| 483 | \item[Quantity] |
---|
| 484 | |
---|
| 485 | \item[Reflective boundary] |
---|
| 486 | |
---|
| 487 | \item[Smoothing] |
---|
| 488 | |
---|
| 489 | \item[Stage] |
---|
| 490 | |
---|
| 491 | \item[Swollen] |
---|
| 492 | |
---|
| 493 | \item[Time boundary] |
---|
| 494 | |
---|
| 495 | \item[Transmissive boundary] |
---|
| 496 | |
---|
[2283] | 497 | \item[xmomentum] |
---|
| 498 | |
---|
| 499 | \item[ymomentum] |
---|
[2274] | 500 | |
---|
| 501 | |
---|
| 502 | \end{description} |
---|
| 503 | |
---|
| 504 | \end{document} |
---|