1 | % Complete documentation on the extended LaTeX markup used for Python |
---|
2 | % documentation is available in ``Documenting Python'', which is part |
---|
3 | % of the standard documentation for Python. It may be found online |
---|
4 | % at: |
---|
5 | % |
---|
6 | % http://www.python.org/doc/current/doc/doc.html |
---|
7 | |
---|
8 | |
---|
9 | %\newcommand{\code}[1]{{\small \tt #1}} %For use with one-line code snippets |
---|
10 | |
---|
11 | \documentclass{manual} |
---|
12 | |
---|
13 | \title{AnuGA User Manual} |
---|
14 | \author{Howard Silcock, Ole Nielsen, Duncan Gray, Jane Sexton} |
---|
15 | |
---|
16 | % Please at least include a long-lived email address; |
---|
17 | % the rest is at your discretion. |
---|
18 | \authoraddress{Geoscience Australia \\ |
---|
19 | Email: \email{ole.nielsen@ga.gov.au} |
---|
20 | } |
---|
21 | |
---|
22 | \date{2 February, 2006} % update before release! |
---|
23 | % Use an explicit date so that reformatting |
---|
24 | % doesn't cause a new date to be used. Setting |
---|
25 | % the date to \today can be used during draft |
---|
26 | % stages to make it easier to handle versions. |
---|
27 | |
---|
28 | \release{1.0} % release version; this is used to define the |
---|
29 | % \version macro |
---|
30 | |
---|
31 | \makeindex % tell \index to actually write the .idx file |
---|
32 | %\makemodindex % If this contains a lot of module sections. |
---|
33 | |
---|
34 | |
---|
35 | |
---|
36 | |
---|
37 | % Can we get rid of indenting and put a blank line before each para? |
---|
38 | % Find out how to change date format |
---|
39 | % Relabel sections, subsections |
---|
40 | Make conflict here |
---|
41 | %\setlength{\parindent}{0mm} %\setlength{\parskip}{3pt} |
---|
42 | %\setlength{\oddsidemargin}{0.6in}\setlength{\evensidemargin}{0.6in} |
---|
43 | %\addtolength{\textheight}{1in} \addtolength{\textwidth}{0.5in} |
---|
44 | %\setlength{\marginparwidth}{0in} |
---|
45 | %\setlength{\topmargin}{0mm}\setlength{\headheight}{0in} |
---|
46 | |
---|
47 | \begin{document} |
---|
48 | \maketitle |
---|
49 | |
---|
50 | % This makes the contents more accessible from the front page of the HTML. |
---|
51 | \ifhtml |
---|
52 | \chapter*{Front Matter\label{front}} |
---|
53 | \fi |
---|
54 | |
---|
55 | %Subversion keywords: |
---|
56 | % |
---|
57 | %$LastChangedDate: 2006-01-13 16:43:01 +1100 (Fri, 13 Jan 2006) $ |
---|
58 | %$LastChangedRevision: 2206 $ |
---|
59 | %$LastChangedBy: steve $ |
---|
60 | |
---|
61 | |
---|
62 | \begin{abstract} |
---|
63 | |
---|
64 | \noindent |
---|
65 | \textbf{AnuGA}\index{AnuGA} is a hydrodynamic modelling tool that |
---|
66 | allows users to model realistic flow problems in complex geometries. Examples include dam breaks or |
---|
67 | the effects of natural hazards such as riverine flooding, storm surges and tsunami. |
---|
68 | |
---|
69 | The user must specify a study area represented by a mesh of triangular |
---|
70 | cells, the topography and bathymetry, frictional resistance, initial |
---|
71 | values for water level (called \emph{stage}\index{stage} within Anuga), |
---|
72 | boundary |
---|
73 | conditions and forces such as windstress or pressure gradients if |
---|
74 | applicable. |
---|
75 | |
---|
76 | Anuga tracks the evolution of water depth and horizontal momentum |
---|
77 | within each cell over time by solving the shallow water wave equation |
---|
78 | governing equation using a finite-volume method. |
---|
79 | |
---|
80 | Anuga cannot model details of breaking waves, flow under ceilings such |
---|
81 | as pipes, turbulence and vortices, vertical convection or viscous |
---|
82 | flows. |
---|
83 | |
---|
84 | Anuga also incorporates a mesh generator, called \texttt{pmesh}, that |
---|
85 | allows the user to set up the geometry of the problem interactively as |
---|
86 | well as tools for interpolation and surface fitting, and a number of |
---|
87 | auxiliary tools for visualising and interrogating the model output. |
---|
88 | |
---|
89 | Most AnuGA components are written in the object-oriented programming |
---|
90 | language Python and most users will interact with Anuga by writing |
---|
91 | small Python programs based on the Anuga library |
---|
92 | functions. Computationally intensive components are written for |
---|
93 | efficiency in C routines working directly with the Numerical Python |
---|
94 | structures. |
---|
95 | |
---|
96 | |
---|
97 | \end{abstract} |
---|
98 | |
---|
99 | \tableofcontents |
---|
100 | |
---|
101 | |
---|
102 | \chapter{Introduction} |
---|
103 | |
---|
104 | |
---|
105 | \section{Purpose} |
---|
106 | |
---|
107 | The purpose of this user manual is to introduce the new user to |
---|
108 | the software, describe what it can do and give step-by-step |
---|
109 | instructions for setting up, configuring and running the software. |
---|
110 | |
---|
111 | \section{Scope} |
---|
112 | |
---|
113 | This manual covers only what is needed to operate the software |
---|
114 | after installation. It does not includes instructions for |
---|
115 | installing the software or detailed API documentation, both of |
---|
116 | which will be covered in separate publications. |
---|
117 | |
---|
118 | \section{Audience} |
---|
119 | |
---|
120 | Readers are assumed to be familiar with the operating environment |
---|
121 | and have a general understanding of the problem background, as |
---|
122 | well as enough programming experience to adapt the code to |
---|
123 | different requirements, as described in this manual, and to |
---|
124 | understand the basic terminology of object-oriented programming. |
---|
125 | |
---|
126 | \section{Structure of This Manual} |
---|
127 | |
---|
128 | This manual is structured as follows: |
---|
129 | |
---|
130 | \begin{itemize} |
---|
131 | \item Background (What Anuga does) |
---|
132 | \item A \emph{Getting Started} section |
---|
133 | \item Anuga's overall architecture, components and file formats |
---|
134 | \item Detailed descriptions of the user interface |
---|
135 | \end{itemize} |
---|
136 | |
---|
137 | |
---|
138 | \pagebreak |
---|
139 | \chapter{Getting Started} |
---|
140 | |
---|
141 | This section is designed to assist the reader to get started with |
---|
142 | \textbf{AnuGA} by working through a simple example. What follows |
---|
143 | is a discussion of the structure and operation of the file |
---|
144 | \texttt{bedslope.py}, with just enough detail to allow the reader |
---|
145 | to appreciate what's involved in setting up a scenario like the |
---|
146 | one it depicts. |
---|
147 | |
---|
148 | \section{Overview} |
---|
149 | |
---|
150 | This example carries out the solution of the shallow-water wave |
---|
151 | equation in the simple case of a configuration comprising a flat |
---|
152 | bed, sloping at a fixed angle in one direction and having a |
---|
153 | constant depth across each line in the perpendicular direction. |
---|
154 | |
---|
155 | The example demonstrates many of the basic ideas involved in |
---|
156 | setting up a more complex scenario. In the general case the user |
---|
157 | specifies the geometry (bathymetry and topography), the initial |
---|
158 | water level, boundary conditions such as tide, and any forcing |
---|
159 | terms that may drive the system such as wind stress or atmospheric |
---|
160 | pressure gradients. Frictional resistance from the different |
---|
161 | terrains in the model is represented by predefined forcing |
---|
162 | terms. The boundary is reflective on three sides and a time dependent wave on one side. |
---|
163 | |
---|
164 | The present example, as it represents a simple scenario, does not |
---|
165 | include any forcing term, nor is the data taken from a file as it |
---|
166 | would be in many typical cases. The quantities involved in the |
---|
167 | present problem are: |
---|
168 | \begin{itemize} |
---|
169 | \item elevation\index{elevation} |
---|
170 | \item friction\index{friction} |
---|
171 | \item depth\index{depth} |
---|
172 | \item stage\index{stage} |
---|
173 | \end{itemize} |
---|
174 | |
---|
175 | %\emph{[More details of the problem background]} |
---|
176 | |
---|
177 | \section{Outline of the Program} |
---|
178 | |
---|
179 | In outline, \texttt{bedslope.py} performs the following steps: |
---|
180 | |
---|
181 | \begin{enumerate} |
---|
182 | |
---|
183 | \item Sets up a triangular mesh. |
---|
184 | |
---|
185 | \item Sets certain parameters governing the mode of |
---|
186 | operation of the model-specifying, for instance, where to store the model output. |
---|
187 | |
---|
188 | |
---|
189 | \item Inputs various quantities describing physical measurements, such |
---|
190 | as the elevation, to be specified at each mesh point (vertex). |
---|
191 | |
---|
192 | \item Sets up the boundary conditions. |
---|
193 | |
---|
194 | \item Carries out the evolution of the model through a series of time |
---|
195 | steps and outputs the results, providing a results file that can |
---|
196 | be visualised. |
---|
197 | |
---|
198 | \end{enumerate} |
---|
199 | |
---|
200 | \section{The Code} |
---|
201 | |
---|
202 | %FIXME: we are using the \code function here. This should be used whereever possible |
---|
203 | For reference we include below the complete code listing for |
---|
204 | \code{bedslope.py}. Subsequent paragraphs provide a `commentary' |
---|
205 | that describes each step of the program and explains it significance. |
---|
206 | |
---|
207 | |
---|
208 | %\emph{[Can't work out how to prevent \LaTeX (or WinEdt) from |
---|
209 | %wrapping lines, even in \emph{verbatim} mode, without putting} |
---|
210 | %\verb+\\+\emph{s at the ends of lines!]} |
---|
211 | |
---|
212 | {\scriptsize \begin{verbatim} |
---|
213 | from pyvolution.mesh_factory import rectangular |
---|
214 | from pyvolution.shallow_water import Domain, Reflective_boundary, |
---|
215 | Dirichlet_boundary, Time_boundary, Transmissive_boundary |
---|
216 | |
---|
217 | #Create basic mesh |
---|
218 | points, vertices, boundary = rectangular(10,10) |
---|
219 | |
---|
220 | #Create shallow water domain |
---|
221 | domain = Domain(points, vertices,boundary) |
---|
222 | domain.set_name('bedslope') |
---|
223 | |
---|
224 | |
---|
225 | ####################### |
---|
226 | # Initial conditions |
---|
227 | def f(x,y): |
---|
228 | return -x/2 |
---|
229 | |
---|
230 | domain.set_quantity('elevation', f) |
---|
231 | domain.set_quantity('friction', 0.1) |
---|
232 | |
---|
233 | h = 0.05 # Constant depth |
---|
234 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
235 | |
---|
236 | |
---|
237 | # Boundary conditions |
---|
238 | from math import sin, pi |
---|
239 | Br = Reflective_boundary(domain) |
---|
240 | Bt = Transmissive_boundary(domain) |
---|
241 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
242 | |
---|
243 | Bw = Time_boundary(domain=domain, |
---|
244 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
245 | |
---|
246 | |
---|
247 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
248 | |
---|
249 | |
---|
250 | ###################### |
---|
251 | #Evolution |
---|
252 | |
---|
253 | domain.check_integrity() |
---|
254 | |
---|
255 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
256 | domain.write_time() |
---|
257 | |
---|
258 | |
---|
259 | \end{verbatim}} |
---|
260 | |
---|
261 | |
---|
262 | \section{Establishing the Mesh} |
---|
263 | |
---|
264 | The first task is to set up the triangular mesh to be used for the |
---|
265 | scenario. This is carried out through the statement: |
---|
266 | |
---|
267 | {\small \begin{verbatim} |
---|
268 | points, vertices, boundary = rectangular(10, 10) |
---|
269 | \end{verbatim}} |
---|
270 | |
---|
271 | The function \texttt{rectangular} is imported from a module |
---|
272 | \texttt{mesh\_factory} defined elsewhere. (\textbf{AnuGA} also |
---|
273 | contains several other schemes that can be used for setting up |
---|
274 | meshes, but we shall not discuss these now.) The above assignment |
---|
275 | sets up a $10 \times 10$ rectangular mesh, triangulated in a |
---|
276 | specific way. In general, the assignment |
---|
277 | |
---|
278 | {\small \begin{verbatim} |
---|
279 | points, vertices, boundary = rectangular(m, n) |
---|
280 | \end{verbatim}} |
---|
281 | |
---|
282 | returns: |
---|
283 | |
---|
284 | \begin{itemize} |
---|
285 | |
---|
286 | \item a list \texttt{points} of length $N$, where $N = (m + 1)(n + 1)$, |
---|
287 | comprising the coordinates $(x, y)$ of each of the $N$ mesh |
---|
288 | points, |
---|
289 | |
---|
290 | \item a list \texttt{vertices} of length $2mn$ (each entry specifies the three |
---|
291 | vertices of one of the triangles used in the triangulation) , and |
---|
292 | |
---|
293 | \item a dictionary \texttt{boundary}, used to tag the triangle edges on |
---|
294 | the boundaries. Each key corresponds to a triangle edge on one of |
---|
295 | the four boundaries and its value is one of \texttt{`left'}, |
---|
296 | \texttt{`right'}, \texttt{`top'} and \texttt{`bottom'}, indicating |
---|
297 | which boundary the edge in question belongs to. |
---|
298 | |
---|
299 | \end{itemize} |
---|
300 | |
---|
301 | |
---|
302 | \section{Initialising the domain} |
---|
303 | |
---|
304 | These variables are then used to set up a data structure |
---|
305 | \texttt{domain}, through the assignment: |
---|
306 | |
---|
307 | {\small \begin{verbatim} |
---|
308 | domain = Domain(points, vertices, boundary) |
---|
309 | \end{verbatim}} |
---|
310 | |
---|
311 | This uses a Python class \texttt{Domain}, imported from |
---|
312 | \texttt{shallow\_water}, which is an extension of a more generic |
---|
313 | class of the same name in the module \texttt{domain}, and inherits |
---|
314 | some methods from the generic class but has others specific to the |
---|
315 | shallow-water scenarios in which it is used. Specific options for domain |
---|
316 | are set at this point. One of them are to set the basename for the output file |
---|
317 | |
---|
318 | {\scriptsize \begin{verbatim} |
---|
319 | domain.set_name('bedslope') |
---|
320 | \end{verbatim}} |
---|
321 | |
---|
322 | |
---|
323 | \section{Specifying the Quantities} |
---|
324 | |
---|
325 | The next task is to specify a number of quantities that we wish to set |
---|
326 | for each mesh point. The class \texttt{Domain} has a method |
---|
327 | \texttt{set\_quantity}, used to specify these quantities. It is a |
---|
328 | particularly flexible method that allows the user to set quantities in |
---|
329 | a variety of ways---using constants, functions, numeric arrays or |
---|
330 | expressions involving other quantities, arbitrary data points with |
---|
331 | associated values, all of which can be passed as arguments. All |
---|
332 | quantities can be initialised using \texttt{set\_quantity}. For |
---|
333 | conserved quantities (\texttt{stage, xmomentum, ymomentum}) this is |
---|
334 | called the \emph{initial condition}, for other quantities that aren't |
---|
335 | updated by the equation, the same interface is used to assign their |
---|
336 | values. The code in the present example demonstrates a number of forms |
---|
337 | in which we can invoke \texttt{set\_quantity}. |
---|
338 | |
---|
339 | |
---|
340 | \subsection{Elevation} |
---|
341 | |
---|
342 | The elevation is set using a function, defined through the |
---|
343 | statements below, which is specific to this example and specifies |
---|
344 | a particularly simple initial configuration for demonstration |
---|
345 | purposes: |
---|
346 | |
---|
347 | {\small \begin{verbatim} |
---|
348 | def f(x,y): |
---|
349 | return -x/2 |
---|
350 | \end{verbatim}} |
---|
351 | |
---|
352 | This simply associates an elevation with each point $(x, y)$ of |
---|
353 | the plane. It specifies that the bed slopes linearly in the $x$ |
---|
354 | direction, with slope $-\frac{1}{2}$, and is constant in the $y$ |
---|
355 | direction.\\ %[screen shot?] |
---|
356 | \\ |
---|
357 | Once the function $f$ is specified, the quantity |
---|
358 | \texttt{elevation} is assigned through the simple statement: |
---|
359 | |
---|
360 | {\small \begin{verbatim} |
---|
361 | \begin{verbatim} |
---|
362 | domain.set_quantity('elevation', f) |
---|
363 | \end{verbatim}} |
---|
364 | |
---|
365 | |
---|
366 | \subsection{Friction} |
---|
367 | |
---|
368 | The assignment of the friction quantity demonstrates another way |
---|
369 | we can use \texttt{set\_quantity} to set quantities---namely, |
---|
370 | assign them to a constant numerical value: |
---|
371 | |
---|
372 | {\small \begin{verbatim} |
---|
373 | domain.set_quantity('friction', 0.1) |
---|
374 | \end{verbatim}} |
---|
375 | |
---|
376 | This just specifies that the Manning friction coefficient is set |
---|
377 | to 0.1 at every mesh point. |
---|
378 | |
---|
379 | \subsection{Depth} |
---|
380 | |
---|
381 | Assigning depth illustrates a more complex way to use |
---|
382 | \texttt{set\_quantity}, introducing an expression involving other |
---|
383 | quantities: |
---|
384 | |
---|
385 | {\small \begin{verbatim} |
---|
386 | h = 0.05 \# Constant depth |
---|
387 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
388 | \end{verbatim}} |
---|
389 | |
---|
390 | Here the quantity \texttt{stage} is defined by taking the quantity |
---|
391 | elevation already defined and adding a constant value $h = 0.05$ |
---|
392 | to it everywhere. This expresses the fact that the water depth is |
---|
393 | everywhere constant, so the surface is a constant height above the |
---|
394 | elevation of the bed. |
---|
395 | |
---|
396 | \subsection{Boundary Conditions} |
---|
397 | |
---|
398 | The boundary conditions are specified as follows: |
---|
399 | |
---|
400 | {\small \begin{verbatim} |
---|
401 | Br = Reflective_boundary(domain) |
---|
402 | |
---|
403 | Bt = Transmissive_boundary(domain) |
---|
404 | |
---|
405 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
406 | |
---|
407 | Bw = Time_boundary(domain=domain, |
---|
408 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
409 | \end{verbatim}} |
---|
410 | |
---|
411 | The effect of these statements is to set up four alternative |
---|
412 | boundary conditions and store them in variables that can be |
---|
413 | assigned as needed. Each boundary condition specifies the |
---|
414 | behaviour at a boundary in terms of the behaviour in neighbouring |
---|
415 | elements. The boundary conditions may be briefly described as |
---|
416 | follows: |
---|
417 | |
---|
418 | \begin{description} |
---|
419 | \item[Reflective boundary] Returns same \texttt{stage} as |
---|
420 | as present in its neighbour volume but momentum vector reversed 180 degrees (reflected). |
---|
421 | Specific to the shallow water equation as it works with the |
---|
422 | momentum quantities assumed to be the second and third conserved |
---|
423 | quantities. |
---|
424 | \item[Transmissive boundary]Returns same conserved quantities as |
---|
425 | those present in its neighbour volume. |
---|
426 | \item[Dirichlet boundary]Specifies a fixed value at the |
---|
427 | boundary. |
---|
428 | \item[Time boundary.]A Dirichlet boundary whose behaviour varies with time. |
---|
429 | \end{description} |
---|
430 | |
---|
431 | Once the four boundary types have been specified through the |
---|
432 | statements above, they can be applied through a statement of the |
---|
433 | form |
---|
434 | |
---|
435 | {\small \begin{verbatim} |
---|
436 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
437 | \end{verbatim}} |
---|
438 | |
---|
439 | This statement stipulates that, in the current example, the left |
---|
440 | boundary is fixed, with an elevation of 0.2, while the other |
---|
441 | boundaries are all reflective. |
---|
442 | |
---|
443 | |
---|
444 | \section{Evolution} |
---|
445 | |
---|
446 | The final statement \nopagebreak[3] |
---|
447 | {\small \begin{verbatim} |
---|
448 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
449 | domain.write_time() |
---|
450 | \end{verbatim}} |
---|
451 | |
---|
452 | is the key step that causes the configuration of the domain to |
---|
453 | `evolve' in accordance with the model embodied in the code, over a |
---|
454 | series of steps indicated by the values of \texttt{yieldstep} and |
---|
455 | \texttt{finaltime}, which can be altered as required. |
---|
456 | The yieldstep control the time interval between model output. Behind the scenes more timesteps are generally taken. |
---|
457 | |
---|
458 | |
---|
459 | |
---|
460 | |
---|
461 | \section{Output} |
---|
462 | |
---|
463 | %Give details here of the form of the output and explain how it can |
---|
464 | %be used with swollen. Include screen shots.// |
---|
465 | |
---|
466 | The output is a NetCDF file with the extension \texttt{.sww}. It |
---|
467 | contains stage and momentum information and can be used with the |
---|
468 | \texttt{swollen} visualisation package to generate a visual display. |
---|
469 | |
---|
470 | |
---|
471 | \section{How to Run the Code} |
---|
472 | |
---|
473 | The code can be run in various ways: |
---|
474 | |
---|
475 | \begin{itemize} |
---|
476 | \item{from a Windows command line} as in \texttt{python bedslope.py} |
---|
477 | |
---|
478 | \item{within the Python IDLE environment} |
---|
479 | |
---|
480 | \item{within emacs} |
---|
481 | |
---|
482 | \item{from a Linux command line} as in \texttt{python bedslope.py} |
---|
483 | \end{itemize} |
---|
484 | |
---|
485 | |
---|
486 | |
---|
487 | |
---|
488 | \appendix |
---|
489 | \chapter{Glossary} |
---|
490 | |
---|
491 | \begin{description} |
---|
492 | |
---|
493 | \item[AnuGA] name of software (joint development between ANU and GA) |
---|
494 | |
---|
495 | \item[Conserved quantity] |
---|
496 | |
---|
497 | \item[Default order] is this really needed? |
---|
498 | |
---|
499 | \item[Domain] |
---|
500 | |
---|
501 | \item[Dirichlet boundary] |
---|
502 | |
---|
503 | \item[Elevation] - refers to bathymetry and topography |
---|
504 | |
---|
505 | \item[bathymetry] offshore |
---|
506 | |
---|
507 | \item[topography] onshore |
---|
508 | |
---|
509 | \item[Evolution] integration of the shallow water wave equations over time |
---|
510 | |
---|
511 | \item[Forcing term] |
---|
512 | |
---|
513 | \item[IDLE] development environment shipped with Python |
---|
514 | |
---|
515 | \item[Manning friction coefficient] |
---|
516 | |
---|
517 | \item[Mesh] triangulation of domain |
---|
518 | |
---|
519 | \item[Grid] evenly spaced |
---|
520 | |
---|
521 | \item[NetCDF] |
---|
522 | |
---|
523 | \item[pmesh] does this really need to be here? it's a class/module? |
---|
524 | |
---|
525 | \item[pyvolution] does this really need to be here? it's a class/module? |
---|
526 | |
---|
527 | \item[Quantity] conserved (state, x and y momentum) |
---|
528 | |
---|
529 | \item[Reflective boundary] |
---|
530 | |
---|
531 | \item[Smoothing] is this really needed? |
---|
532 | |
---|
533 | \item[Stage] |
---|
534 | |
---|
535 | \item[Swollen] visualisation tool |
---|
536 | |
---|
537 | \item[Time boundary] defined in the manual (flog from there) |
---|
538 | |
---|
539 | \item[Transmissive boundary] defined in the manual (flog from there) |
---|
540 | |
---|
541 | \item[xmomentum] conserved quantity (note, two-dimensional SWW equations say only x and y and NOT z) |
---|
542 | |
---|
543 | \item[ymomentum] conserved quantity |
---|
544 | |
---|
545 | \item[resolution] refers to the maximal area of each triangular cell in the mesh |
---|
546 | |
---|
547 | \item[easting] |
---|
548 | |
---|
549 | \item[northing] |
---|
550 | |
---|
551 | \item[latitude] |
---|
552 | |
---|
553 | \item[longitude] |
---|
554 | |
---|
555 | \item[edge] |
---|
556 | |
---|
557 | \item[vertex] |
---|
558 | |
---|
559 | \item[finite volume] |
---|
560 | |
---|
561 | \item[flux] |
---|
562 | |
---|
563 | \item[Digital Elevation Model (DEM)] |
---|
564 | |
---|
565 | |
---|
566 | \end{description} |
---|
567 | |
---|
568 | The \code{\e appendix} markup need not be repeated for additional |
---|
569 | appendices. |
---|
570 | |
---|
571 | |
---|
572 | % |
---|
573 | % The ugly "%begin{latexonly}" pseudo-environments are really just to |
---|
574 | % keep LaTeX2HTML quiet during the \renewcommand{} macros; they're |
---|
575 | % not really valuable. |
---|
576 | % |
---|
577 | % If you don't want the Module Index, you can remove all of this up |
---|
578 | % until the second \input line. |
---|
579 | % |
---|
580 | |
---|
581 | %begin{latexonly} |
---|
582 | %\renewcommand{\indexname}{Module Index} |
---|
583 | %end{latexonly} |
---|
584 | %\input{mod\jobname.ind} % Module Index |
---|
585 | |
---|
586 | %begin{latexonly} |
---|
587 | \renewcommand{\indexname}{Index} |
---|
588 | %end{latexonly} |
---|
589 | \input{\jobname.ind} % Index |
---|
590 | |
---|
591 | |
---|
592 | |
---|
593 | \end{document} |
---|