1 | |
---|
2 | \documentclass[reqno]{article} |
---|
3 | \usepackage{ae} % or {zefonts} |
---|
4 | \usepackage[T1]{fontenc} |
---|
5 | \usepackage[ansinew]{inputenc} |
---|
6 | \usepackage{amsmath} |
---|
7 | \usepackage{amssymb} |
---|
8 | \usepackage{graphicx} |
---|
9 | \usepackage{color} |
---|
10 | \usepackage[colorlinks]{hyperref} |
---|
11 | % \Add{} and \Del{} Corrections and \Mark{} |
---|
12 | %\usepackage[active,new,noold,marker]{xrcs} |
---|
13 | \usepackage{eurosym} |
---|
14 | \DeclareInputText{128}{\euro} % ANSI code for euro: \usepackage{eurosym} |
---|
15 | \DeclareInputText{165}{\yen} % ANSI code for yen: ¥ \usepackage{amssymb} |
---|
16 | |
---|
17 | \usepackage{lscape} %landcape pages support |
---|
18 | %\input{definitions} |
---|
19 | |
---|
20 | \title{Application of SMF surface elevation function in inundation modelling} |
---|
21 | \date{} |
---|
22 | |
---|
23 | \begin{document} |
---|
24 | |
---|
25 | \maketitle |
---|
26 | |
---|
27 | |
---|
28 | Geoscience Australia (GA) is a federal government agency playing a |
---|
29 | critical role in enabling government and the community to make |
---|
30 | information decisions about exploration of resources, the management |
---|
31 | of the environment, the safety of critical infrastructure and the |
---|
32 | resultant wellbeing of all Australians. GA does this by producing |
---|
33 | first-class geoscientific information and knowledge. |
---|
34 | |
---|
35 | The Risk Research Group (RRG) within GA is researching natural and |
---|
36 | human-caused hazards to enhance Australia's risk mitigation |
---|
37 | capabilities through policy and decision-maker support. The group is |
---|
38 | working with other agencies to develop and collect information on |
---|
39 | natural disasters, and develop risk models for forecasting the |
---|
40 | impact of future hazard events. |
---|
41 | |
---|
42 | In a recent inundation study, we implemented the surface elevation |
---|
43 | function as described in equation 14 of Watts et al 2005, [1], for a |
---|
44 | slump tsunami scenario. Investigating the long term behaviour of the |
---|
45 | system, it was found that water was being lost from the system when |
---|
46 | the slump was added to the system. Further investigation showed that |
---|
47 | the depressed volume was greater than the volume displaced above the |
---|
48 | water surface with approximately 2-3 \% loss. Figure 2 of [1] shows |
---|
49 | a series of the surface elevation functions for various parameters |
---|
50 | which indicate that volume is not conserved. |
---|
51 | |
---|
52 | {\bf Question:} Is there a physical explanation to why the volume |
---|
53 | of the surface elevation function should not be zero? |
---|
54 | |
---|
55 | Integrating equation 14 and solving to zero for $\kappa'$ ensures |
---|
56 | the system volume is conserved. As a result, |
---|
57 | |
---|
58 | $$\kappa' = [{\rm erf} ( \frac{(x - x_0)}{\sqrt \lambda_0 }) / |
---|
59 | {\rm erf} ( \frac{(x - \Delta x - x_0)}{\sqrt \lambda_0 })]_{x_{\rm |
---|
60 | min}}^{x_{\rm max}} \ .$$ |
---|
61 | |
---|
62 | \noindent The relationship between $\kappa$ and $\Delta_x$ can be |
---|
63 | seen in Figure \ref{fig:vol_cons} where $\kappa$ approaches $\inf$ |
---|
64 | quickly.Additionally, it is not possible for $\kappa' = 0.83$ as |
---|
65 | shown in Figure 2 of [1] as {\rm erf(x)} = 1 for ${\rm abs} x > |
---|
66 | 5.93$. For the example described in Figures 2 and 3 of [1], whilst |
---|
67 | $\kappa'$ is technically less than 1 for $\Delta x < 5$ it is |
---|
68 | effectively equal to 1 for $0 \le \Delta x \approx 5$. |
---|
69 | |
---|
70 | |
---|
71 | Figure 2 in [1] |
---|
72 | could then be reproduced for appropriate values of $\kappa'$ and $\Delta x$ to |
---|
73 | ensure conservation of mass within the system. Using the above |
---|
74 | formulation, the values of interest shown in Figure 2 of [1] would |
---|
75 | be ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$ and shown in |
---|
76 | Figure \ref{fig:eta_vary}. |
---|
77 | |
---|
78 | |
---|
79 | |
---|
80 | \begin{figure}[hbt] |
---|
81 | |
---|
82 | %\centerline{ \includegraphics[width=75mm, height=75mm]{volume_conservation.eps}} |
---|
83 | |
---|
84 | \caption{Relationship between $\kappa'$ and $\Delta x$ to ensure volume conservation.} |
---|
85 | \label{fig:vol_cons} |
---|
86 | \end{figure} |
---|
87 | |
---|
88 | \begin{figure}[hbt] |
---|
89 | |
---|
90 | %\centerline{ \includegraphics[width=75mm, height=75mm]{redo_figure.eps}} |
---|
91 | |
---|
92 | \caption{Surface elevation functions for |
---|
93 | ($\kappa', \Delta x) = (1,2), (1,4), (1.2, 13.48)$.} |
---|
94 | \label{fig:eta_vary} |
---|
95 | \end{figure} |
---|
96 | |
---|
97 | The impact onshore is altered if the surface elevation function is altered |
---|
98 | as described. This is of course expected as there is an increased volume |
---|
99 | of water which can propagate ashore. In one investigation, we saw little |
---|
100 | change to the inundation extent, but some significant increases in |
---|
101 | maximum inundation depth in some locations. |
---|
102 | |
---|
103 | Watts et al [1] also provide additional information on the value of |
---|
104 | $\Delta x$; $x_0 - \Delta x \approx x_g$, where $x_g$ is formulated |
---|
105 | as $x_g = d/\tan \theta + T/ \sin \theta$ (described as a gauge |
---|
106 | located above the SMF initial submergence location in [2]). Here $d$ |
---|
107 | represents the depth at where the SMF is situated, $T$ the thickness |
---|
108 | and $\theta$ the slope of the bed. As a result, $\kappa'$ can be |
---|
109 | recast as |
---|
110 | |
---|
111 | $$\kappa' \approx {\rm erf} ( \frac{(x - x_0)}{\sqrt\lambda_0} ) / |
---|
112 | {\rm erf} ( \frac{(x - 2 x_0 |
---|
113 | - x_g)}{\sqrt \lambda_0 )}$$ |
---|
114 | |
---|
115 | \noindent thereby eliminating $\Delta x$ from the surface elevation |
---|
116 | function, $\eta(x,y)$. Implementing this formulation for values in |
---|
117 | [2] (T = 0.052m, d = 0.259m) provides the following figure |
---|
118 | describing the relationship between $x_0$ and $\kappa'$. |
---|
119 | |
---|
120 | %{\caption Utilising $x_g$ in determining $\kappa'$ to ensure volume |
---|
121 | %conservation} |
---|
122 | |
---|
123 | {\bf Question:} Is this a realistic substitution? |
---|
124 | |
---|
125 | {\bf TO DO:} Need a discussion in here on "characteristic distance |
---|
126 | of motion". |
---|
127 | |
---|
128 | \section{References} |
---|
129 | |
---|
130 | [1] Watts, P., Grilli, S.T., Tappin, D.R. and Fryer, G.J., 2005, |
---|
131 | Tsunami generation by submarine mass failure Part II: Predictive |
---|
132 | equations and case studies, Journal of Waterway, Port, Coastal, and |
---|
133 | Ocean Engineering, 131, 298 - 310. |
---|
134 | |
---|
135 | [2] Grilli, S.T. and Watts, P., 2005, Tsunami generation by |
---|
136 | submarine mass failure Part I: Modeling, experimental validation, |
---|
137 | and sensitivity analyses, Journal of Waterway, Port, Coastal, and |
---|
138 | Ocean Engineering, 131, 283 - 297. |
---|
139 | |
---|
140 | |
---|
141 | \end{document} |
---|