1 | % Complete documentation on the extended LaTeX markup used for Python |
---|
2 | % documentation is available in ``Documenting Python'', which is part |
---|
3 | % of the standard documentation for Python. It may be found online |
---|
4 | % at: |
---|
5 | % |
---|
6 | % http://www.python.org/doc/current/doc/doc.html |
---|
7 | |
---|
8 | |
---|
9 | \input{definitions} |
---|
10 | |
---|
11 | |
---|
12 | \documentclass{manual} |
---|
13 | |
---|
14 | \title{\anuga User Manual} |
---|
15 | \author{Howard Silcock, Ole Nielsen, Duncan Gray, Jane Sexton} |
---|
16 | |
---|
17 | % Please at least include a long-lived email address; |
---|
18 | % the rest is at your discretion. |
---|
19 | \authoraddress{Geoscience Australia \\ |
---|
20 | Email: \email{ole.nielsen@ga.gov.au} |
---|
21 | } |
---|
22 | |
---|
23 | %Draft date |
---|
24 | \date{\today} % update before release! |
---|
25 | % Use an explicit date so that reformatting |
---|
26 | % doesn't cause a new date to be used. Setting |
---|
27 | % the date to \today can be used during draft |
---|
28 | % stages to make it easier to handle versions. |
---|
29 | |
---|
30 | \release{1.0} % release version; this is used to define the |
---|
31 | % \version macro |
---|
32 | |
---|
33 | \makeindex % tell \index to actually write the .idx file |
---|
34 | %\makemodindex % If this contains a lot of module sections. |
---|
35 | |
---|
36 | |
---|
37 | |
---|
38 | \begin{document} |
---|
39 | \maketitle |
---|
40 | |
---|
41 | % This makes the contents more accessible from the front page of the HTML. |
---|
42 | \ifhtml |
---|
43 | \chapter*{Front Matter\label{front}} |
---|
44 | \fi |
---|
45 | |
---|
46 | %Subversion keywords: |
---|
47 | % |
---|
48 | %$LastChangedDate: 2006-02-22 03:12:54 +0000 (Wed, 22 Feb 2006) $ |
---|
49 | %$LastChangedRevision: 2434 $ |
---|
50 | %$LastChangedBy: howard $ |
---|
51 | |
---|
52 | \input{copyright} |
---|
53 | |
---|
54 | |
---|
55 | \begin{abstract} |
---|
56 | |
---|
57 | \noindent |
---|
58 | \anuga\index{AnuGA} is a hydrodynamic modelling tool that |
---|
59 | allows users to model realistic flow problems in complex |
---|
60 | geometries. Examples include dam breaks or the effects of natural |
---|
61 | hazards such as riverine flooding, storm surges and tsunami. |
---|
62 | |
---|
63 | The user must specify a study area represented by a mesh of triangular |
---|
64 | cells, the topography and bathymetry, frictional resistance, initial |
---|
65 | values for water level (called \emph{stage}\index{stage} within \anuga), |
---|
66 | boundary |
---|
67 | conditions and forces such as windstress or pressure gradients if |
---|
68 | applicable. |
---|
69 | |
---|
70 | \anuga tracks the evolution of water depth and horizontal momentum |
---|
71 | within each cell over time by solving the shallow water wave equation |
---|
72 | governing equation using a finite-volume method. |
---|
73 | |
---|
74 | \anuga cannot model details of breaking waves, flow under ceilings such |
---|
75 | as pipes, turbulence and vortices, vertical convection or viscous |
---|
76 | flows. |
---|
77 | |
---|
78 | \anuga also incorporates a mesh generator, called \code{pmesh}, that |
---|
79 | allows the user to set up the geometry of the problem interactively as |
---|
80 | well as tools for interpolation and surface fitting, and a number of |
---|
81 | auxiliary tools for visualising and interrogating the model output. |
---|
82 | |
---|
83 | Most \anuga components are written in the object-oriented programming |
---|
84 | language Python and most users will interact with \anuga by writing |
---|
85 | small Python programs based on the \anuga library |
---|
86 | functions. Computationally intensive components are written for |
---|
87 | efficiency in C routines working directly with the Numerical Python |
---|
88 | structures. |
---|
89 | |
---|
90 | |
---|
91 | \end{abstract} |
---|
92 | |
---|
93 | \tableofcontents |
---|
94 | |
---|
95 | |
---|
96 | \chapter{Introduction} |
---|
97 | |
---|
98 | |
---|
99 | \section{Purpose} |
---|
100 | |
---|
101 | The purpose of this user manual is to introduce the new user to |
---|
102 | the software, describe what it can do and give step-by-step |
---|
103 | instructions for setting up, configuring and running the software. |
---|
104 | |
---|
105 | \section{Scope} |
---|
106 | |
---|
107 | This manual covers only what is needed to operate the software |
---|
108 | after installation. It does not includes instructions for |
---|
109 | installing the software or detailed API documentation, both of |
---|
110 | which will be covered in separate publications. |
---|
111 | |
---|
112 | \section{Audience} |
---|
113 | |
---|
114 | Readers are assumed to be familiar with the operating environment |
---|
115 | and have a general understanding of the problem background, as |
---|
116 | well as enough programming experience to adapt the code to |
---|
117 | different requirements, as described in this manual, and to |
---|
118 | understand the basic terminology of object-oriented programming. |
---|
119 | |
---|
120 | \section{Structure of This Manual} |
---|
121 | |
---|
122 | This manual is structured as follows: |
---|
123 | |
---|
124 | \begin{itemize} |
---|
125 | \item Background (What \anuga does) |
---|
126 | \item A \emph{Getting Started} section |
---|
127 | \item A detailed description of the public interface |
---|
128 | \item \anuga 's overall architecture, components and file formats |
---|
129 | \item Assumptions |
---|
130 | \end{itemize} |
---|
131 | |
---|
132 | |
---|
133 | \pagebreak |
---|
134 | \chapter{Getting Started} |
---|
135 | |
---|
136 | This section is designed to assist the reader to get started with |
---|
137 | \anuga by working through simple examples. Two examples are discussed; |
---|
138 | the first is a simple but artificial example that is useful to illustrate |
---|
139 | many of the ideas, and the second is a real-life example. |
---|
140 | |
---|
141 | \section{First Example: Overview} |
---|
142 | |
---|
143 | What follows |
---|
144 | is a discussion of the structure and operation of the file |
---|
145 | \code{bedslope.py}, with just enough detail to allow the reader |
---|
146 | to appreciate what's involved in setting up a scenario like the |
---|
147 | one it depicts. |
---|
148 | |
---|
149 | This example carries out the solution of the shallow-water wave |
---|
150 | equation in the simple case of a configuration comprising a flat |
---|
151 | bed, sloping at a fixed angle in one direction and having a |
---|
152 | constant depth across each line in the perpendicular direction. |
---|
153 | |
---|
154 | The example demonstrates many of the basic ideas involved in |
---|
155 | setting up a more complex scenario. In the general case the user |
---|
156 | specifies the geometry (bathymetry and topography), the initial |
---|
157 | water level, boundary conditions such as tide, and any forcing |
---|
158 | terms that may drive the system such as wind stress or atmospheric |
---|
159 | pressure gradients. Frictional resistance from the different |
---|
160 | terrains in the model is represented by predefined forcing |
---|
161 | terms. The boundary is reflective on three sides and a time dependent wave on one side. |
---|
162 | |
---|
163 | The present example, as it represents a simple scenario, does not |
---|
164 | include any forcing term, nor is the data taken from a file as it |
---|
165 | would be in many typical cases. The quantities involved in the |
---|
166 | present problem are: |
---|
167 | \begin{itemize} |
---|
168 | \item elevation\index{elevation} |
---|
169 | \item friction\index{friction} |
---|
170 | \item depth\index{depth} |
---|
171 | \item stage\index{stage} |
---|
172 | \end{itemize} |
---|
173 | |
---|
174 | %\emph{[More details of the problem background]} |
---|
175 | |
---|
176 | \section{Outline of the Program} |
---|
177 | |
---|
178 | In outline, \code{bedslope.py} performs the following steps: |
---|
179 | |
---|
180 | \begin{enumerate} |
---|
181 | |
---|
182 | \item Sets up a triangular mesh. |
---|
183 | |
---|
184 | \item Sets certain parameters governing the mode of |
---|
185 | operation of the model-specifying, for instance, where to store the model output. |
---|
186 | |
---|
187 | \item Inputs various quantities describing physical measurements, such |
---|
188 | as the elevation, to be specified at each mesh point (vertex). |
---|
189 | |
---|
190 | \item Sets up the boundary conditions. |
---|
191 | |
---|
192 | \item Carries out the evolution of the model through a series of time |
---|
193 | steps and outputs the results, providing a results file that can |
---|
194 | be visualised. |
---|
195 | |
---|
196 | \end{enumerate} |
---|
197 | |
---|
198 | \section{The Code} |
---|
199 | |
---|
200 | %FIXME: we are using the \code function here. |
---|
201 | %This should be used wherever possible |
---|
202 | For reference we include below the complete code listing for |
---|
203 | \code{bedslope.py}. Subsequent paragraphs provide a `commentary' |
---|
204 | that describes each step of the program and explains it significance. |
---|
205 | |
---|
206 | |
---|
207 | {\scriptsize \begin{verbatim} |
---|
208 | from pyvolution.mesh_factory import rectangular |
---|
209 | from pyvolution.shallow_water import Domain, Reflective_boundary, |
---|
210 | Dirichlet_boundary, Time_boundary, Transmissive_boundary |
---|
211 | |
---|
212 | #Create basic mesh |
---|
213 | points, vertices, boundary = rectangular(10,10) |
---|
214 | |
---|
215 | #Create shallow water domain |
---|
216 | domain = Domain(points, vertices,boundary) |
---|
217 | domain.set_name('bedslope') |
---|
218 | |
---|
219 | |
---|
220 | ####################### |
---|
221 | # Initial conditions |
---|
222 | def f(x,y): |
---|
223 | return -x/2 |
---|
224 | |
---|
225 | domain.set_quantity('elevation', f) |
---|
226 | domain.set_quantity('friction', 0.1) |
---|
227 | |
---|
228 | h = 0.05 # Constant depth |
---|
229 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
230 | |
---|
231 | |
---|
232 | # Boundary conditions |
---|
233 | from math import sin, pi |
---|
234 | Br = Reflective_boundary(domain) |
---|
235 | Bt = Transmissive_boundary(domain) |
---|
236 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
237 | |
---|
238 | Bw = Time_boundary(domain=domain, |
---|
239 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
240 | |
---|
241 | |
---|
242 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
243 | |
---|
244 | |
---|
245 | ###################### |
---|
246 | #Evolution |
---|
247 | |
---|
248 | domain.check_integrity() |
---|
249 | |
---|
250 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
251 | domain.write_time() |
---|
252 | |
---|
253 | |
---|
254 | \end{verbatim}} |
---|
255 | |
---|
256 | |
---|
257 | \section{Establishing the Mesh} |
---|
258 | |
---|
259 | The first task is to set up the triangular mesh to be used for the |
---|
260 | scenario. This is carried out through the statement: |
---|
261 | |
---|
262 | {\small \begin{verbatim} |
---|
263 | points, vertices, boundary = rectangular(10, 10) |
---|
264 | \end{verbatim}} |
---|
265 | |
---|
266 | The function \code{rectangular} is imported from a module |
---|
267 | \code{mesh\_factory} defined elsewhere. \anuga also |
---|
268 | contains several other schemes that can be used for setting up |
---|
269 | meshes, but we shall not discuss these now.) The above assignment |
---|
270 | sets up a $10 \times 10$ rectangular mesh, triangulated in a |
---|
271 | specific way. In general, the assignment |
---|
272 | |
---|
273 | {\small \begin{verbatim} |
---|
274 | points, vertices, boundary = rectangular(m, n) |
---|
275 | \end{verbatim}} |
---|
276 | |
---|
277 | returns: |
---|
278 | |
---|
279 | \begin{itemize} |
---|
280 | |
---|
281 | \item a list \code{points} of length $N$, where $N = (m + 1)(n + 1)$, |
---|
282 | comprising the coordinates $(x, y)$ of each of the $N$ mesh |
---|
283 | points, |
---|
284 | |
---|
285 | \item a list \code{vertices} of length $2mn$ (each entry specifies the three |
---|
286 | vertices of one of the triangles used in the triangulation) , and |
---|
287 | |
---|
288 | \item a dictionary \code{boundary}, used to tag the triangle edges on |
---|
289 | the boundaries. Each key corresponds to a triangle edge on one of |
---|
290 | the four boundaries and its value is one of \code{`left'}, |
---|
291 | \code{`right'}, \code{`top'} and \code{`bottom'}, indicating |
---|
292 | which boundary the edge in question belongs to. |
---|
293 | |
---|
294 | \end{itemize} |
---|
295 | |
---|
296 | |
---|
297 | \section{Initialising the Domain} |
---|
298 | |
---|
299 | These variables are then used to set up a data structure |
---|
300 | \code{domain}, through the assignment: |
---|
301 | |
---|
302 | {\small \begin{verbatim} |
---|
303 | domain = Domain(points, vertices, boundary) |
---|
304 | \end{verbatim}} |
---|
305 | |
---|
306 | This uses a Python class \code{Domain}, imported from |
---|
307 | \code{shallow\_water}, which is an extension of a more generic |
---|
308 | class of the same name in the module \code{domain}, and inherits |
---|
309 | some methods from the generic class but has others specific to the |
---|
310 | shallow-water scenarios in which it is used. Specific options for domain |
---|
311 | are set at this point. One of them is to set the basename for the output file: |
---|
312 | |
---|
313 | {\scriptsize \begin{verbatim} |
---|
314 | domain.set_name('bedslope') |
---|
315 | \end{verbatim}} |
---|
316 | |
---|
317 | |
---|
318 | \section{Specifying the Quantities} |
---|
319 | |
---|
320 | The next task is to specify a number of quantities that we wish to set |
---|
321 | for each mesh point. The class \code{Domain} has a method |
---|
322 | \code{set\_quantity}, used to specify these quantities. It is a |
---|
323 | particularly flexible method that allows the user to set quantities in |
---|
324 | a variety of ways---using constants, functions, numeric arrays or |
---|
325 | expressions involving other quantities, arbitrary data points with |
---|
326 | associated values, all of which can be passed as arguments. All |
---|
327 | quantities can be initialised using \code{set\_quantity}. For |
---|
328 | conserved quantities (\code{stage, xmomentum, ymomentum}) this is |
---|
329 | called the \emph{initial condition}, for other quantities that aren't |
---|
330 | updated by the equation, the same interface is used to assign their |
---|
331 | values. The code in the present example demonstrates a number of forms |
---|
332 | in which we can invoke \code{set\_quantity}. |
---|
333 | |
---|
334 | |
---|
335 | \subsection{Elevation} |
---|
336 | |
---|
337 | The elevation is set using a function, defined through the |
---|
338 | statements below, which is specific to this example and specifies |
---|
339 | a particularly simple initial configuration for demonstration |
---|
340 | purposes: |
---|
341 | |
---|
342 | {\small \begin{verbatim} |
---|
343 | def f(x,y): |
---|
344 | return -x/2 |
---|
345 | \end{verbatim}} |
---|
346 | |
---|
347 | This simply associates an elevation with each point $(x, y)$ of |
---|
348 | the plane. It specifies that the bed slopes linearly in the $x$ |
---|
349 | direction, with slope $-\frac{1}{2}$, and is constant in the $y$ |
---|
350 | direction.\\ %[screen shot?] |
---|
351 | \\ |
---|
352 | Once the function $f$ is specified, the quantity |
---|
353 | \code{elevation} is assigned through the simple statement: |
---|
354 | |
---|
355 | {\small \begin{verbatim} |
---|
356 | domain.set_quantity('elevation', f) |
---|
357 | \end{verbatim}} |
---|
358 | |
---|
359 | |
---|
360 | \subsection{Friction} |
---|
361 | |
---|
362 | The assignment of the friction quantity demonstrates another way |
---|
363 | we can use \code{set\_quantity} to set quantities---namely, |
---|
364 | assign them to a constant numerical value: |
---|
365 | |
---|
366 | {\small \begin{verbatim} |
---|
367 | domain.set_quantity('friction', 0.1) |
---|
368 | \end{verbatim}} |
---|
369 | |
---|
370 | This just specifies that the Manning friction coefficient is set |
---|
371 | to 0.1 at every mesh point. |
---|
372 | |
---|
373 | \subsection{Depth} |
---|
374 | |
---|
375 | Assigning depth illustrates a more complex way to use |
---|
376 | \code{set\_quantity}, introducing an expression involving other |
---|
377 | quantities: |
---|
378 | |
---|
379 | {\small \begin{verbatim} |
---|
380 | h = 0.05 \# Constant depth |
---|
381 | domain.set_quantity('stage', expression = 'elevation + %f' %h) |
---|
382 | \end{verbatim}} |
---|
383 | |
---|
384 | Here the quantity \code{stage} is defined by taking the quantity |
---|
385 | elevation already defined and adding a constant value $h = 0.05$ |
---|
386 | to it everywhere. This expresses the fact that the water depth is |
---|
387 | everywhere constant, so the surface is a constant height above the |
---|
388 | elevation of the bed. |
---|
389 | |
---|
390 | \subsection{Boundary Conditions} |
---|
391 | |
---|
392 | The boundary conditions are specified as follows: |
---|
393 | |
---|
394 | {\small \begin{verbatim} |
---|
395 | Br = Reflective_boundary(domain) |
---|
396 | |
---|
397 | Bt = Transmissive_boundary(domain) |
---|
398 | |
---|
399 | Bd = Dirichlet_boundary([0.2,0.,0.]) |
---|
400 | |
---|
401 | Bw = Time_boundary(domain=domain, |
---|
402 | f=lambda t: [(0.1*sin(t*2*pi)), 0.0, 0.0]) |
---|
403 | \end{verbatim}} |
---|
404 | |
---|
405 | The effect of these statements is to set up four alternative |
---|
406 | boundary conditions and store them in variables that can be |
---|
407 | assigned as needed. Each boundary condition specifies the |
---|
408 | behaviour at a boundary in terms of the behaviour in neighbouring |
---|
409 | elements. The boundary conditions may be briefly described as |
---|
410 | follows: |
---|
411 | |
---|
412 | \begin{description} |
---|
413 | \item[Reflective boundary] Returns same \code{stage} as |
---|
414 | as present in its neighbour volume but momentum vector reversed 180 degrees (reflected). |
---|
415 | Specific to the shallow water equation as it works with the |
---|
416 | momentum quantities assumed to be the second and third conserved |
---|
417 | quantities. |
---|
418 | |
---|
419 | \item[Transmissive boundary]Returns same conserved quantities as |
---|
420 | those present in its neighbour volume. |
---|
421 | |
---|
422 | \item[Dirichlet boundary]Specifies a fixed value at the |
---|
423 | boundary. |
---|
424 | |
---|
425 | \item[Time boundary.]A Dirichlet boundary whose behaviour varies with time. |
---|
426 | \end{description} |
---|
427 | |
---|
428 | Once the four boundary types have been specified through the |
---|
429 | statements above, they can be applied through a statement of the |
---|
430 | form |
---|
431 | |
---|
432 | {\small \begin{verbatim} |
---|
433 | domain.set_boundary({'left': Bd, 'right': Br, 'top': Br, 'bottom': Br}) |
---|
434 | \end{verbatim}} |
---|
435 | |
---|
436 | This statement stipulates that, in the current example, the left |
---|
437 | boundary is fixed, with an elevation of 0.2, while the other |
---|
438 | boundaries are all reflective. |
---|
439 | |
---|
440 | |
---|
441 | \section{Evolution} |
---|
442 | |
---|
443 | The final statement \nopagebreak[3] |
---|
444 | {\small \begin{verbatim} |
---|
445 | for t in domain.evolve(yieldstep = 0.1, finaltime = 4.0): |
---|
446 | domain.write_time() |
---|
447 | \end{verbatim}} |
---|
448 | |
---|
449 | is the key step that causes the configuration of the domain to |
---|
450 | `evolve' in accordance with the model embodied in the code, over a |
---|
451 | series of steps indicated by the values of \code{yieldstep} and |
---|
452 | \code{finaltime}, which can be altered as required. |
---|
453 | The value of \code{yieldstep} controls the time interval between successive model outputs. |
---|
454 | Behind the scenes more time steps are generally taken. |
---|
455 | |
---|
456 | |
---|
457 | \section{Output} |
---|
458 | |
---|
459 | %Give details here of the form of the output and explain how it can |
---|
460 | %be used with swollen. Include screen shots.// |
---|
461 | |
---|
462 | The output is a NetCDF file with the extension \code{.sww}. It |
---|
463 | contains stage and momentum information and can be used with the |
---|
464 | \code{swollen} visualisation package to generate a visual display. |
---|
465 | |
---|
466 | |
---|
467 | \section{How to Run the Code} |
---|
468 | |
---|
469 | The code can be run in various ways: |
---|
470 | |
---|
471 | \begin{itemize} |
---|
472 | \item{from a Windows command line} as in \code{python bedslope.py} |
---|
473 | |
---|
474 | \item{within the Python IDLE environment} |
---|
475 | |
---|
476 | \item{within emacs} |
---|
477 | |
---|
478 | \item{from a Linux command line} as in \code{python bedslope.py} |
---|
479 | \end{itemize} |
---|
480 | |
---|
481 | |
---|
482 | \section{An Example with Real Data} |
---|
483 | |
---|
484 | The following discussion builds on the \code{bedslope.py} example and |
---|
485 | shows how, using the same basic outline, we can incorporate many more |
---|
486 | complex features. |
---|
487 | |
---|
488 | The chief difference is in the method used to create the mesh. Instead of imposing a mesh |
---|
489 | structure on a rectangular grid, the technique used for this example involves building |
---|
490 | mesh structures inside polygons. |
---|
491 | |
---|
492 | In its simplest form, the mesh is created within a single polygon |
---|
493 | whose vertices are at geographical locations specified by the user. A |
---|
494 | triangular mesh is created using points inside the polygon selected |
---|
495 | through a random process, the user specifying the |
---|
496 | \emph{resolution}---that is, the maximal area of a triangle used for |
---|
497 | triangulation. |
---|
498 | |
---|
499 | Figure XXX shows a simple example, in which the triangulation is |
---|
500 | carried out within a pentagon. Instead of using the four tags |
---|
501 | \code{`left'}, \code{`right'}, \code{`bottom'} and |
---|
502 | \code{`top'} to distinguish boundary elements, the user can define |
---|
503 | tags appropriate to the configuration being modelled. |
---|
504 | |
---|
505 | While this offers more flexibility than the rectangular grid, it |
---|
506 | doesn't provide a way to adapt to geographic or other features in the |
---|
507 | landscape, for which we may require to vary the resolution. We achieve |
---|
508 | more flexibility by extending this method, allowing the user to |
---|
509 | specify a number of interior polygons which are triangulated |
---|
510 | separately, possibly using different resolutions. See Figure XXX. |
---|
511 | |
---|
512 | |
---|
513 | \chapter{\anuga Public Interface} |
---|
514 | |
---|
515 | This chapter lists the functions and classes available at the public interface. |
---|
516 | |
---|
517 | \section{Functions and Classes} |
---|
518 | |
---|
519 | \begin{itemize} |
---|
520 | |
---|
521 | \item \indexedcode{create_mesh_from_region}: Creates a triangular mesh based on a bounding polygon and |
---|
522 | a number of internal polygons. For each polygon the user specifies a resolution---that is, the maximal area |
---|
523 | of triangles in the mesh. The bounding polygon also has symbolic \code{tags} associated with it. |
---|
524 | |
---|
525 | \textbf{Arguments:} |
---|
526 | |
---|
527 | \begin{itemize} |
---|
528 | |
---|
529 | \item the bounding polygon, %do we need to spell out how a polygon is specified? |
---|
530 | |
---|
531 | \item a dictionary of boundary tags, for all segments of the bounding polygon, |
---|
532 | \emph{[not clear what the keys and values of this dictionary are]} |
---|
533 | |
---|
534 | \item the resolution for the bounding polygon, |
---|
535 | |
---|
536 | \item (optional) a filename, \emph{[what is the file for?]} |
---|
537 | |
---|
538 | \item a list of 2-tuples \code{(polygon, resolution)}, specifying the interior polygons and their associated |
---|
539 | resolutions. |
---|
540 | |
---|
541 | \end{itemize} |
---|
542 | |
---|
543 | |
---|
544 | |
---|
545 | \item \indexedcode{pmesh_to_domain_instance}: Converts a generated mesh file to a domain object. |
---|
546 | |
---|
547 | \textbf{Arguments:} |
---|
548 | |
---|
549 | \begin{itemize} |
---|
550 | |
---|
551 | \item \code{file_name} is the name of the mesh file to convert, including the extension |
---|
552 | |
---|
553 | \item \code{DomainClass} is the Class that will be returned. |
---|
554 | It must be a subclass of \code{Domain}, with the same interface as domain. |
---|
555 | |
---|
556 | \item \code{use_cache}: \code{True} means that caching is attempted for the computed domain. |
---|
557 | |
---|
558 | \end{itemize} |
---|
559 | |
---|
560 | |
---|
561 | \begin{itemize} |
---|
562 | \item Mesh file name |
---|
563 | |
---|
564 | \item Class name, specifying the domain class to be instantiated. |
---|
565 | \end{itemize} |
---|
566 | |
---|
567 | \item \indexedcode{file_function}: %in util.py "High priority" |
---|
568 | Reads the time history of spatial data from NetCDF file and returns a callable object. |
---|
569 | |
---|
570 | \textbf{Input variables:} |
---|
571 | |
---|
572 | \code{filename} - Name of \code{sww} or \code{tms} file |
---|
573 | |
---|
574 | \begin{quote} |
---|
575 | If the file has extension \code{sww} then it is assumed to be spatio-temporal |
---|
576 | or temporal and the callable object will have the form \code{f(t,x,y)} or \code{f(t)} |
---|
577 | depending on whether the file contains spatial data. |
---|
578 | |
---|
579 | If the file has extension \code{tms} then it is assumed to be temporal only |
---|
580 | and the callable object will have the form \code{f(t)}. |
---|
581 | |
---|
582 | Either form will return interpolated values based on the input file |
---|
583 | using the underlying \code{interpolation_function}. |
---|
584 | \end{quote} |
---|
585 | |
---|
586 | \code{domain} - Associated domain object |
---|
587 | If domain is specified, model time (\code{domain.starttime}) |
---|
588 | will be checked and possibly modified. |
---|
589 | |
---|
590 | \begin{quote} |
---|
591 | All times are assumed to be in UTC. |
---|
592 | |
---|
593 | All spatial information is assumed to be in absolute UTM coordinates. |
---|
594 | \end{quote} |
---|
595 | |
---|
596 | \code{quantities} - the name of the quantity to be interpolated or a |
---|
597 | list of quantity names. The resulting function will return |
---|
598 | a tuple of values -- one for each quantity. |
---|
599 | |
---|
600 | \code{interpolation_points} - list of absolute UTM coordinates for points at |
---|
601 | which values are sought |
---|
602 | |
---|
603 | \code{use_cache}: \code{True} means that caching of intermediate result of |
---|
604 | \code{Interpolation_function} is attempted |
---|
605 | |
---|
606 | |
---|
607 | % See Interpolation function for further documentation |
---|
608 | |
---|
609 | \item \indexedcode{Interpolation_function} - creates a callable object \code{f(t, id)} or \code{f(t,x,y)} |
---|
610 | which is interpolated from time series defined at vertices of |
---|
611 | triangular mesh (such as those stored in \code{sww} files). |
---|
612 | |
---|
613 | Let $m$ be the number of vertices, $n$ the number of triangles |
---|
614 | and $p$ the number of time steps. |
---|
615 | |
---|
616 | \textbf{Mandatory input:} |
---|
617 | |
---|
618 | \begin{tabular}{ll} |
---|
619 | \code{time}: & $p \times 1$ array of monotonously increasing times (Float)\\ |
---|
620 | |
---|
621 | \code{quantities}: & Dictionary of arrays or one array (Float). The arrays must \\ |
---|
622 | & have dimensions either $p \times m$ or $m \times 1$. The resulting function \\ |
---|
623 | & will be time dependent in the former case and constant with respect to time \\ |
---|
624 | & in the latter case.\\ |
---|
625 | \end{tabular} |
---|
626 | |
---|
627 | |
---|
628 | \textbf{Optional input:} |
---|
629 | |
---|
630 | \begin{tabular}{ll} |
---|
631 | \code{quantity_names}: & List of keys into the quantities dictionary\\ |
---|
632 | |
---|
633 | \code{vertex_coordinates}: & $m \times 2$ array of coordinates (Float)\\ |
---|
634 | |
---|
635 | \code{triangles}: & $n \times 3$ array of indices into \code{vertex_coordinates} (Int)\\ |
---|
636 | |
---|
637 | \code{interpolation_points}: & $N \times 2$ array of coordinates to be interpolated to \\ |
---|
638 | |
---|
639 | \code{verbose}: & Level of reporting\\ |
---|
640 | \end{tabular} |
---|
641 | |
---|
642 | The quantities returned by the callable object are specified by |
---|
643 | the list quantities which must contain the names of the |
---|
644 | quantities to be returned and also reflect the order, e.g. for |
---|
645 | the shallow water wave equation, one would have |
---|
646 | \code{quantities = ['stage', 'xmomentum', 'ymomentum']}. |
---|
647 | |
---|
648 | The parameter \code{interpolation_points} decides at which points interpolated |
---|
649 | quantities are to be computed whenever the object is called. |
---|
650 | If \code{None}, returns average value. |
---|
651 | |
---|
652 | |
---|
653 | \item \indexedcode{set_region} ``Low priority. Will be merged into set\_quantity'' |
---|
654 | |
---|
655 | \item \indexedcode{set_quantity} ``Pretty mature'' |
---|
656 | |
---|
657 | \item \indexedcode{set_boundary} ``Pretty mature'' |
---|
658 | |
---|
659 | |
---|
660 | \end{itemize} |
---|
661 | |
---|
662 | \section{Diagnostics} |
---|
663 | \begin{itemize} |
---|
664 | \item \indexedcode{write_time} |
---|
665 | \item \indexedcode{write_boundary_statistics} |
---|
666 | |
---|
667 | |
---|
668 | \end{itemize} |
---|
669 | |
---|
670 | |
---|
671 | \section{Boundary Conditions} |
---|
672 | |
---|
673 | \anuga provides a large number of predefined boundary conditions to be used with |
---|
674 | \code{set_boundary} |
---|
675 | |
---|
676 | What do they do |
---|
677 | How are they used |
---|
678 | |
---|
679 | \begin{itemize} |
---|
680 | \item \indexedcode{Reflective_boundary} |
---|
681 | function, arguments |
---|
682 | |
---|
683 | \item \indexedcode{Transmissive_boundary} |
---|
684 | function, arguments, CAVEATS |
---|
685 | |
---|
686 | \item \indexedcode{Dirichlet_boundary} |
---|
687 | |
---|
688 | \item \indexedcode{Time_boundary} |
---|
689 | |
---|
690 | \item \indexedcode{File_boundary} |
---|
691 | Based on File\_function |
---|
692 | |
---|
693 | \item \indexedcode{} |
---|
694 | |
---|
695 | \item \indexedcode{} |
---|
696 | |
---|
697 | |
---|
698 | \item \indexedcode{User defined boundary conditions.} |
---|
699 | How to roll your own |
---|
700 | |
---|
701 | |
---|
702 | |
---|
703 | \end{itemize} |
---|
704 | |
---|
705 | |
---|
706 | |
---|
707 | \section{Initial Conditions} |
---|
708 | |
---|
709 | \anuga provides a number of predefined initial conditions to be used with |
---|
710 | \code{set_quantity}. |
---|
711 | |
---|
712 | \begin{itemize} |
---|
713 | |
---|
714 | |
---|
715 | \item \indexedcode{tsunami_slump} |
---|
716 | function, arguments |
---|
717 | |
---|
718 | \item \indexedcode{} |
---|
719 | |
---|
720 | \end{itemize} |
---|
721 | |
---|
722 | |
---|
723 | \section{Forcing Functions} |
---|
724 | |
---|
725 | \anuga provides a number of predefined forcing functions to be used with ..... |
---|
726 | |
---|
727 | \begin{itemize} |
---|
728 | |
---|
729 | |
---|
730 | \item \indexedcode{} |
---|
731 | function, arguments |
---|
732 | |
---|
733 | \item \indexedcode{} |
---|
734 | |
---|
735 | \end{itemize} |
---|
736 | |
---|
737 | |
---|
738 | |
---|
739 | |
---|
740 | \chapter{\anuga System Architecture} |
---|
741 | |
---|
742 | From pyvolution/documentation |
---|
743 | |
---|
744 | \section{File Formats} |
---|
745 | |
---|
746 | \chapter{Basic \anuga Assumptions} |
---|
747 | |
---|
748 | (From pyvolution/documentation) |
---|
749 | |
---|
750 | |
---|
751 | Physical model time cannot be earlier than 1 Jan 1970 00:00:00. |
---|
752 | If one wished to recreate scenarios prior to that date it must be done |
---|
753 | using some relative time (e.g. 0). |
---|
754 | |
---|
755 | |
---|
756 | All spatial data relates to the WGS84 datum (or GDA94) and has been |
---|
757 | projected into UTM with false easting of 500000 and false northing of |
---|
758 | 1000000 on the southern hemisphere (0 on the northern). |
---|
759 | |
---|
760 | It is assumed that all computations take place within one UTM zone. |
---|
761 | |
---|
762 | DEMs, meshes and boundary conditions can have different origins within |
---|
763 | one UTM zone. However, the computation will use that of the mesh for |
---|
764 | numerical stability. |
---|
765 | |
---|
766 | |
---|
767 | %OLD |
---|
768 | %The dataflow is: (See data_manager.py and from scenarios) |
---|
769 | % |
---|
770 | % |
---|
771 | %Simulation scenarios |
---|
772 | %--------------------% |
---|
773 | %% |
---|
774 | % |
---|
775 | %Sub directories contain scrips and derived files for each simulation. |
---|
776 | %The directory ../source_data contains large source files such as |
---|
777 | %DEMs provided externally as well as MOST tsunami simulations to be used |
---|
778 | %as boundary conditions. |
---|
779 | % |
---|
780 | %Manual steps are: |
---|
781 | % Creation of DEMs from argcview (.asc + .prj) |
---|
782 | % Creation of mesh from pmesh (.tsh) |
---|
783 | % Creation of tsunami simulations from MOST (.nc) |
---|
784 | %% |
---|
785 | % |
---|
786 | %Typical scripted steps are% |
---|
787 | % |
---|
788 | % prepare_dem.py: Convert asc and prj files supplied by arcview to |
---|
789 | % native dem and pts formats% |
---|
790 | % |
---|
791 | % prepare_pts.py: Convert netcdf output from MOST to an sww file suitable |
---|
792 | % as boundary condition% |
---|
793 | % |
---|
794 | % prepare_mesh.py: Merge DEM (pts) and mesh (tsh) using least squares |
---|
795 | % smoothing. The outputs are tsh files with elevation data.% |
---|
796 | % |
---|
797 | % run_simulation.py: Use the above together with various parameters to |
---|
798 | % run inundation simulation. |
---|
799 | |
---|
800 | |
---|
801 | |
---|
802 | |
---|
803 | \appendix |
---|
804 | |
---|
805 | \chapter{Supporting Tools} |
---|
806 | |
---|
807 | |
---|
808 | \section{caching} |
---|
809 | |
---|
810 | The \code{cache} function is used to provide supervised caching of function results. A Python |
---|
811 | function call of the form |
---|
812 | |
---|
813 | {\scriptsize \begin{verbatim} |
---|
814 | result = func(arg1,...,argn) |
---|
815 | \end{verbatim}} |
---|
816 | |
---|
817 | can be replaced by |
---|
818 | |
---|
819 | {\scriptsize \begin{verbatim} |
---|
820 | from caching import cache |
---|
821 | result = cache(func,(arg1,...,argn)) |
---|
822 | \end{verbatim}} |
---|
823 | |
---|
824 | which returns the same output but reuses cached |
---|
825 | results if the function has been computed previously in the same context. |
---|
826 | \code{result} and the arguments can be simple types, tuples, list, dictionaries or |
---|
827 | objects, but not unhashable types such as functions or open file objects. |
---|
828 | The function \code{func} may be a member function of an object or a module. |
---|
829 | |
---|
830 | This type of caching is particularly useful for computationally intensive |
---|
831 | functions with few frequently used combinations of input arguments. Note that |
---|
832 | if the inputs or output are very large caching might not save time because |
---|
833 | disc access may dominate the execution time. |
---|
834 | |
---|
835 | If the function definition changes after a result has been cached it will be |
---|
836 | detected by examining the functions \code{bytecode (co_code, co_consts, |
---|
837 | func_defualts, co_argcount)} and it will be recomputed. |
---|
838 | |
---|
839 | Options are set |
---|
840 | by means of the function \code{set_option(key, value)}, where \code{key} is a key associated with a |
---|
841 | Python dictionary \code{options} that stores settings such as the name of the directory used, the maximum |
---|
842 | number of cached files allowed, and so on. |
---|
843 | |
---|
844 | The \code{cache} function allows the user also to specify a list of dependent files. If any of these |
---|
845 | have been changed, the function is recomputed and the results stored again. |
---|
846 | |
---|
847 | Other features include support for compression and a capability to \ldots |
---|
848 | |
---|
849 | |
---|
850 | \textbf{USAGE:} |
---|
851 | |
---|
852 | {\scriptsize \begin{verbatim} |
---|
853 | result = cache(func, args, kwargs, dependencies, cachedir, verbose, |
---|
854 | compression, evaluate, test, return_filename)} |
---|
855 | \end{verbatim}} |
---|
856 | |
---|
857 | \textbf{ARGUMENTS:} |
---|
858 | |
---|
859 | \begin{tabular}{ll} |
---|
860 | \code{func} & Function object (Required)\\ |
---|
861 | \code{args} & Arguments to func (Default: ())\\ |
---|
862 | \code{kwargs} & Keyword arguments to func (Default: {}) \\ |
---|
863 | \code{dependencies} & Filenames that func depends on (Default: \code{None})\\ |
---|
864 | \code{cachedir} & Directory for cache files (Default: \code{options['cachedir']})\\ |
---|
865 | \code{verbose} & Flag verbose output to stdout |
---|
866 | (Default: \code{options['verbose']})\\ |
---|
867 | \code{compression} & Flag zlib compression (Default: \code{options['compression']})\\ |
---|
868 | \code{evaluate} & Flag forced evaluation of func (Default: 0)\\ |
---|
869 | \code{test} & Flag test for cached results (Default: 0)\\ |
---|
870 | \code{clear} & Flag delete cached results (Default: 0)\\ |
---|
871 | \code{return_filename} & Flag return of cache filename (Default: 0)\\ |
---|
872 | \end{tabular} |
---|
873 | |
---|
874 | |
---|
875 | \textbf{LIMITATIONS:} |
---|
876 | |
---|
877 | \begin{itemize} |
---|
878 | \item Caching uses the apply function and will work with anything that can be |
---|
879 | pickled, so any limitation in apply or pickle extends to caching. |
---|
880 | |
---|
881 | \item A function to be cached should not depend on global variables |
---|
882 | as wrong results may occur if globals are changed after a result has |
---|
883 | been cached. |
---|
884 | \end{itemize} |
---|
885 | |
---|
886 | |
---|
887 | |
---|
888 | |
---|
889 | \section{swollen} |
---|
890 | |
---|
891 | |
---|
892 | The main keys operating the interactive screen are:\\ |
---|
893 | |
---|
894 | \begin{tabular}{|ll|} \hline |
---|
895 | |
---|
896 | \code{w} & toggle wireframe\\ |
---|
897 | |
---|
898 | space bar & start/stop\\ |
---|
899 | |
---|
900 | up/down arrows & increase/decrease speed\\ |
---|
901 | |
---|
902 | left/right arrows & direction in time \emph{(when running)}\\ & step through simulation \emph{(when stopped)}\\ |
---|
903 | |
---|
904 | left mouse button & rotate\\ |
---|
905 | |
---|
906 | middle mouse button & pan\\ |
---|
907 | |
---|
908 | right mouse button & zoom\\ \hline |
---|
909 | |
---|
910 | \end{tabular} |
---|
911 | |
---|
912 | \vfill |
---|
913 | |
---|
914 | The following table describes how to operate swollen from the command line: |
---|
915 | |
---|
916 | Usage: \code{swollen [options] swwfile \ldots}\\ \nopagebreak |
---|
917 | Options:\\ \nopagebreak |
---|
918 | \begin{tabular}{ll} |
---|
919 | \code{--display <type>} & \code{MONITOR | POWERWALL | REALITY_CENTER |}\\ |
---|
920 | & \code{HEAD_MOUNTED_DISPLAY}\\ |
---|
921 | \code{--rgba} & Request a RGBA colour buffer visual\\ |
---|
922 | \code{--stencil} & Request a stencil buffer visual\\ |
---|
923 | \code{--stereo} & Use default stereo mode which is \code{ANAGLYPHIC} if not \\ |
---|
924 | & overridden by environmental variable\\ |
---|
925 | \code{--stereo <mode>} & \code{ANAGLYPHIC | QUAD_BUFFER | HORIZONTAL_SPLIT |}\\ |
---|
926 | & \code{VERTICAL_SPLIT | LEFT_EYE | RIGHT_EYE |}\\ |
---|
927 | & \code{ON | OFF} \\ |
---|
928 | \code{-alphamax <float 0-1>} & Maximum transparency clamp value\\ |
---|
929 | \code{-alphamin <float 0-1>} & Transparency value at \code{hmin}\\ |
---|
930 | \code{-cullangle <float angle 0-90>} & Cull triangles steeper than this value\\ |
---|
931 | \code{-help} & Display this information\\ |
---|
932 | \code{-hmax <float>} & Height above which transparency is set to |
---|
933 | \code{alphamax}\\ |
---|
934 | \code{-hmin <float>} & Height below which transparency is set to |
---|
935 | zero\\ |
---|
936 | \code{-lightpos <float>,<float>,<float>} & $x,y,z$ of bedslope directional light ($z$ is |
---|
937 | up, default is overhead)\\ |
---|
938 | \code{-loop} & Repeated (looped) playback of \code{.swm} files\\ |
---|
939 | \code{-movie <dirname>} & Save numbered images to named directory and |
---|
940 | quit\\ |
---|
941 | \code{-nosky} & Omit background sky\\ |
---|
942 | \code{-scale <float>} & Vertical scale factor\\ |
---|
943 | \code{-texture <file>} & Image to use for bedslope topography\\ |
---|
944 | \code{-tps <rate>} & Timesteps per second\\ |
---|
945 | \code{-version} & Revision number and creation (not compile) |
---|
946 | date\\ |
---|
947 | \end{tabular} |
---|
948 | |
---|
949 | \section{utilities/polygons} Could do now. |
---|
950 | |
---|
951 | \begin{itemize} |
---|
952 | \item \indexedcode{polygon_function} |
---|
953 | \item \indexedcode{read_polygon} |
---|
954 | \item \indexedcode{populate_polygon} |
---|
955 | \item \indexedcode{point_in_polygon} |
---|
956 | \item \indexedcode{inside_polygon} |
---|
957 | \item \indexedcode{outside_polygon} |
---|
958 | \item \indexedcode{point_on_line} |
---|
959 | \item \indexedcode{separate_points_by_polygon} |
---|
960 | \end{itemize} |
---|
961 | |
---|
962 | |
---|
963 | |
---|
964 | |
---|
965 | |
---|
966 | \section{coordinate_transforms} |
---|
967 | |
---|
968 | \section{geo_spatial_data} |
---|
969 | |
---|
970 | \section{pmesh GUI} |
---|
971 | |
---|
972 | \section{alpha_shape} |
---|
973 | |
---|
974 | |
---|
975 | \section{utilities/numerical_tools} Could do now. |
---|
976 | |
---|
977 | \begin{itemize} |
---|
978 | \item \indexedcode{ensure_numeric} |
---|
979 | \item \indexedcode{mean} |
---|
980 | \item |
---|
981 | \end{itemize} |
---|
982 | |
---|
983 | \chapter{Glossary} |
---|
984 | |
---|
985 | \begin{itemize} |
---|
986 | \item \indexedbold{\anuga} name of software (joint development between ANU and GA) |
---|
987 | |
---|
988 | \item \indexedbold{Conserved quantity} |
---|
989 | |
---|
990 | \item \indexedbold{Default order} is this really needed? |
---|
991 | |
---|
992 | \item \indexedbold{Domain} |
---|
993 | |
---|
994 | \item \indexedbold{Dirichlet boundary} |
---|
995 | |
---|
996 | \item \indexedbold{Elevation} - refers to bathymetry and topography |
---|
997 | |
---|
998 | \item \indexedbold{bathymetry} offshore |
---|
999 | |
---|
1000 | \item \indexedbold{topography} onshore |
---|
1001 | |
---|
1002 | \item \indexedbold{Evolution} integration of the shallow water wave equations over time |
---|
1003 | |
---|
1004 | \item \indexedbold{Forcing term} |
---|
1005 | |
---|
1006 | \item \indexedbold{IDLE} development environment shipped with Python |
---|
1007 | |
---|
1008 | \item \indexedbold{Manning friction coefficient} |
---|
1009 | |
---|
1010 | \item \indexedbold{Mesh} triangulation of domain |
---|
1011 | |
---|
1012 | \item \indexedbold{Grid} evenly spaced |
---|
1013 | |
---|
1014 | \item \indexedbold{NetCDF} |
---|
1015 | |
---|
1016 | \item \indexedbold{pmesh} does this really need to be here? it's a class/module? |
---|
1017 | |
---|
1018 | \item \indexedbold{pyvolution} does this really need to be here? it's a class/module? |
---|
1019 | |
---|
1020 | \item \indexedbold{Quantity} conserved (state, x and y momentum) |
---|
1021 | |
---|
1022 | \item \indexedbold{Reflective boundary} |
---|
1023 | |
---|
1024 | \item \indexedbold{Smoothing} is this really needed? |
---|
1025 | |
---|
1026 | \item \indexedbold{Stage} |
---|
1027 | |
---|
1028 | \item \indexedbold{Swollen} visualisation tool |
---|
1029 | |
---|
1030 | \item \indexedbold{Time boundary} defined in the manual (flog from there) |
---|
1031 | |
---|
1032 | \item \indexedbold{Transmissive boundary} defined in the manual (flog from there) |
---|
1033 | |
---|
1034 | \item \indexedbold{xmomentum} conserved quantity (note, two-dimensional SWW equations say only x and y and NOT z) |
---|
1035 | |
---|
1036 | \item \indexedbold{ymomentum} conserved quantity |
---|
1037 | |
---|
1038 | \item \indexedbold{resolution} refers to the maximal area of each triangular cell in the mesh |
---|
1039 | |
---|
1040 | \item \indexedbold{polygon} A sequence of points in the plane. (Arbitrary polygons can be created |
---|
1041 | in this way ) |
---|
1042 | ANUGA represents polygons as either a list of 2-tuples, where the latter are either Python tuples |
---|
1043 | or Python lists of length 2. The unit square, for example, would be represented by the polygon |
---|
1044 | [ [0,0], [1,0], [1,1], [0,1] ]. Alternatively, polygons can be represented as $N \times 2$ Numeric |
---|
1045 | arrays, where $N$ is the number of points. |
---|
1046 | |
---|
1047 | NOTE: More can be read in the module utilities/polygon.py .... |
---|
1048 | |
---|
1049 | \item \indexedbold{easting} |
---|
1050 | |
---|
1051 | \item \indexedbold{northing} |
---|
1052 | |
---|
1053 | \item \indexedbold{latitude} |
---|
1054 | |
---|
1055 | \item \indexedbold{longitude} |
---|
1056 | |
---|
1057 | \item \indexedbold{edge} |
---|
1058 | |
---|
1059 | \item \indexedbold{vertex} |
---|
1060 | |
---|
1061 | \item \indexedbold{finite volume} |
---|
1062 | |
---|
1063 | \item \indexedbold{flux} |
---|
1064 | |
---|
1065 | \item \indexedbold{Digital Elevation Model (DEM)} |
---|
1066 | |
---|
1067 | |
---|
1068 | \end{itemize} |
---|
1069 | |
---|
1070 | The \code{\e appendix} markup need not be repeated for additional |
---|
1071 | appendices. |
---|
1072 | |
---|
1073 | |
---|
1074 | % |
---|
1075 | % The ugly "%begin{latexonly}" pseudo-environments are really just to |
---|
1076 | % keep LaTeX2HTML quiet during the \renewcommand{} macros; they're |
---|
1077 | % not really valuable. |
---|
1078 | % |
---|
1079 | % If you don't want the Module Index, you can remove all of this up |
---|
1080 | % until the second \input line. |
---|
1081 | % |
---|
1082 | |
---|
1083 | %begin{latexonly} |
---|
1084 | %\renewcommand{\indexname}{Module Index} |
---|
1085 | %end{latexonly} |
---|
1086 | %\input{mod\jobname.ind} % Module Index |
---|
1087 | |
---|
1088 | %begin{latexonly} |
---|
1089 | \renewcommand{\indexname}{Index} |
---|
1090 | %end{latexonly} |
---|
1091 | \input{\jobname.ind} % Index |
---|
1092 | |
---|
1093 | |
---|
1094 | |
---|
1095 | \end{document} |
---|