# # slide_tsunami function # """This function returns a callable object representing an initial water displacement generated by a submarine sediment slide. Using input parameters: Required length downslope slide length depth water depth to slide centre of mass slope bathymetric slope Optional x0 x origin (0) y0 y origin (0) alpha angular orientation of slide in xy plane (0) w slide width (0.25*length) T slide thickness (0.01*length) g acceleration due to gravity (9.8) gamma specific density of sediments (1.85) Cm added mass coefficient (1) Cd drag coefficient (1) Cn friction coefficient (0) psi (0) dx offset of second Gaussian (0.2*width of first Gaussian) kappa multiplier for sech^2 function (3.0) kappad multiplier for second Gaussian function (0.8) zsmall an amount near to zero (0.01) The following parameters are calculated: a0 initial acceleration ut theoretical terminal velocity s0 charactistic distance of motion t0 characteristic time of motion w initial wavelength of tsunami a2D 2D initial amplitude of tsunami a3D 3D initial amplitude of tsunami The returned object is a callable double Gaussian function that represents the initial water displacement generated by a submarine sediment slide. Adrian Hitchman Geoscience Australia, June 2005 """ def slide_tsunami(length, depth, slope, width=None, thickness=None, \ x0=0.0, y0=0.0, alpha=0.0, \ gravity=9.8, gamma=1.85, \ massco=1, dragco=1, frictionco=0, psi=0, \ dx=None, kappa=3.0, kappad=0.8, zsmall=0.01, \ domain=None, verbose=False): from math import sin, tan, radians, pi, sqrt, exp if domain is not None: xllcorner = domain.geo_reference.get_xllcorner() yllcorner = domain.geo_reference.get_yllcorner() x0 = x0 - xllcorner # slump origin (relative) y0 = y0 - yllcorner #if width not provided, set to typical value if width is None: width = 0.25 * length #if thickness not provided, set to typical value if thickness is None: thickness = 0.01 * length #calculate some parameters of the slide sint = sin(radians(slope)) tant = tan(radians(slope)) tanp = tan(radians(psi)) a0 = gravity * sint * ((gamma-1)/(gamma+massco)) * (1-(tanp/tant)) ut = sqrt((gravity*depth) * (length*sint/depth) \ * (pi*(gamma-1)/(2*dragco)) * (1-(tanp/tant))) s0 = ut**2 / a0 t0 = ut / a0 #calculate some parameters of the water displacement produced by the slide w = t0 * sqrt(gravity*depth) a2D = s0 * (0.0574 - (0.0431*sint)) \ * (thickness/length) \ * ((length*sint/depth)**1.25) \ * (1 - exp(-2.2*(gamma-1))) a3D = a2D / (1 + (15.5*sqrt(depth/(length*sint)))) #a few temporary print statements if verbose is True: print '\nThe slide ...' print '\tLength: ', length print '\tDepth: ', depth print '\tSlope: ', slope print '\tWidth: ', width print '\tThickness: ', thickness print '\tx0: ', x0 print '\ty0: ', y0 print '\tAlpha: ', alpha print '\tAcceleration: ', a0 print '\tTerminal velocity: ', ut print '\tChar time: ', t0 print '\tChar distance: ', s0 print '\nThe tsunami ...' print '\tWavelength: ', w print '\t2D amplitude: ', a2D print '\t3D amplitude: ', a3D #keep an eye on some of the assumptions built into the maths if ((slope < 5) or (slope > 30)): if verbose is True: print 'WARNING: slope out of range (5 - 30 degrees) ', slope if ((depth/length < 0.06) or (depth/length > 1.5)): if verbose is True: print 'WARNING: d/b out of range (0.06 - 1.5) ', depth/length if ((thickness/length < 0.008) or (thickness/length > 0.2)): if verbose is True: print 'WARNING: T/b out of range (0.008 - 0.2) ', thickness/length if ((gamma < 1.46) or (gamma > 2.93)): if verbose is True: print 'WARNING: gamma out of range (1.46 - 2.93) ', gamma return Double_gaussian(a3D=a3D, wavelength=w, width=width, \ x0=x0, y0=y0, alpha=alpha, \ dx=dx, kappa=kappa, kappad=kappad, zsmall=zsmall) # # slump_tsunami function # """This function returns a callable object representing an initial water displacement generated by a submarine sediment slump. Using input parameters: Required length downslope slump length depth water depth to slump centre of mass slope bathymetric slope Optional x0 x origin (0) y0 y origin (0) alpha angular orientation of slide in xy plane (0) w slump width (1.0*length) T slump thickness (0.1*length) R slump radius of curvature (b^2/(8*T)) del_phi slump angular displacement (0.48) g acceleration due to gravity (9.8) gamma specific density of sediments (1.85) Cm added mass coefficient (1) Cd drag coefficient (1) Cn friction coefficient (0) dx offset of second Gaussian (0.2*width of first Gaussian) kappa multiplier for sech^2 function (3.0) kappad multiplier for second Gaussian function (0.8) zsmall an amount near to zero (0.01) The following parameters are calculated: a0 initial acceleration um maximum velocity s0 charactistic distance of motion t0 characteristic time of motion w initial wavelength of tsunami a2D 2D initial amplitude of tsunami a3D 3D initial amplitude of tsunami The returned object is a callable double Gaussian function that represents the initial water displacement generated by a submarine sediment slump. Adrian Hitchman Geoscience Australia, June 2005 """ def slump_tsunami(length, depth, slope, width=None, thickness=None, \ radius=None, dphi=0.48, x0=0.0, y0=0.0, alpha=0.0, \ gravity=9.8, gamma=1.85, \ massco=1, dragco=1, frictionco=0, \ dx=None, kappa=3.0, kappad=0.8, zsmall=0.01, \ domain=None, verbose=False): from math import sin, radians, sqrt if domain is not None: xllcorner = domain.geo_reference.get_xllcorner() yllcorner = domain.geo_reference.get_yllcorner() x0 = x0 - xllcorner # slump origin (relative) y0 = y0 - yllcorner #if width not provided, set to typical value if width is None: width = length #if thickness not provided, set to typical value if thickness is None: thickness = 0.1 * length #if radius not provided, set to typical value if radius is None: radius = length**2 / (8.0 * thickness) #calculate some parameters of the slump sint = sin(radians(slope)) s0 = radius * dphi / 2 t0 = sqrt((radius*(gamma+massco)) / (gravity*(gamma-1))) a0 = s0 / t0**2 um = s0 / t0 #calculate some parameters of the water displacement produced by the slump w = t0 * sqrt(gravity*depth) a2D = s0 * (0.131/sint) \ * (thickness/length) \ * (length*sint/depth)**1.25 \ * (length/radius)**0.63 * dphi**0.39 \ * (1.47 - (0.35*(gamma-1))) * (gamma-1) a3D = a2D / (1 + (2.06*sqrt(depth/length))) #a few temporary print statements if verbose is True: print '\nThe slump ...' print '\tLength: ', length print '\tDepth: ', depth print '\tSlope: ', slope print '\tWidth: ', width print '\tThickness: ', thickness print '\tRadius: ', radius print '\tDphi: ', dphi print '\tx0: ', x0 print '\ty0: ', y0 print '\tAlpha: ', alpha print '\tAcceleration: ', a0 print '\tMaximum velocity: ', um print '\tChar time: ', t0 print '\tChar distance: ', s0 print '\nThe tsunami ...' print '\tWavelength: ', w print '\t2D amplitude: ', a2D print '\t3D amplitude: ', a3D #keep an eye on some of the assumptions built into the maths if ((slope < 10) or (slope > 30)): if verbose is True: print 'WARNING: slope out of range (10 - 30 degrees) ', slope if ((depth/length < 0.34) or (depth/length > 0.5)): if verbose is True: print 'WARNING: d/b out of range (0.34 - 0.5) ', depth/length if ((thickness/length < 0.10) or (thickness/length > 0.15)): if verbose is True: print 'WARNING: T/b out of range (0.10 - 0.15) ', thickness/length if ((radius/length < 1.0) or (radius/length > 2.0)): if verbose is True: print 'WARNING: R/b out of range (1 - 2) ', radius/length if ((dphi < 0.10) or (dphi > 0.52)): if verbose is True: print 'WARNING: del_phi out of range (0.10 - 0.52) ', dphi if ((gamma < 1.46) or (gamma > 2.93)): if verbose is True: print 'WARNING: gamma out of range (1.46 - 2.93) ', gamma return Double_gaussian(a3D=a3D, wavelength=w, width=width, \ x0=x0, y0=y0, alpha=alpha, \ dx=dx, kappa=kappa, kappad=kappad, zsmall=zsmall) # # Double_gaussian class # """This is a callable class representing the initial water displacment generated by a sediment slide or slump. Using input parameters: Required w initial wavelength of tsunami a3D 3D initial amplitude of tsunami width width of smf Optional x0 x origin of smf y0 y origin of smf alpha angular orientation of smf in xy plane (0) dx offset of second Gaussian (0.2*width of first Gaussian) kappa multiplier for sech^2 function (3.0) kappad multiplier for second Gaussian function (0.8) zsmall an amount near to zero (0.01) Adrian Hitchman Geoscience Australia, June 2005 """ class Double_gaussian: def __init__(self, a3D, wavelength, width, x0, y0, alpha, \ dx, kappa, kappad, zsmall): self.a3D = a3D self.wavelength = wavelength self.width = width self.x0 = x0 self.y0 = y0 self.alpha = alpha self.kappa = kappa self.kappad = kappad if dx is None: self.determineDX(zsmall=zsmall) else: self.dx = dx def __call__(self, x, y): """Make Double_gaussian a callable object. If called as a function, this object returns z values representing the initial 3D distribution of water heights at the points (x,y) produced by a submarine mass failure. """ from math import sin, cos, radians, exp, cosh from Numeric import zeros, Float #ensure vectors x and y have the same length N = len(x) assert N == len(y) am = self.a3D wa = self.wavelength wi = self.width x0 = self.x0 y0 = self.y0 alpha = self.alpha dx = self.dx kappa = self.kappa kappad = self.kappad #double Gaussian calculation assumes water displacement is oriented #E-W, so, for displacement at some angle alpha clockwise from the E-W #direction, rotate (x,y) coordinates anti-clockwise by alpha cosa = cos(radians(alpha)) sina = sin(radians(alpha)) xr = ((x-x0) * cosa - (y-y0) * sina) + x0 yr = ((x-x0) * sina + (y-y0) * cosa) + y0 z = zeros(N, Float) for i in range(N): try: z[i] = -am / ((cosh(kappa*(yr[i]-y0)/(wi+wa)))**2) \ * (exp(-((xr[i]-x0)/wa)**2) - \ kappad*exp(-((xr[i]-dx-x0)/wa)**2)) except OverflowError: pass return z def determineDX(self, zsmall): """Determine a suitable offset for the second Gaussian function. A suitable offset for the second Gaussian function is taken to be some fraction of the 'width' of the first Gaussian function. The 'width' of the first Gaussian is obtained from the range of the x coordinates over which the function takes values from 'near zero', through 1, and back to 'near zero'. The parameter zsmall passed to this function specifies how much 'near zero' is. """ from math import sqrt, log, e a = self.a3D c = self.wavelength self.dx = 2.0 * (c * sqrt(-log((zsmall/a),e))) / 5.0