1 | #!/usr/bin/env python |
---|
2 | |
---|
3 | |
---|
4 | import unittest |
---|
5 | from Numeric import zeros, array, allclose, Float |
---|
6 | from math import sqrt, pi |
---|
7 | |
---|
8 | from util import * |
---|
9 | from config import epsilon |
---|
10 | from data_manager import timefile2netcdf |
---|
11 | |
---|
12 | |
---|
13 | def test_function(x, y): |
---|
14 | return x+y |
---|
15 | |
---|
16 | class Test_Util(unittest.TestCase): |
---|
17 | def setUp(self): |
---|
18 | pass |
---|
19 | |
---|
20 | def tearDown(self): |
---|
21 | pass |
---|
22 | |
---|
23 | |
---|
24 | |
---|
25 | |
---|
26 | #Geometric |
---|
27 | #def test_distance(self): |
---|
28 | # from util import distance# |
---|
29 | # |
---|
30 | # self.failUnless( distance([4,2],[7,6]) == 5.0, |
---|
31 | # 'Distance is wrong!') |
---|
32 | # self.failUnless( allclose(distance([7,6],[9,8]), 2.82842712475), |
---|
33 | # 'distance is wrong!') |
---|
34 | # self.failUnless( allclose(distance([9,8],[4,2]), 7.81024967591), |
---|
35 | # 'distance is wrong!') |
---|
36 | # |
---|
37 | # self.failUnless( distance([9,8],[4,2]) == distance([4,2],[9,8]), |
---|
38 | # 'distance is wrong!') |
---|
39 | |
---|
40 | |
---|
41 | def test_file_function_time1(self): |
---|
42 | """Test that File function interpolates correctly |
---|
43 | between given times. No x,y dependency here. |
---|
44 | """ |
---|
45 | |
---|
46 | #Write file |
---|
47 | import os, time |
---|
48 | from config import time_format |
---|
49 | from math import sin, pi |
---|
50 | |
---|
51 | #Typical ASCII file |
---|
52 | finaltime = 1200 |
---|
53 | filename = 'test_file_function' |
---|
54 | fid = open(filename + '.txt', 'w') |
---|
55 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
56 | dt = 60 #One minute intervals |
---|
57 | t = 0.0 |
---|
58 | while t <= finaltime: |
---|
59 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
60 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
61 | t += dt |
---|
62 | |
---|
63 | fid.close() |
---|
64 | |
---|
65 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
66 | timefile2netcdf(filename) |
---|
67 | |
---|
68 | |
---|
69 | #Create file function from time series |
---|
70 | F = file_function(filename + '.tms', |
---|
71 | quantities = ['Attribute0', |
---|
72 | 'Attribute1', |
---|
73 | 'Attribute2']) |
---|
74 | |
---|
75 | #Now try interpolation |
---|
76 | for i in range(20): |
---|
77 | t = i*10 |
---|
78 | q = F(t) |
---|
79 | |
---|
80 | #Exact linear intpolation |
---|
81 | assert allclose(q[0], 2*t) |
---|
82 | if i%6 == 0: |
---|
83 | assert allclose(q[1], t**2) |
---|
84 | assert allclose(q[2], sin(t*pi/600)) |
---|
85 | |
---|
86 | #Check non-exact |
---|
87 | |
---|
88 | t = 90 #Halfway between 60 and 120 |
---|
89 | q = F(t) |
---|
90 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
91 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
92 | |
---|
93 | |
---|
94 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
95 | q = F(t) |
---|
96 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
97 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
98 | |
---|
99 | os.remove(filename + '.txt') |
---|
100 | os.remove(filename + '.tms') |
---|
101 | |
---|
102 | |
---|
103 | |
---|
104 | def test_spatio_temporal_file_function(self): |
---|
105 | """Test that spatio temporal file function performs the correct |
---|
106 | interpolations in both time and space |
---|
107 | NetCDF version (x,y,t dependency) |
---|
108 | """ |
---|
109 | import time |
---|
110 | |
---|
111 | #Create sww file of simple propagation from left to right |
---|
112 | #through rectangular domain |
---|
113 | from shallow_water import Domain, Dirichlet_boundary |
---|
114 | from mesh_factory import rectangular |
---|
115 | from Numeric import take, concatenate, reshape |
---|
116 | |
---|
117 | #Create basic mesh and shallow water domain |
---|
118 | points, vertices, boundary = rectangular(3, 3) |
---|
119 | domain1 = Domain(points, vertices, boundary) |
---|
120 | |
---|
121 | from utilities.numerical_tools import mean |
---|
122 | domain1.reduction = mean |
---|
123 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
124 | # only one value. |
---|
125 | |
---|
126 | domain1.default_order = 2 |
---|
127 | domain1.store = True |
---|
128 | domain1.set_datadir('.') |
---|
129 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
130 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
131 | |
---|
132 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
133 | domain1.set_quantity('elevation', 0) |
---|
134 | domain1.set_quantity('friction', 0) |
---|
135 | domain1.set_quantity('stage', 0) |
---|
136 | |
---|
137 | # Boundary conditions |
---|
138 | B0 = Dirichlet_boundary([0,0,0]) |
---|
139 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
140 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
141 | domain1.check_integrity() |
---|
142 | |
---|
143 | finaltime = 8 |
---|
144 | #Evolution |
---|
145 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
146 | pass |
---|
147 | #domain1.write_time() |
---|
148 | |
---|
149 | |
---|
150 | #Now read data from sww and check |
---|
151 | from Scientific.IO.NetCDF import NetCDFFile |
---|
152 | filename = domain1.get_name() + '.' + domain1.format |
---|
153 | fid = NetCDFFile(filename) |
---|
154 | |
---|
155 | x = fid.variables['x'][:] |
---|
156 | y = fid.variables['y'][:] |
---|
157 | stage = fid.variables['stage'][:] |
---|
158 | xmomentum = fid.variables['xmomentum'][:] |
---|
159 | ymomentum = fid.variables['ymomentum'][:] |
---|
160 | time = fid.variables['time'][:] |
---|
161 | |
---|
162 | #Take stage vertex values at last timestep on diagonal |
---|
163 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
164 | |
---|
165 | timestep = len(time)-1 #Last timestep |
---|
166 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
167 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
168 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
169 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
170 | |
---|
171 | #Reference interpolated values at midpoints on diagonal at |
---|
172 | #this timestep are |
---|
173 | r0 = (D[0] + D[1])/2 |
---|
174 | r1 = (D[1] + D[2])/2 |
---|
175 | r2 = (D[2] + D[3])/2 |
---|
176 | |
---|
177 | #And the midpoints are found now |
---|
178 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
179 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
180 | |
---|
181 | diag = concatenate( (Dx, Dy), axis=1) |
---|
182 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
183 | |
---|
184 | #Let us see if the file function can find the correct |
---|
185 | #values at the midpoints at the last timestep: |
---|
186 | f = file_function(filename, domain1, |
---|
187 | interpolation_points = d_midpoints) |
---|
188 | |
---|
189 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
190 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
191 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
192 | |
---|
193 | |
---|
194 | ################## |
---|
195 | #Now do the same for the first timestep |
---|
196 | |
---|
197 | timestep = 0 #First timestep |
---|
198 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
199 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
200 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
201 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
202 | |
---|
203 | #Reference interpolated values at midpoints on diagonal at |
---|
204 | #this timestep are |
---|
205 | r0 = (D[0] + D[1])/2 |
---|
206 | r1 = (D[1] + D[2])/2 |
---|
207 | r2 = (D[2] + D[3])/2 |
---|
208 | |
---|
209 | #Let us see if the file function can find the correct |
---|
210 | #values |
---|
211 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
212 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
213 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
214 | |
---|
215 | |
---|
216 | ################## |
---|
217 | #Now do it again for a timestep in the middle |
---|
218 | |
---|
219 | timestep = 33 |
---|
220 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
221 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
222 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
223 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
224 | |
---|
225 | #Reference interpolated values at midpoints on diagonal at |
---|
226 | #this timestep are |
---|
227 | r0 = (D[0] + D[1])/2 |
---|
228 | r1 = (D[1] + D[2])/2 |
---|
229 | r2 = (D[2] + D[3])/2 |
---|
230 | |
---|
231 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
232 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
233 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
234 | |
---|
235 | |
---|
236 | ################## |
---|
237 | #Now check temporal interpolation |
---|
238 | #Halfway between timestep 15 and 16 |
---|
239 | |
---|
240 | timestep = 15 |
---|
241 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
242 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
243 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
244 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
245 | |
---|
246 | #Reference interpolated values at midpoints on diagonal at |
---|
247 | #this timestep are |
---|
248 | r0_0 = (D[0] + D[1])/2 |
---|
249 | r1_0 = (D[1] + D[2])/2 |
---|
250 | r2_0 = (D[2] + D[3])/2 |
---|
251 | |
---|
252 | # |
---|
253 | timestep = 16 |
---|
254 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
255 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
256 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
257 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
258 | |
---|
259 | #Reference interpolated values at midpoints on diagonal at |
---|
260 | #this timestep are |
---|
261 | r0_1 = (D[0] + D[1])/2 |
---|
262 | r1_1 = (D[1] + D[2])/2 |
---|
263 | r2_1 = (D[2] + D[3])/2 |
---|
264 | |
---|
265 | # The reference values are |
---|
266 | r0 = (r0_0 + r0_1)/2 |
---|
267 | r1 = (r1_0 + r1_1)/2 |
---|
268 | r2 = (r2_0 + r2_1)/2 |
---|
269 | |
---|
270 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
271 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
272 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
273 | |
---|
274 | ################## |
---|
275 | #Finally check interpolation 2 thirds of the way |
---|
276 | #between timestep 15 and 16 |
---|
277 | |
---|
278 | # The reference values are |
---|
279 | r0 = (r0_0 + 2*r0_1)/3 |
---|
280 | r1 = (r1_0 + 2*r1_1)/3 |
---|
281 | r2 = (r2_0 + 2*r2_1)/3 |
---|
282 | |
---|
283 | #And the file function gives |
---|
284 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
285 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
286 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
287 | |
---|
288 | fid.close() |
---|
289 | import os |
---|
290 | os.remove(filename) |
---|
291 | |
---|
292 | |
---|
293 | |
---|
294 | def test_spatio_temporal_file_function_different_origin(self): |
---|
295 | """Test that spatio temporal file function performs the correct |
---|
296 | interpolations in both time and space where space is offset by |
---|
297 | xllcorner and yllcorner |
---|
298 | NetCDF version (x,y,t dependency) |
---|
299 | """ |
---|
300 | import time |
---|
301 | |
---|
302 | #Create sww file of simple propagation from left to right |
---|
303 | #through rectangular domain |
---|
304 | from shallow_water import Domain, Dirichlet_boundary |
---|
305 | from mesh_factory import rectangular |
---|
306 | from Numeric import take, concatenate, reshape |
---|
307 | |
---|
308 | |
---|
309 | from coordinate_transforms.geo_reference import Geo_reference |
---|
310 | xllcorner = 2048 |
---|
311 | yllcorner = 11000 |
---|
312 | zone = 2 |
---|
313 | |
---|
314 | #Create basic mesh and shallow water domain |
---|
315 | points, vertices, boundary = rectangular(3, 3) |
---|
316 | domain1 = Domain(points, vertices, boundary, |
---|
317 | geo_reference = Geo_reference(xllcorner = xllcorner, |
---|
318 | yllcorner = yllcorner)) |
---|
319 | |
---|
320 | |
---|
321 | from utilities.numerical_tools import mean |
---|
322 | domain1.reduction = mean |
---|
323 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
324 | # only one value. |
---|
325 | |
---|
326 | domain1.default_order = 2 |
---|
327 | domain1.store = True |
---|
328 | domain1.set_datadir('.') |
---|
329 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
330 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
331 | |
---|
332 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
333 | domain1.set_quantity('elevation', 0) |
---|
334 | domain1.set_quantity('friction', 0) |
---|
335 | domain1.set_quantity('stage', 0) |
---|
336 | |
---|
337 | # Boundary conditions |
---|
338 | B0 = Dirichlet_boundary([0,0,0]) |
---|
339 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
340 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
341 | domain1.check_integrity() |
---|
342 | |
---|
343 | finaltime = 8 |
---|
344 | #Evolution |
---|
345 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
346 | pass |
---|
347 | #domain1.write_time() |
---|
348 | |
---|
349 | |
---|
350 | #Now read data from sww and check |
---|
351 | from Scientific.IO.NetCDF import NetCDFFile |
---|
352 | filename = domain1.get_name() + '.' + domain1.format |
---|
353 | fid = NetCDFFile(filename) |
---|
354 | |
---|
355 | x = fid.variables['x'][:] |
---|
356 | y = fid.variables['y'][:] |
---|
357 | stage = fid.variables['stage'][:] |
---|
358 | xmomentum = fid.variables['xmomentum'][:] |
---|
359 | ymomentum = fid.variables['ymomentum'][:] |
---|
360 | time = fid.variables['time'][:] |
---|
361 | |
---|
362 | #Take stage vertex values at last timestep on diagonal |
---|
363 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
364 | |
---|
365 | timestep = len(time)-1 #Last timestep |
---|
366 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
367 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
368 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
369 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
370 | |
---|
371 | #Reference interpolated values at midpoints on diagonal at |
---|
372 | #this timestep are |
---|
373 | r0 = (D[0] + D[1])/2 |
---|
374 | r1 = (D[1] + D[2])/2 |
---|
375 | r2 = (D[2] + D[3])/2 |
---|
376 | |
---|
377 | #And the midpoints are found now |
---|
378 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
379 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
380 | |
---|
381 | diag = concatenate( (Dx, Dy), axis=1) |
---|
382 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
383 | |
---|
384 | |
---|
385 | #Adjust for georef - make interpolation points absolute |
---|
386 | d_midpoints[:,0] += xllcorner |
---|
387 | d_midpoints[:,1] += yllcorner |
---|
388 | |
---|
389 | #Let us see if the file function can find the correct |
---|
390 | #values at the midpoints at the last timestep: |
---|
391 | f = file_function(filename, domain1, |
---|
392 | interpolation_points = d_midpoints) |
---|
393 | |
---|
394 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
395 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
396 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
397 | |
---|
398 | |
---|
399 | ################## |
---|
400 | #Now do the same for the first timestep |
---|
401 | |
---|
402 | timestep = 0 #First timestep |
---|
403 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
404 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
405 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
406 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
407 | |
---|
408 | #Reference interpolated values at midpoints on diagonal at |
---|
409 | #this timestep are |
---|
410 | r0 = (D[0] + D[1])/2 |
---|
411 | r1 = (D[1] + D[2])/2 |
---|
412 | r2 = (D[2] + D[3])/2 |
---|
413 | |
---|
414 | #Let us see if the file function can find the correct |
---|
415 | #values |
---|
416 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
417 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
418 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
419 | |
---|
420 | |
---|
421 | ################## |
---|
422 | #Now do it again for a timestep in the middle |
---|
423 | |
---|
424 | timestep = 33 |
---|
425 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
426 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
427 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
428 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
429 | |
---|
430 | #Reference interpolated values at midpoints on diagonal at |
---|
431 | #this timestep are |
---|
432 | r0 = (D[0] + D[1])/2 |
---|
433 | r1 = (D[1] + D[2])/2 |
---|
434 | r2 = (D[2] + D[3])/2 |
---|
435 | |
---|
436 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
437 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
438 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
439 | |
---|
440 | |
---|
441 | ################## |
---|
442 | #Now check temporal interpolation |
---|
443 | #Halfway between timestep 15 and 16 |
---|
444 | |
---|
445 | timestep = 15 |
---|
446 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
447 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
448 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
449 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
450 | |
---|
451 | #Reference interpolated values at midpoints on diagonal at |
---|
452 | #this timestep are |
---|
453 | r0_0 = (D[0] + D[1])/2 |
---|
454 | r1_0 = (D[1] + D[2])/2 |
---|
455 | r2_0 = (D[2] + D[3])/2 |
---|
456 | |
---|
457 | # |
---|
458 | timestep = 16 |
---|
459 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
460 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
461 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
462 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
463 | |
---|
464 | #Reference interpolated values at midpoints on diagonal at |
---|
465 | #this timestep are |
---|
466 | r0_1 = (D[0] + D[1])/2 |
---|
467 | r1_1 = (D[1] + D[2])/2 |
---|
468 | r2_1 = (D[2] + D[3])/2 |
---|
469 | |
---|
470 | # The reference values are |
---|
471 | r0 = (r0_0 + r0_1)/2 |
---|
472 | r1 = (r1_0 + r1_1)/2 |
---|
473 | r2 = (r2_0 + r2_1)/2 |
---|
474 | |
---|
475 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
476 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
477 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
478 | |
---|
479 | ################## |
---|
480 | #Finally check interpolation 2 thirds of the way |
---|
481 | #between timestep 15 and 16 |
---|
482 | |
---|
483 | # The reference values are |
---|
484 | r0 = (r0_0 + 2*r0_1)/3 |
---|
485 | r1 = (r1_0 + 2*r1_1)/3 |
---|
486 | r2 = (r2_0 + 2*r2_1)/3 |
---|
487 | |
---|
488 | #And the file function gives |
---|
489 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
490 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
491 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
492 | |
---|
493 | fid.close() |
---|
494 | import os |
---|
495 | os.remove(filename) |
---|
496 | |
---|
497 | |
---|
498 | |
---|
499 | |
---|
500 | def test_spatio_temporal_file_function_time(self): |
---|
501 | """Test that File function interpolates correctly |
---|
502 | between given times. |
---|
503 | NetCDF version (x,y,t dependency) |
---|
504 | """ |
---|
505 | |
---|
506 | #Create NetCDF (sww) file to be read |
---|
507 | # x: 0, 5, 10, 15 |
---|
508 | # y: -20, -10, 0, 10 |
---|
509 | # t: 0, 60, 120, ...., 1200 |
---|
510 | # |
---|
511 | # test quantities (arbitrary but non-trivial expressions): |
---|
512 | # |
---|
513 | # stage = 3*x - y**2 + 2*t |
---|
514 | # xmomentum = exp( -((x-7)**2 + (y+5)**2)/20 ) * t**2 |
---|
515 | # ymomentum = x**2 + y**2 * sin(t*pi/600) |
---|
516 | |
---|
517 | #NOTE: Nice test that may render some of the others redundant. |
---|
518 | |
---|
519 | import os, time |
---|
520 | from config import time_format |
---|
521 | from Numeric import sin, pi, exp |
---|
522 | from mesh_factory import rectangular |
---|
523 | from shallow_water import Domain |
---|
524 | import data_manager |
---|
525 | |
---|
526 | finaltime = 1200 |
---|
527 | filename = 'test_file_function' |
---|
528 | |
---|
529 | #Create a domain to hold test grid |
---|
530 | #(0:15, -20:10) |
---|
531 | points, vertices, boundary =\ |
---|
532 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
533 | |
---|
534 | |
---|
535 | #print 'Number of elements', len(vertices) |
---|
536 | domain = Domain(points, vertices, boundary) |
---|
537 | domain.smooth = False |
---|
538 | domain.default_order = 2 |
---|
539 | domain.set_datadir('.') |
---|
540 | domain.set_name(filename) |
---|
541 | domain.store = True |
---|
542 | domain.format = 'sww' #Native netcdf visualisation format |
---|
543 | |
---|
544 | #print points |
---|
545 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
546 | domain.starttime = start |
---|
547 | |
---|
548 | |
---|
549 | #Store structure |
---|
550 | domain.initialise_storage() |
---|
551 | |
---|
552 | #Compute artificial time steps and store |
---|
553 | dt = 60 #One minute intervals |
---|
554 | t = 0.0 |
---|
555 | while t <= finaltime: |
---|
556 | #Compute quantities |
---|
557 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
558 | domain.set_quantity('stage', f1) |
---|
559 | |
---|
560 | f2 = lambda x,y: x+y+t**2 |
---|
561 | domain.set_quantity('xmomentum', f2) |
---|
562 | |
---|
563 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
564 | domain.set_quantity('ymomentum', f3) |
---|
565 | |
---|
566 | #Store and advance time |
---|
567 | domain.time = t |
---|
568 | domain.store_timestep(domain.conserved_quantities) |
---|
569 | t += dt |
---|
570 | |
---|
571 | |
---|
572 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5]] |
---|
573 | |
---|
574 | |
---|
575 | |
---|
576 | #Deliberately set domain.starttime to too early |
---|
577 | domain.starttime = start - 1 |
---|
578 | |
---|
579 | #Create file function |
---|
580 | F = file_function(filename + '.sww', domain, |
---|
581 | quantities = domain.conserved_quantities, |
---|
582 | interpolation_points = interpolation_points) |
---|
583 | |
---|
584 | #Check that FF updates fixes domain starttime |
---|
585 | assert allclose(domain.starttime, start) |
---|
586 | |
---|
587 | #Check that domain.starttime isn't updated if later |
---|
588 | domain.starttime = start + 1 |
---|
589 | F = file_function(filename + '.sww', domain, |
---|
590 | quantities = domain.conserved_quantities, |
---|
591 | interpolation_points = interpolation_points) |
---|
592 | assert allclose(domain.starttime, start+1) |
---|
593 | domain.starttime = start |
---|
594 | |
---|
595 | |
---|
596 | #Check linear interpolation in time |
---|
597 | F = file_function(filename + '.sww', domain, |
---|
598 | quantities = domain.conserved_quantities, |
---|
599 | interpolation_points = interpolation_points) |
---|
600 | for id in range(len(interpolation_points)): |
---|
601 | x = interpolation_points[id][0] |
---|
602 | y = interpolation_points[id][1] |
---|
603 | |
---|
604 | for i in range(20): |
---|
605 | t = i*10 |
---|
606 | k = i%6 |
---|
607 | |
---|
608 | if k == 0: |
---|
609 | q0 = F(t, point_id=id) |
---|
610 | q1 = F(t+60, point_id=id) |
---|
611 | |
---|
612 | |
---|
613 | q = F(t, point_id=id) |
---|
614 | #print i, k, t, q |
---|
615 | #print ' ', q0 |
---|
616 | #print ' ', q1 |
---|
617 | #print 's', (k*q1 + (6-k)*q0)/6 |
---|
618 | #print |
---|
619 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
620 | |
---|
621 | |
---|
622 | #Another check of linear interpolation in time |
---|
623 | for id in range(len(interpolation_points)): |
---|
624 | q60 = F(60, point_id=id) |
---|
625 | q120 = F(120, point_id=id) |
---|
626 | |
---|
627 | t = 90 #Halfway between 60 and 120 |
---|
628 | q = F(t, point_id=id) |
---|
629 | assert allclose( (q120+q60)/2, q ) |
---|
630 | |
---|
631 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
632 | q = F(t, point_id=id) |
---|
633 | assert allclose(q60/3 + 2*q120/3, q) |
---|
634 | |
---|
635 | |
---|
636 | |
---|
637 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
638 | #than file end time |
---|
639 | delta = 23 |
---|
640 | domain.starttime = start + delta |
---|
641 | F = file_function(filename + '.sww', domain, |
---|
642 | quantities = domain.conserved_quantities, |
---|
643 | interpolation_points = interpolation_points) |
---|
644 | assert allclose(domain.starttime, start+delta) |
---|
645 | |
---|
646 | |
---|
647 | |
---|
648 | |
---|
649 | #Now try interpolation with delta offset |
---|
650 | for id in range(len(interpolation_points)): |
---|
651 | x = interpolation_points[id][0] |
---|
652 | y = interpolation_points[id][1] |
---|
653 | |
---|
654 | for i in range(20): |
---|
655 | t = i*10 |
---|
656 | k = i%6 |
---|
657 | |
---|
658 | if k == 0: |
---|
659 | q0 = F(t-delta, point_id=id) |
---|
660 | q1 = F(t+60-delta, point_id=id) |
---|
661 | |
---|
662 | q = F(t-delta, point_id=id) |
---|
663 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
664 | |
---|
665 | |
---|
666 | os.remove(filename + '.sww') |
---|
667 | |
---|
668 | |
---|
669 | |
---|
670 | def test_file_function_time_with_domain(self): |
---|
671 | """Test that File function interpolates correctly |
---|
672 | between given times. No x,y dependency here. |
---|
673 | Use domain with starttime |
---|
674 | """ |
---|
675 | |
---|
676 | #Write file |
---|
677 | import os, time, calendar |
---|
678 | from config import time_format |
---|
679 | from math import sin, pi |
---|
680 | from domain import Domain |
---|
681 | |
---|
682 | finaltime = 1200 |
---|
683 | filename = 'test_file_function' |
---|
684 | fid = open(filename + '.txt', 'w') |
---|
685 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
686 | dt = 60 #One minute intervals |
---|
687 | t = 0.0 |
---|
688 | while t <= finaltime: |
---|
689 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
690 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
691 | t += dt |
---|
692 | |
---|
693 | fid.close() |
---|
694 | |
---|
695 | |
---|
696 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
697 | timefile2netcdf(filename) |
---|
698 | |
---|
699 | |
---|
700 | |
---|
701 | a = [0.0, 0.0] |
---|
702 | b = [4.0, 0.0] |
---|
703 | c = [0.0, 3.0] |
---|
704 | |
---|
705 | points = [a, b, c] |
---|
706 | vertices = [[0,1,2]] |
---|
707 | domain = Domain(points, vertices) |
---|
708 | |
---|
709 | #Check that domain.starttime is updated if non-existing |
---|
710 | F = file_function(filename + '.tms', domain) |
---|
711 | |
---|
712 | assert allclose(domain.starttime, start) |
---|
713 | |
---|
714 | #Check that domain.starttime is updated if too early |
---|
715 | domain.starttime = start - 1 |
---|
716 | F = file_function(filename + '.tms', domain) |
---|
717 | assert allclose(domain.starttime, start) |
---|
718 | |
---|
719 | #Check that domain.starttime isn't updated if later |
---|
720 | domain.starttime = start + 1 |
---|
721 | F = file_function(filename + '.tms', domain) |
---|
722 | assert allclose(domain.starttime, start+1) |
---|
723 | |
---|
724 | domain.starttime = start |
---|
725 | F = file_function(filename + '.tms', domain, |
---|
726 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
727 | |
---|
728 | |
---|
729 | #print F.T |
---|
730 | #print F.precomputed_values |
---|
731 | #print 'F(60)', F(60) |
---|
732 | |
---|
733 | #Now try interpolation |
---|
734 | for i in range(20): |
---|
735 | t = i*10 |
---|
736 | q = F(t) |
---|
737 | |
---|
738 | #Exact linear intpolation |
---|
739 | assert allclose(q[0], 2*t) |
---|
740 | if i%6 == 0: |
---|
741 | assert allclose(q[1], t**2) |
---|
742 | assert allclose(q[2], sin(t*pi/600)) |
---|
743 | |
---|
744 | #Check non-exact |
---|
745 | |
---|
746 | t = 90 #Halfway between 60 and 120 |
---|
747 | q = F(t) |
---|
748 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
749 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
750 | |
---|
751 | |
---|
752 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
753 | q = F(t) |
---|
754 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
755 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
756 | |
---|
757 | os.remove(filename + '.tms') |
---|
758 | os.remove(filename + '.txt') |
---|
759 | |
---|
760 | def test_file_function_time_with_domain_different_start(self): |
---|
761 | """Test that File function interpolates correctly |
---|
762 | between given times. No x,y dependency here. |
---|
763 | Use domain with a starttime later than that of file |
---|
764 | |
---|
765 | ASCII version |
---|
766 | """ |
---|
767 | |
---|
768 | #Write file |
---|
769 | import os, time, calendar |
---|
770 | from config import time_format |
---|
771 | from math import sin, pi |
---|
772 | from domain import Domain |
---|
773 | |
---|
774 | finaltime = 1200 |
---|
775 | filename = 'test_file_function' |
---|
776 | fid = open(filename + '.txt', 'w') |
---|
777 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
778 | dt = 60 #One minute intervals |
---|
779 | t = 0.0 |
---|
780 | while t <= finaltime: |
---|
781 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
782 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
783 | t += dt |
---|
784 | |
---|
785 | fid.close() |
---|
786 | |
---|
787 | #Convert ASCII file to NetCDF (Which is what we really like!) |
---|
788 | timefile2netcdf(filename) |
---|
789 | |
---|
790 | a = [0.0, 0.0] |
---|
791 | b = [4.0, 0.0] |
---|
792 | c = [0.0, 3.0] |
---|
793 | |
---|
794 | points = [a, b, c] |
---|
795 | vertices = [[0,1,2]] |
---|
796 | domain = Domain(points, vertices) |
---|
797 | |
---|
798 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
799 | #than file end time |
---|
800 | delta = 23 |
---|
801 | domain.starttime = start + delta |
---|
802 | F = file_function(filename + '.tms', domain, |
---|
803 | quantities = ['Attribute0', 'Attribute1', 'Attribute2']) |
---|
804 | assert allclose(domain.starttime, start+delta) |
---|
805 | |
---|
806 | |
---|
807 | |
---|
808 | |
---|
809 | #Now try interpolation with delta offset |
---|
810 | for i in range(20): |
---|
811 | t = i*10 |
---|
812 | q = F(t-delta) |
---|
813 | |
---|
814 | #Exact linear intpolation |
---|
815 | assert allclose(q[0], 2*t) |
---|
816 | if i%6 == 0: |
---|
817 | assert allclose(q[1], t**2) |
---|
818 | assert allclose(q[2], sin(t*pi/600)) |
---|
819 | |
---|
820 | #Check non-exact |
---|
821 | |
---|
822 | t = 90 #Halfway between 60 and 120 |
---|
823 | q = F(t-delta) |
---|
824 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
825 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
826 | |
---|
827 | |
---|
828 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
829 | q = F(t-delta) |
---|
830 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
831 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
832 | |
---|
833 | |
---|
834 | os.remove(filename + '.tms') |
---|
835 | os.remove(filename + '.txt') |
---|
836 | |
---|
837 | |
---|
838 | |
---|
839 | def test_apply_expression_to_dictionary(self): |
---|
840 | |
---|
841 | #FIXME: Division is not expected to work for integers. |
---|
842 | #This must be caught. |
---|
843 | foo = array([[1,2,3], |
---|
844 | [4,5,6]], Float) |
---|
845 | |
---|
846 | bar = array([[-1,0,5], |
---|
847 | [6,1,1]], Float) |
---|
848 | |
---|
849 | D = {'X': foo, 'Y': bar} |
---|
850 | |
---|
851 | Z = apply_expression_to_dictionary('X+Y', D) |
---|
852 | assert allclose(Z, foo+bar) |
---|
853 | |
---|
854 | Z = apply_expression_to_dictionary('X*Y', D) |
---|
855 | assert allclose(Z, foo*bar) |
---|
856 | |
---|
857 | Z = apply_expression_to_dictionary('4*X+Y', D) |
---|
858 | assert allclose(Z, 4*foo+bar) |
---|
859 | |
---|
860 | # test zero division is OK |
---|
861 | Z = apply_expression_to_dictionary('X/Y', D) |
---|
862 | assert allclose(1/Z, 1/(foo/bar)) # can't compare inf to inf |
---|
863 | |
---|
864 | # make an error for zero on zero |
---|
865 | # this is really an error in Numeric, SciPy core can handle it |
---|
866 | # Z = apply_expression_to_dictionary('0/Y', D) |
---|
867 | |
---|
868 | #Check exceptions |
---|
869 | try: |
---|
870 | #Wrong name |
---|
871 | Z = apply_expression_to_dictionary('4*X+A', D) |
---|
872 | except NameError: |
---|
873 | pass |
---|
874 | else: |
---|
875 | msg = 'Should have raised a NameError Exception' |
---|
876 | raise msg |
---|
877 | |
---|
878 | |
---|
879 | try: |
---|
880 | #Wrong order |
---|
881 | Z = apply_expression_to_dictionary(D, '4*X+A') |
---|
882 | except AssertionError: |
---|
883 | pass |
---|
884 | else: |
---|
885 | msg = 'Should have raised a AssertionError Exception' |
---|
886 | raise msg |
---|
887 | |
---|
888 | |
---|
889 | def test_multiple_replace(self): |
---|
890 | """Hard test that checks a true word-by-word simultaneous replace |
---|
891 | """ |
---|
892 | |
---|
893 | D = {'x': 'xi', 'y': 'eta', 'xi':'lam'} |
---|
894 | exp = '3*x+y + xi' |
---|
895 | |
---|
896 | new = multiple_replace(exp, D) |
---|
897 | |
---|
898 | assert new == '3*xi+eta + lam' |
---|
899 | |
---|
900 | |
---|
901 | |
---|
902 | def test_point_on_line_obsolete(self): |
---|
903 | """Test that obsolete call issues appropriate warning""" |
---|
904 | |
---|
905 | #Turn warning into an exception |
---|
906 | import warnings |
---|
907 | warnings.filterwarnings('error') |
---|
908 | |
---|
909 | try: |
---|
910 | assert point_on_line( 0, 0.5, 0,1, 0,0 ) |
---|
911 | except DeprecationWarning: |
---|
912 | pass |
---|
913 | else: |
---|
914 | msg = 'point_on_line should have issued a DeprecationWarning' |
---|
915 | raise Exception(msg) |
---|
916 | |
---|
917 | warnings.resetwarnings() |
---|
918 | |
---|
919 | |
---|
920 | #------------------------------------------------------------- |
---|
921 | if __name__ == "__main__": |
---|
922 | suite = unittest.makeSuite(Test_Util,'test') |
---|
923 | #suite = unittest.makeSuite(Test_Util,'test_apply') |
---|
924 | runner = unittest.TextTestRunner() |
---|
925 | runner.run(suite) |
---|
926 | |
---|
927 | |
---|
928 | |
---|
929 | |
---|