1 | """Least squares fitting. |
---|
2 | |
---|
3 | Implements a penalised least-squares fit. |
---|
4 | |
---|
5 | The penalty term (or smoothing term) is controlled by the smoothing |
---|
6 | parameter alpha. |
---|
7 | With a value of alpha=0, the fit function will attempt |
---|
8 | to interpolate as closely as possible in the least-squares sense. |
---|
9 | With values alpha > 0, a certain amount of smoothing will be applied. |
---|
10 | A positive alpha is essential in cases where there are too few |
---|
11 | data points. |
---|
12 | A negative alpha is not allowed. |
---|
13 | A typical value of alpha is 1.0e-6 |
---|
14 | |
---|
15 | |
---|
16 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
17 | Geoscience Australia, 2004. |
---|
18 | """ |
---|
19 | |
---|
20 | from geospatial_data.geospatial_data import Geospatial_data |
---|
21 | from fit_interpolate.general_fit_interpolate import FitInterpolate |
---|
22 | |
---|
23 | DEFAULT_ALPHA = 0.001 |
---|
24 | |
---|
25 | |
---|
26 | class Fit(FitInterpolate): |
---|
27 | |
---|
28 | def __init__(self, |
---|
29 | vertex_coordinates, |
---|
30 | triangles, |
---|
31 | mesh_origin=None, |
---|
32 | alpha = None, |
---|
33 | verbose=False, |
---|
34 | max_vertices_per_cell=30): |
---|
35 | |
---|
36 | |
---|
37 | """ |
---|
38 | Fit data at points to the vertices of a mesh. |
---|
39 | |
---|
40 | Inputs: |
---|
41 | |
---|
42 | vertex_coordinates: List of coordinate pairs [xi, eta] of |
---|
43 | points constituting a mesh (or an m x 2 Numeric array or |
---|
44 | a geospatial object) |
---|
45 | Points may appear multiple times |
---|
46 | (e.g. if vertices have discontinuities) |
---|
47 | |
---|
48 | triangles: List of 3-tuples (or a Numeric array) of |
---|
49 | integers representing indices of all vertices in the mesh. |
---|
50 | |
---|
51 | mesh_origin: A geo_reference object or 3-tuples consisting of |
---|
52 | UTM zone, easting and northing. |
---|
53 | If specified vertex coordinates are assumed to be |
---|
54 | relative to their respective origins. |
---|
55 | |
---|
56 | max_vertices_per_cell: Number of vertices in a quad tree cell |
---|
57 | at which the cell is split into 4. |
---|
58 | |
---|
59 | Note: Don't supply a vertex coords as a geospatial object and |
---|
60 | a mesh origin, since geospatial has its own mesh origin. |
---|
61 | """ |
---|
62 | |
---|
63 | # Initialise variabels |
---|
64 | #self._A_can_be_reused = False |
---|
65 | #self._point_coordinates = None |
---|
66 | |
---|
67 | if alpha is None: |
---|
68 | self.alpha = DEFAULT_ALPHA |
---|
69 | else: |
---|
70 | self.alpha = alpha |
---|
71 | |
---|
72 | FitInterpolate.__init__(self, |
---|
73 | vertex_coordinates, |
---|
74 | triangles, |
---|
75 | mesh_origin, |
---|
76 | verbose, |
---|
77 | max_vertices_per_cell) |
---|
78 | |
---|
79 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (vertices) |
---|
80 | |
---|
81 | #Build Atz and AtA matrix |
---|
82 | self.AtA = Sparse(m,m) |
---|
83 | self.Atz = zeros((m,att_num), Float) |
---|
84 | |
---|
85 | |
---|
86 | def _build_coefficient_matrix_B(self, |
---|
87 | verbose = False): |
---|
88 | """Build final coefficient matrix""" |
---|
89 | |
---|
90 | |
---|
91 | def _build_smoothing_matrix_D(self): |
---|
92 | """Build m x m smoothing matrix, where |
---|
93 | m is the number of basis functions phi_k (one per vertex) |
---|
94 | |
---|
95 | The smoothing matrix is defined as |
---|
96 | |
---|
97 | D = D1 + D2 |
---|
98 | |
---|
99 | where |
---|
100 | |
---|
101 | [D1]_{k,l} = \int_\Omega |
---|
102 | \frac{\partial \phi_k}{\partial x} |
---|
103 | \frac{\partial \phi_l}{\partial x}\, |
---|
104 | dx dy |
---|
105 | |
---|
106 | [D2]_{k,l} = \int_\Omega |
---|
107 | \frac{\partial \phi_k}{\partial y} |
---|
108 | \frac{\partial \phi_l}{\partial y}\, |
---|
109 | dx dy |
---|
110 | |
---|
111 | |
---|
112 | The derivatives \frac{\partial \phi_k}{\partial x}, |
---|
113 | \frac{\partial \phi_k}{\partial x} for a particular triangle |
---|
114 | are obtained by computing the gradient a_k, b_k for basis function k |
---|
115 | """ |
---|
116 | |
---|
117 | def _build_matrix_AtA_Atz(self, |
---|
118 | point_coordinates, |
---|
119 | z, |
---|
120 | verbose = False): |
---|
121 | """Build: |
---|
122 | AtA m x m interpolation matrix, and, |
---|
123 | Atz m x a interpolation matrix where, |
---|
124 | m is the number of basis functions phi_k (one per vertex) |
---|
125 | a is the number of data attributes |
---|
126 | |
---|
127 | This algorithm uses a quad tree data structure for fast binning of |
---|
128 | data points. |
---|
129 | |
---|
130 | Preconditions |
---|
131 | z and points are numeric |
---|
132 | Point_coordindates and mesh vertices have the same origin. |
---|
133 | """ |
---|
134 | |
---|
135 | if verbose: print 'Getting indices inside mesh boundary' |
---|
136 | #print "self.mesh.get_boundary_polygon()",self.mesh.get_boundary_polygon() |
---|
137 | self.inside_poly_indices, self.outside_poly_indices = \ |
---|
138 | in_and_outside_polygon(point_coordinates, |
---|
139 | self.mesh.get_boundary_polygon(), |
---|
140 | closed = True, verbose = verbose) |
---|
141 | #print "self.inside_poly_indices",self.inside_poly_indices |
---|
142 | #print "self.outside_poly_indices",self.outside_poly_indices |
---|
143 | |
---|
144 | |
---|
145 | #Compute matrix elements for points inside the mesh |
---|
146 | for i in self.inside_poly_indices: |
---|
147 | #For each data_coordinate point |
---|
148 | if verbose and i%((n+10)/10)==0: print 'Doing %d of %d' %(i, n) |
---|
149 | x = point_coordinates[i] |
---|
150 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
151 | search_tree_of_vertices(self.root, self.mesh, x) |
---|
152 | #Update interpolation matrix A if necessary |
---|
153 | if element_found is True: |
---|
154 | #Assign values to matrix A |
---|
155 | |
---|
156 | j0 = self.mesh.triangles[k,0] #Global vertex id for sigma0 |
---|
157 | j1 = self.mesh.triangles[k,1] #Global vertex id for sigma1 |
---|
158 | j2 = self.mesh.triangles[k,2] #Global vertex id for sigma2 |
---|
159 | |
---|
160 | sigmas = {j0:sigma0, j1:sigma1, j2:sigma2} |
---|
161 | js = [j0,j1,j2] |
---|
162 | |
---|
163 | for j in js: |
---|
164 | self.Atz[j] += sigmas[j]*z[i] |
---|
165 | for k in js: |
---|
166 | if interp_only == False: |
---|
167 | self.AtA[j,k] += sigmas[j]*sigmas[k] |
---|
168 | else: |
---|
169 | msg = 'Could not find triangle for point', x |
---|
170 | raise Exception(msg) |
---|
171 | |
---|
172 | |
---|
173 | def fit(self, point_coordinates=point_coordinates, z=z): |
---|
174 | """Fit a smooth surface to given 1d array of data points z. |
---|
175 | |
---|
176 | The smooth surface is computed at each vertex in the underlying |
---|
177 | mesh using the formula given in the module doc string. |
---|
178 | |
---|
179 | Inputs: |
---|
180 | point_coordinates: The co-ordinates of the data points. |
---|
181 | List of coordinate pairs [x, y] of |
---|
182 | data points or an nx2 Numeric array or a Geospatial_data object |
---|
183 | z: Single 1d vector or array of data at the point_coordinates. |
---|
184 | |
---|
185 | """ |
---|
186 | # build ata and atz |
---|
187 | # solve fit |
---|
188 | |
---|
189 | |
---|
190 | def build_fit_subset(self, point_coordinates, z): |
---|
191 | """Fit a smooth surface to given 1d array of data points z. |
---|
192 | |
---|
193 | The smooth surface is computed at each vertex in the underlying |
---|
194 | mesh using the formula given in the module doc string. |
---|
195 | |
---|
196 | Inputs: |
---|
197 | point_coordinates: The co-ordinates of the data points. |
---|
198 | List of coordinate pairs [x, y] of |
---|
199 | data points or an nx2 Numeric array or a Geospatial_data object |
---|
200 | z: Single 1d vector or array of data at the point_coordinates. |
---|
201 | |
---|
202 | """ |
---|
203 | #Note: Don't get the z info from Geospatial_data.attributes yet. |
---|
204 | # That means fit has to handle attribute title info. |
---|
205 | |
---|
206 | #FIXME(DSG-DSG): Check that the vert and point coords |
---|
207 | #have the same zone. |
---|
208 | if isinstance(point_coordinates,Geospatial_data): |
---|
209 | point_coordinates = vertex_coordinates.get_data_points( \ |
---|
210 | absolute = True) |
---|
211 | |
---|
212 | #Convert input to Numeric arrays |
---|
213 | z = ensure_numeric(z, Float) |
---|
214 | point_coordinates = ensure_numeric(point_coordinates, Float) |
---|
215 | |
---|
216 | |
---|
217 | |
---|
218 | ############################################################################ |
---|
219 | |
---|
220 | def fit_to_mesh(vertex_coordinates, |
---|
221 | triangles, |
---|
222 | point_coordinates, |
---|
223 | point_attributes, |
---|
224 | alpha = DEFAULT_ALPHA, |
---|
225 | verbose = False, |
---|
226 | acceptable_overshoot = 1.01, |
---|
227 | expand_search = False, |
---|
228 | data_origin = None, |
---|
229 | mesh_origin = None, |
---|
230 | precrop = False, |
---|
231 | use_cache = False): |
---|
232 | """ |
---|
233 | Fit a smooth surface to a triangulation, |
---|
234 | given data points with attributes. |
---|
235 | |
---|
236 | |
---|
237 | Inputs: |
---|
238 | |
---|
239 | vertex_coordinates: List of coordinate pairs [xi, eta] of points |
---|
240 | constituting mesh (or a an m x 2 Numeric array) |
---|
241 | |
---|
242 | triangles: List of 3-tuples (or a Numeric array) of |
---|
243 | integers representing indices of all vertices in the mesh. |
---|
244 | |
---|
245 | point_coordinates: List of coordinate pairs [x, y] of data points |
---|
246 | (or an nx2 Numeric array) |
---|
247 | |
---|
248 | alpha: Smoothing parameter. |
---|
249 | |
---|
250 | acceptable overshoot: controls the allowed factor by which fitted values |
---|
251 | may exceed the value of input data. The lower limit is defined |
---|
252 | as min(z) - acceptable_overshoot*delta z and upper limit |
---|
253 | as max(z) + acceptable_overshoot*delta z |
---|
254 | |
---|
255 | |
---|
256 | point_attributes: Vector or array of data at the point_coordinates. |
---|
257 | |
---|
258 | data_origin and mesh_origin are 3-tuples consisting of |
---|
259 | UTM zone, easting and northing. If specified |
---|
260 | point coordinates and vertex coordinates are assumed to be |
---|
261 | relative to their respective origins. |
---|
262 | |
---|
263 | """ |
---|
264 | |
---|
265 | if use_cache is True: |
---|
266 | interp = cache(_fit, |
---|
267 | (vertex_coordinates, |
---|
268 | triangles), |
---|
269 | {'verbose': verbose, |
---|
270 | 'mesh_origin': mesh_origin}, |
---|
271 | verbose = verbose) |
---|
272 | |
---|
273 | else: |
---|
274 | interp = Interpolation(vertex_coordinates, |
---|
275 | triangles, |
---|
276 | verbose = verbose, |
---|
277 | mesh_origin = mesh_origin) |
---|
278 | |
---|
279 | vertex_attributes = interp.fit_points(point_attributes, verbose = verbose) |
---|
280 | |
---|
281 | |
---|
282 | # point_coordinates, |
---|
283 | # data_origin = data_origin, |
---|
284 | |
---|
285 | |
---|
286 | #Sanity check |
---|
287 | point_coordinates = ensure_numeric(point_coordinates) |
---|
288 | vertex_coordinates = ensure_numeric(vertex_coordinates) |
---|
289 | |
---|
290 | #Data points |
---|
291 | X = point_coordinates[:,0] |
---|
292 | Y = point_coordinates[:,1] |
---|
293 | Z = ensure_numeric(point_attributes) |
---|
294 | if len(Z.shape) == 1: |
---|
295 | Z = Z[:, NewAxis] |
---|
296 | |
---|
297 | |
---|
298 | #Data points inside mesh boundary |
---|
299 | indices = interp.point_indices |
---|
300 | if indices is not None: |
---|
301 | Xc = take(X, indices) |
---|
302 | Yc = take(Y, indices) |
---|
303 | Zc = take(Z, indices) |
---|
304 | else: |
---|
305 | Xc = X |
---|
306 | Yc = Y |
---|
307 | Zc = Z |
---|
308 | |
---|
309 | #Vertex coordinates |
---|
310 | Xi = vertex_coordinates[:,0] |
---|
311 | Eta = vertex_coordinates[:,1] |
---|
312 | Zeta = ensure_numeric(vertex_attributes) |
---|
313 | if len(Zeta.shape) == 1: |
---|
314 | Zeta = Zeta[:, NewAxis] |
---|
315 | |
---|
316 | for i in range(Zeta.shape[1]): #For each attribute |
---|
317 | zeta = Zeta[:,i] |
---|
318 | z = Z[:,i] |
---|
319 | zc = Zc[:,i] |
---|
320 | |
---|
321 | max_zc = max(zc) |
---|
322 | min_zc = min(zc) |
---|
323 | delta_zc = max_zc-min_zc |
---|
324 | upper_limit = max_zc + delta_zc*acceptable_overshoot |
---|
325 | lower_limit = min_zc - delta_zc*acceptable_overshoot |
---|
326 | |
---|
327 | |
---|
328 | if max(zeta) > upper_limit or min(zeta) < lower_limit: |
---|
329 | msg = 'Least sqares produced values outside the allowed ' |
---|
330 | msg += 'range [%f, %f].\n' %(lower_limit, upper_limit) |
---|
331 | msg += 'z in [%f, %f], zeta in [%f, %f].\n' %(min_zc, max_zc, |
---|
332 | min(zeta), max(zeta)) |
---|
333 | msg += 'If greater range is needed, increase the value of ' |
---|
334 | msg += 'acceptable_fit_overshoot (currently %.2f).\n' %(acceptable_overshoot) |
---|
335 | |
---|
336 | |
---|
337 | offending_vertices = (zeta > upper_limit or zeta < lower_limit) |
---|
338 | Xi_c = compress(offending_vertices, Xi) |
---|
339 | Eta_c = compress(offending_vertices, Eta) |
---|
340 | offending_coordinates = concatenate((Xi_c[:, NewAxis], |
---|
341 | Eta_c[:, NewAxis]), |
---|
342 | axis=1) |
---|
343 | |
---|
344 | msg += 'Offending locations:\n %s' %(offending_coordinates) |
---|
345 | |
---|
346 | raise FittingError, msg |
---|
347 | |
---|
348 | |
---|
349 | |
---|
350 | if verbose: |
---|
351 | print '+------------------------------------------------' |
---|
352 | print 'Least squares statistics' |
---|
353 | print '+------------------------------------------------' |
---|
354 | print 'points: %d points' %(len(z)) |
---|
355 | print ' x in [%f, %f]'%(min(X), max(X)) |
---|
356 | print ' y in [%f, %f]'%(min(Y), max(Y)) |
---|
357 | print ' z in [%f, %f]'%(min(z), max(z)) |
---|
358 | print |
---|
359 | |
---|
360 | if indices is not None: |
---|
361 | print 'Cropped points: %d points' %(len(zc)) |
---|
362 | print ' x in [%f, %f]'%(min(Xc), max(Xc)) |
---|
363 | print ' y in [%f, %f]'%(min(Yc), max(Yc)) |
---|
364 | print ' z in [%f, %f]'%(min(zc), max(zc)) |
---|
365 | print |
---|
366 | |
---|
367 | |
---|
368 | print 'Mesh: %d vertices' %(len(zeta)) |
---|
369 | print ' xi in [%f, %f]'%(min(Xi), max(Xi)) |
---|
370 | print ' eta in [%f, %f]'%(min(Eta), max(Eta)) |
---|
371 | print ' zeta in [%f, %f]'%(min(zeta), max(zeta)) |
---|
372 | print '+------------------------------------------------' |
---|
373 | |
---|
374 | return vertex_attributes |
---|
375 | |
---|
376 | |
---|
377 | def _fit(*args, **kwargs): |
---|
378 | """Private function for use with caching. Reason is that classes |
---|
379 | may change their byte code between runs which is annoying. |
---|
380 | """ |
---|
381 | |
---|
382 | return Fit(*args, **kwargs) |
---|
383 | |
---|