1 | """ |
---|
2 | General functions used in fit and interpolate. |
---|
3 | |
---|
4 | Ole Nielsen, Stephen Roberts, Duncan Gray |
---|
5 | Geoscience Australia, 2006. |
---|
6 | |
---|
7 | """ |
---|
8 | from Numeric import dot |
---|
9 | |
---|
10 | |
---|
11 | def search_tree_of_vertices(root, mesh, x): |
---|
12 | """ |
---|
13 | Find the triangle (element) that the point x is in. |
---|
14 | |
---|
15 | root: A quad tree of the vertices |
---|
16 | Return the associated sigma and k values |
---|
17 | (and if the element was found) . |
---|
18 | """ |
---|
19 | #Find triangle containing x: |
---|
20 | element_found = False |
---|
21 | |
---|
22 | # This will be returned if element_found = False |
---|
23 | sigma2 = -10.0 |
---|
24 | sigma0 = -10.0 |
---|
25 | sigma1 = -10.0 |
---|
26 | k = -10.0 |
---|
27 | |
---|
28 | #Find vertices near x |
---|
29 | candidate_vertices = root.search(x[0], x[1]) |
---|
30 | is_more_elements = True |
---|
31 | |
---|
32 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
33 | _search_triangles_of_vertices(mesh, |
---|
34 | candidate_vertices, x) |
---|
35 | while not element_found and is_more_elements: |
---|
36 | candidate_vertices, branch = root.expand_search() |
---|
37 | if branch == []: |
---|
38 | # Searching all the verts from the root cell that haven't |
---|
39 | # been searched. This is the last try |
---|
40 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
41 | _search_triangles_of_vertices(mesh, |
---|
42 | candidate_vertices, x) |
---|
43 | is_more_elements = False |
---|
44 | else: |
---|
45 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
46 | _search_triangles_of_vertices(mesh, |
---|
47 | candidate_vertices, x) |
---|
48 | |
---|
49 | return element_found, sigma0, sigma1, sigma2, k |
---|
50 | |
---|
51 | def _search_triangles_of_vertices(mesh, candidate_vertices, x): |
---|
52 | #Find triangle containing x: |
---|
53 | element_found = False |
---|
54 | |
---|
55 | # This will be returned if element_found = False |
---|
56 | sigma2 = -10.0 |
---|
57 | sigma0 = -10.0 |
---|
58 | sigma1 = -10.0 |
---|
59 | k = -10.0 |
---|
60 | #print "*$* candidate_vertices", candidate_vertices |
---|
61 | #For all vertices in same cell as point x |
---|
62 | for v in candidate_vertices: |
---|
63 | #FIXME (DSG-DSG): this catches verts with no triangle. |
---|
64 | #Currently pmesh is producing these. |
---|
65 | #this should be stopped, |
---|
66 | if mesh.vertexlist[v] is None: |
---|
67 | continue |
---|
68 | #for each triangle id (k) which has v as a vertex |
---|
69 | for k, _ in mesh.vertexlist[v]: |
---|
70 | #Get the three vertex_points of candidate triangle |
---|
71 | xi0 = mesh.get_vertex_coordinate(k, 0) |
---|
72 | xi1 = mesh.get_vertex_coordinate(k, 1) |
---|
73 | xi2 = mesh.get_vertex_coordinate(k, 2) |
---|
74 | |
---|
75 | #Get the three normals |
---|
76 | n0 = mesh.get_normal(k, 0) |
---|
77 | n1 = mesh.get_normal(k, 1) |
---|
78 | n2 = mesh.get_normal(k, 2) |
---|
79 | |
---|
80 | #Compute interpolation |
---|
81 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
82 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
83 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
84 | |
---|
85 | #FIXME: Maybe move out to test or something |
---|
86 | epsilon = 1.0e-6 |
---|
87 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
88 | |
---|
89 | #Check that this triangle contains the data point |
---|
90 | |
---|
91 | #Sigmas can get negative within |
---|
92 | #machine precision on some machines (e.g nautilus) |
---|
93 | #Hence the small eps |
---|
94 | eps = 1.0e-15 |
---|
95 | if sigma0 >= -eps and sigma1 >= -eps and sigma2 >= -eps: |
---|
96 | element_found = True |
---|
97 | break |
---|
98 | |
---|
99 | if element_found is True: |
---|
100 | #Don't look for any other triangle |
---|
101 | break |
---|
102 | return element_found, sigma0, sigma1, sigma2, k |
---|
103 | |
---|
104 | |
---|