[2187] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | #TEST |
---|
[2394] | 4 | |
---|
| 5 | #import time, os |
---|
| 6 | |
---|
| 7 | |
---|
[2187] | 8 | import sys |
---|
[2394] | 9 | import os |
---|
[2187] | 10 | import unittest |
---|
| 11 | from math import sqrt |
---|
[2394] | 12 | import tempfile |
---|
[2187] | 13 | |
---|
[2394] | 14 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 15 | from Numeric import allclose, array, transpose, zeros, Float |
---|
[2187] | 16 | |
---|
[2394] | 17 | |
---|
| 18 | # ANUGA code imports |
---|
[2187] | 19 | from interpolate import * |
---|
| 20 | from coordinate_transforms.geo_reference import Geo_reference |
---|
[2651] | 21 | from shallow_water import Domain, Transmissive_boundary |
---|
[2655] | 22 | from utilities.numerical_tools import mean, INF |
---|
[2394] | 23 | from data_manager import get_dataobject |
---|
[2577] | 24 | from geospatial_data.geospatial_data import Geospatial_data |
---|
[3411] | 25 | from pmesh.mesh import Mesh |
---|
[2187] | 26 | |
---|
| 27 | def distance(x, y): |
---|
| 28 | return sqrt( sum( (array(x)-array(y))**2 )) |
---|
| 29 | |
---|
| 30 | def linear_function(point): |
---|
| 31 | point = array(point) |
---|
| 32 | return point[:,0]+point[:,1] |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | class Test_Interpolate(unittest.TestCase): |
---|
| 36 | |
---|
| 37 | def setUp(self): |
---|
| 38 | |
---|
[2394] | 39 | import time |
---|
| 40 | from mesh_factory import rectangular |
---|
| 41 | |
---|
| 42 | |
---|
| 43 | #Create basic mesh |
---|
| 44 | points, vertices, boundary = rectangular(2, 2) |
---|
| 45 | |
---|
| 46 | #Create shallow water domain |
---|
| 47 | domain = Domain(points, vertices, boundary) |
---|
| 48 | domain.default_order=2 |
---|
| 49 | domain.beta_h = 0 |
---|
| 50 | |
---|
| 51 | |
---|
| 52 | #Set some field values |
---|
| 53 | domain.set_quantity('elevation', lambda x,y: -x) |
---|
| 54 | domain.set_quantity('friction', 0.03) |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | ###################### |
---|
| 58 | # Boundary conditions |
---|
| 59 | B = Transmissive_boundary(domain) |
---|
| 60 | domain.set_boundary( {'left': B, 'right': B, 'top': B, 'bottom': B}) |
---|
| 61 | |
---|
| 62 | |
---|
| 63 | ###################### |
---|
| 64 | #Initial condition - with jumps |
---|
| 65 | |
---|
| 66 | bed = domain.quantities['elevation'].vertex_values |
---|
| 67 | stage = zeros(bed.shape, Float) |
---|
| 68 | |
---|
| 69 | h = 0.3 |
---|
| 70 | for i in range(stage.shape[0]): |
---|
| 71 | if i % 2 == 0: |
---|
| 72 | stage[i,:] = bed[i,:] + h |
---|
| 73 | else: |
---|
| 74 | stage[i,:] = bed[i,:] |
---|
| 75 | |
---|
| 76 | domain.set_quantity('stage', stage) |
---|
| 77 | |
---|
| 78 | domain.distribute_to_vertices_and_edges() |
---|
| 79 | |
---|
| 80 | |
---|
| 81 | self.domain = domain |
---|
| 82 | |
---|
| 83 | C = domain.get_vertex_coordinates() |
---|
| 84 | self.X = C[:,0:6:2].copy() |
---|
| 85 | self.Y = C[:,1:6:2].copy() |
---|
| 86 | |
---|
| 87 | self.F = bed |
---|
| 88 | |
---|
| 89 | |
---|
| 90 | |
---|
[2187] | 91 | def tearDown(self): |
---|
| 92 | pass |
---|
| 93 | |
---|
| 94 | def test_datapoint_at_centroid(self): |
---|
| 95 | a = [0.0, 0.0] |
---|
| 96 | b = [0.0, 2.0] |
---|
| 97 | c = [2.0,0.0] |
---|
| 98 | points = [a, b, c] |
---|
| 99 | vertices = [ [1,0,2] ] #bac |
---|
| 100 | |
---|
| 101 | data = [ [2.0/3, 2.0/3] ] #Use centroid as one data point |
---|
| 102 | |
---|
| 103 | interp = Interpolate(points, vertices) |
---|
| 104 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 105 | [[1./3, 1./3, 1./3]]) |
---|
| 106 | |
---|
| 107 | def test_quad_tree(self): |
---|
| 108 | p0 = [-10.0, -10.0] |
---|
| 109 | p1 = [20.0, -10.0] |
---|
| 110 | p2 = [-10.0, 20.0] |
---|
| 111 | p3 = [10.0, 50.0] |
---|
| 112 | p4 = [30.0, 30.0] |
---|
| 113 | p5 = [50.0, 10.0] |
---|
| 114 | p6 = [40.0, 60.0] |
---|
| 115 | p7 = [60.0, 40.0] |
---|
| 116 | p8 = [-66.0, 20.0] |
---|
| 117 | p9 = [10.0, -66.0] |
---|
| 118 | |
---|
| 119 | points = [p0, p1, p2, p3, p4, p5, p6, p7, p8, p9] |
---|
| 120 | triangles = [ [0, 1, 2], |
---|
| 121 | [3, 2, 4], |
---|
| 122 | [4, 2, 1], |
---|
| 123 | [4, 1, 5], |
---|
| 124 | [3, 4, 6], |
---|
| 125 | [6, 4, 7], |
---|
| 126 | [7, 4, 5], |
---|
| 127 | [8, 0, 2], |
---|
| 128 | [0, 9, 1]] |
---|
| 129 | |
---|
| 130 | data = [ [4,4] ] |
---|
| 131 | interp = Interpolate(points, triangles, |
---|
[2201] | 132 | max_vertices_per_cell = 4) |
---|
[2187] | 133 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
| 134 | answer = [ [ 0.06666667, 0.46666667, 0.46666667, 0., |
---|
| 135 | 0., 0. , 0., 0., 0., 0.]] |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 139 | answer) |
---|
| 140 | #interp.set_point_coordinates([[-30, -30]]) #point outside of mesh |
---|
| 141 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
| 142 | data = [[-30, -30]] |
---|
| 143 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
| 144 | 0., 0. , 0., 0., 0., 0.]] |
---|
| 145 | |
---|
| 146 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 147 | answer) |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | #point outside of quad tree root cell |
---|
| 151 | #interp.set_point_coordinates([[-70, -70]]) |
---|
| 152 | #print "PDSG - interp.get_A()", interp.get_A() |
---|
| 153 | data = [[-70, -70]] |
---|
| 154 | answer = [ [ 0.0, 0.0, 0.0, 0., |
---|
| 155 | 0., 0. , 0., 0., 0., 0.]] |
---|
| 156 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 157 | answer) |
---|
| 158 | |
---|
| 159 | def test_datapoints_at_vertices(self): |
---|
[3019] | 160 | #Test that data points coinciding with vertices yield a diagonal matrix |
---|
| 161 | |
---|
[2187] | 162 | |
---|
| 163 | a = [0.0, 0.0] |
---|
| 164 | b = [0.0, 2.0] |
---|
| 165 | c = [2.0,0.0] |
---|
| 166 | points = [a, b, c] |
---|
| 167 | vertices = [ [1,0,2] ] #bac |
---|
| 168 | |
---|
| 169 | data = points #Use data at vertices |
---|
| 170 | |
---|
| 171 | interp = Interpolate(points, vertices) |
---|
| 172 | answer = [[1., 0., 0.], |
---|
| 173 | [0., 1., 0.], |
---|
| 174 | [0., 0., 1.]] |
---|
| 175 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 176 | answer) |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | def test_datapoints_on_edge_midpoints(self): |
---|
[3019] | 180 | #Try datapoints midway on edges - |
---|
| 181 | #each point should affect two matrix entries equally |
---|
| 182 | |
---|
[2187] | 183 | |
---|
| 184 | a = [0.0, 0.0] |
---|
| 185 | b = [0.0, 2.0] |
---|
| 186 | c = [2.0,0.0] |
---|
| 187 | points = [a, b, c] |
---|
| 188 | vertices = [ [1,0,2] ] #bac |
---|
| 189 | |
---|
| 190 | data = [ [0., 1.], [1., 0.], [1., 1.] ] |
---|
| 191 | answer = [[0.5, 0.5, 0.0], #Affects vertex 1 and 0 |
---|
| 192 | [0.5, 0.0, 0.5], #Affects vertex 0 and 2 |
---|
| 193 | [0.0, 0.5, 0.5]] |
---|
[2690] | 194 | interp = Interpolate(points, vertices) |
---|
[2187] | 195 | |
---|
| 196 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 197 | answer) |
---|
| 198 | |
---|
| 199 | def test_datapoints_on_edges(self): |
---|
[3019] | 200 | #Try datapoints on edges - |
---|
| 201 | #each point should affect two matrix entries in proportion |
---|
| 202 | |
---|
[2187] | 203 | |
---|
| 204 | a = [0.0, 0.0] |
---|
| 205 | b = [0.0, 2.0] |
---|
| 206 | c = [2.0,0.0] |
---|
| 207 | points = [a, b, c] |
---|
| 208 | vertices = [ [1,0,2] ] #bac |
---|
| 209 | |
---|
| 210 | data = [ [0., 1.5], [1.5, 0.], [1.5, 0.5] ] |
---|
| 211 | answer = [[0.25, 0.75, 0.0], #Affects vertex 1 and 0 |
---|
| 212 | [0.25, 0.0, 0.75], #Affects vertex 0 and 2 |
---|
| 213 | [0.0, 0.25, 0.75]] |
---|
| 214 | |
---|
[2690] | 215 | interp = Interpolate(points, vertices) |
---|
[2187] | 216 | |
---|
| 217 | assert allclose(interp._build_interpolation_matrix_A(data).todense(), |
---|
| 218 | answer) |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | def test_arbitrary_datapoints(self): |
---|
[3019] | 222 | #Try arbitrary datapoints |
---|
| 223 | |
---|
[2187] | 224 | |
---|
| 225 | from Numeric import sum |
---|
| 226 | |
---|
| 227 | a = [0.0, 0.0] |
---|
| 228 | b = [0.0, 2.0] |
---|
| 229 | c = [2.0,0.0] |
---|
| 230 | points = [a, b, c] |
---|
| 231 | vertices = [ [1,0,2] ] #bac |
---|
| 232 | |
---|
| 233 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44] ] |
---|
| 234 | |
---|
[2690] | 235 | interp = Interpolate(points, vertices) |
---|
[2187] | 236 | #print "interp.get_A()", interp.get_A() |
---|
| 237 | results = interp._build_interpolation_matrix_A(data).todense() |
---|
| 238 | assert allclose(sum(results, axis=1), 1.0) |
---|
| 239 | |
---|
[2655] | 240 | def test_arbitrary_datapoints_some_outside(self): |
---|
[3019] | 241 | #Try arbitrary datapoints one outside the triangle. |
---|
| 242 | #That one should be ignored |
---|
| 243 | |
---|
[2187] | 244 | |
---|
| 245 | from Numeric import sum |
---|
| 246 | |
---|
| 247 | a = [0.0, 0.0] |
---|
| 248 | b = [0.0, 2.0] |
---|
| 249 | c = [2.0,0.0] |
---|
| 250 | points = [a, b, c] |
---|
| 251 | vertices = [ [1,0,2] ] #bac |
---|
| 252 | |
---|
| 253 | data = [ [0.2, 1.5], [0.123, 1.768], [1.43, 0.44], [5.0, 7.0]] |
---|
| 254 | |
---|
[2690] | 255 | interp = Interpolate(points, vertices) |
---|
[2187] | 256 | results = interp._build_interpolation_matrix_A(data).todense() |
---|
| 257 | assert allclose(sum(results, axis=1), [1,1,1,0]) |
---|
| 258 | |
---|
| 259 | |
---|
| 260 | |
---|
| 261 | # this causes a memory error in scipy.sparse |
---|
| 262 | def test_more_triangles(self): |
---|
| 263 | |
---|
| 264 | a = [-1.0, 0.0] |
---|
| 265 | b = [3.0, 4.0] |
---|
| 266 | c = [4.0,1.0] |
---|
| 267 | d = [-3.0, 2.0] #3 |
---|
| 268 | e = [-1.0,-2.0] |
---|
| 269 | f = [1.0, -2.0] #5 |
---|
| 270 | |
---|
| 271 | points = [a, b, c, d,e,f] |
---|
| 272 | triangles = [[0,1,3],[1,0,2],[0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 273 | |
---|
| 274 | #Data points |
---|
| 275 | data = [ [-3., 2.0], [-2, 1], [0.0, 1], [0, 3], [2, 3], [-1.0/3,-4./3] ] |
---|
| 276 | interp = Interpolate(points, triangles) |
---|
| 277 | |
---|
| 278 | answer = [[0.0, 0.0, 0.0, 1.0, 0.0, 0.0], #Affects point d |
---|
| 279 | [0.5, 0.0, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
| 280 | [0.75, 0.25, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
| 281 | [0.0, 0.5, 0.0, 0.5, 0.0, 0.0], #Affects points a and d |
---|
| 282 | [0.25, 0.75, 0.0, 0.0, 0.0, 0.0], #Affects points a and b |
---|
| 283 | [1./3, 0.0, 0.0, 0.0, 1./3, 1./3]] #Affects points a, e and f |
---|
| 284 | |
---|
| 285 | |
---|
| 286 | A = interp._build_interpolation_matrix_A(data).todense() |
---|
| 287 | for i in range(A.shape[0]): |
---|
| 288 | for j in range(A.shape[1]): |
---|
| 289 | if not allclose(A[i,j], answer[i][j]): |
---|
| 290 | print i,j,':',A[i,j], answer[i][j] |
---|
| 291 | |
---|
| 292 | |
---|
[2190] | 293 | #results = interp._build_interpolation_matrix_A(data).todense() |
---|
[2187] | 294 | |
---|
[2190] | 295 | assert allclose(A, answer) |
---|
[2690] | 296 | |
---|
| 297 | def test_geo_ref(self): |
---|
| 298 | v0 = [0.0, 0.0] |
---|
| 299 | v1 = [0.0, 5.0] |
---|
| 300 | v2 = [5.0, 0.0] |
---|
[2187] | 301 | |
---|
[2690] | 302 | vertices_absolute = [v0, v1, v2] |
---|
| 303 | triangles = [ [1,0,2] ] #bac |
---|
| 304 | |
---|
| 305 | geo = Geo_reference(57,100, 500) |
---|
| 306 | |
---|
| 307 | vertices = geo.change_points_geo_ref(vertices_absolute) |
---|
| 308 | #print "vertices",vertices |
---|
| 309 | |
---|
| 310 | d0 = [1.0, 1.0] |
---|
| 311 | d1 = [1.0, 2.0] |
---|
| 312 | d2 = [3.0, 1.0] |
---|
| 313 | point_coords = [ d0, d1, d2] |
---|
| 314 | |
---|
| 315 | interp = Interpolate(vertices, triangles, mesh_origin=geo) |
---|
| 316 | f = linear_function(vertices_absolute) |
---|
| 317 | z = interp.interpolate(f, point_coords) |
---|
| 318 | answer = linear_function(point_coords) |
---|
| 319 | |
---|
| 320 | #print "z",z |
---|
| 321 | #print "answer",answer |
---|
| 322 | assert allclose(z, answer) |
---|
[2879] | 323 | |
---|
[2690] | 324 | |
---|
[2879] | 325 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 326 | answer = linear_function(point_coords) |
---|
| 327 | |
---|
| 328 | #print "z",z |
---|
| 329 | #print "answer",answer |
---|
| 330 | assert allclose(z, answer) |
---|
| 331 | |
---|
| 332 | |
---|
[2690] | 333 | def test_Geospatial_verts(self): |
---|
| 334 | v0 = [0.0, 0.0] |
---|
| 335 | v1 = [0.0, 5.0] |
---|
| 336 | v2 = [5.0, 0.0] |
---|
| 337 | |
---|
| 338 | vertices_absolute = [v0, v1, v2] |
---|
| 339 | triangles = [ [1,0,2] ] #bac |
---|
| 340 | |
---|
| 341 | geo = Geo_reference(57,100, 500) |
---|
| 342 | vertices = geo.change_points_geo_ref(vertices_absolute) |
---|
| 343 | geopoints = Geospatial_data(vertices,geo_reference = geo) |
---|
| 344 | #print "vertices",vertices |
---|
| 345 | |
---|
| 346 | d0 = [1.0, 1.0] |
---|
| 347 | d1 = [1.0, 2.0] |
---|
| 348 | d2 = [3.0, 1.0] |
---|
| 349 | point_coords = [ d0, d1, d2] |
---|
| 350 | |
---|
| 351 | interp = Interpolate(geopoints, triangles) |
---|
| 352 | f = linear_function(vertices_absolute) |
---|
| 353 | z = interp.interpolate(f, point_coords) |
---|
| 354 | answer = linear_function(point_coords) |
---|
| 355 | |
---|
| 356 | #print "z",z |
---|
| 357 | #print "answer",answer |
---|
| 358 | assert allclose(z, answer) |
---|
| 359 | |
---|
[2879] | 360 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 361 | answer = linear_function(point_coords) |
---|
| 362 | |
---|
| 363 | #print "z",z |
---|
| 364 | #print "answer",answer |
---|
| 365 | assert allclose(z, answer) |
---|
| 366 | |
---|
[2189] | 367 | def test_interpolate_attributes_to_points(self): |
---|
| 368 | v0 = [0.0, 0.0] |
---|
| 369 | v1 = [0.0, 5.0] |
---|
| 370 | v2 = [5.0, 0.0] |
---|
[2187] | 371 | |
---|
[2189] | 372 | vertices = [v0, v1, v2] |
---|
| 373 | triangles = [ [1,0,2] ] #bac |
---|
[2187] | 374 | |
---|
[2189] | 375 | d0 = [1.0, 1.0] |
---|
| 376 | d1 = [1.0, 2.0] |
---|
| 377 | d2 = [3.0, 1.0] |
---|
| 378 | point_coords = [ d0, d1, d2] |
---|
| 379 | |
---|
[2690] | 380 | interp = Interpolate(vertices, triangles) |
---|
[2189] | 381 | f = linear_function(vertices) |
---|
| 382 | z = interp.interpolate(f, point_coords) |
---|
| 383 | answer = linear_function(point_coords) |
---|
| 384 | |
---|
[2690] | 385 | #print "z",z |
---|
| 386 | #print "answer",answer |
---|
[2189] | 387 | assert allclose(z, answer) |
---|
| 388 | |
---|
| 389 | |
---|
[2879] | 390 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 391 | answer = linear_function(point_coords) |
---|
[2189] | 392 | |
---|
[2879] | 393 | #print "z",z |
---|
| 394 | #print "answer",answer |
---|
| 395 | assert allclose(z, answer) |
---|
| 396 | |
---|
[2189] | 397 | def test_interpolate_attributes_to_pointsII(self): |
---|
| 398 | a = [-1.0, 0.0] |
---|
| 399 | b = [3.0, 4.0] |
---|
| 400 | c = [4.0, 1.0] |
---|
| 401 | d = [-3.0, 2.0] #3 |
---|
| 402 | e = [-1.0, -2.0] |
---|
| 403 | f = [1.0, -2.0] #5 |
---|
| 404 | |
---|
| 405 | vertices = [a, b, c, d,e,f] |
---|
| 406 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 407 | |
---|
| 408 | |
---|
| 409 | point_coords = [[-2.0, 2.0], |
---|
| 410 | [-1.0, 1.0], |
---|
| 411 | [0.0, 2.0], |
---|
| 412 | [1.0, 1.0], |
---|
| 413 | [2.0, 1.0], |
---|
| 414 | [0.0, 0.0], |
---|
| 415 | [1.0, 0.0], |
---|
| 416 | [0.0, -1.0], |
---|
| 417 | [-0.2, -0.5], |
---|
| 418 | [-0.9, -1.5], |
---|
| 419 | [0.5, -1.9], |
---|
| 420 | [3.0, 1.0]] |
---|
| 421 | |
---|
| 422 | interp = Interpolate(vertices, triangles) |
---|
| 423 | f = linear_function(vertices) |
---|
| 424 | z = interp.interpolate(f, point_coords) |
---|
| 425 | answer = linear_function(point_coords) |
---|
| 426 | #print "z",z |
---|
| 427 | #print "answer",answer |
---|
| 428 | assert allclose(z, answer) |
---|
| 429 | |
---|
[2879] | 430 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 431 | answer = linear_function(point_coords) |
---|
| 432 | |
---|
| 433 | #print "z",z |
---|
| 434 | #print "answer",answer |
---|
| 435 | assert allclose(z, answer) |
---|
| 436 | |
---|
[2189] | 437 | def test_interpolate_attributes_to_pointsIII(self): |
---|
[3019] | 438 | #Test linear interpolation of known values at vertices to |
---|
| 439 | #new points inside a triangle |
---|
| 440 | |
---|
[2189] | 441 | a = [0.0, 0.0] |
---|
| 442 | b = [0.0, 5.0] |
---|
| 443 | c = [5.0, 0.0] |
---|
| 444 | d = [5.0, 5.0] |
---|
| 445 | |
---|
| 446 | vertices = [a, b, c, d] |
---|
| 447 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
| 448 | |
---|
| 449 | #Points within triangle 1 |
---|
| 450 | d0 = [1.0, 1.0] |
---|
| 451 | d1 = [1.0, 2.0] |
---|
| 452 | d2 = [3.0, 1.0] |
---|
| 453 | |
---|
| 454 | #Point within triangle 2 |
---|
| 455 | d3 = [4.0, 3.0] |
---|
| 456 | |
---|
| 457 | #Points on common edge |
---|
| 458 | d4 = [2.5, 2.5] |
---|
| 459 | d5 = [4.0, 1.0] |
---|
| 460 | |
---|
| 461 | #Point on common vertex |
---|
| 462 | d6 = [0., 5.] |
---|
| 463 | |
---|
| 464 | point_coords = [d0, d1, d2, d3, d4, d5, d6] |
---|
| 465 | |
---|
| 466 | interp = Interpolate(vertices, triangles) |
---|
| 467 | |
---|
| 468 | #Known values at vertices |
---|
| 469 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
| 470 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
| 471 | [5., 10., 5., -10.], # (0,5) |
---|
| 472 | [5., 5., 10.0, 0.], # (5,0) |
---|
| 473 | [10., 15., 15., -5.]] # (5,5) |
---|
| 474 | |
---|
| 475 | z = interp.interpolate(f, point_coords) |
---|
| 476 | answer = [ [2., 3., 3., -5.], # (1,1) |
---|
| 477 | [3., 5., 4., -6.], # (1,2) |
---|
| 478 | [4., 5., 7., -3.], # (3,1) |
---|
| 479 | [7., 10., 11., -4.], # (4,3) |
---|
| 480 | [5., 7.5, 7.5, -5.], # (2.5, 2.5) |
---|
| 481 | [5., 6., 9., -2.], # (4,1) |
---|
| 482 | [5., 10., 5., -10.]] # (0,5) |
---|
| 483 | |
---|
| 484 | #print "***********" |
---|
| 485 | #print "z",z |
---|
| 486 | #print "answer",answer |
---|
| 487 | #print "***********" |
---|
| 488 | |
---|
| 489 | assert allclose(z, answer) |
---|
| 490 | |
---|
| 491 | |
---|
[2879] | 492 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 493 | |
---|
| 494 | #print "z",z |
---|
| 495 | #print "answer",answer |
---|
| 496 | assert allclose(z, answer) |
---|
| 497 | |
---|
[2189] | 498 | def test_interpolate_point_outside_of_mesh(self): |
---|
[3019] | 499 | #Test linear interpolation of known values at vertices to |
---|
| 500 | #new points inside a triangle |
---|
| 501 | |
---|
[2189] | 502 | a = [0.0, 0.0] |
---|
| 503 | b = [0.0, 5.0] |
---|
| 504 | c = [5.0, 0.0] |
---|
| 505 | d = [5.0, 5.0] |
---|
| 506 | |
---|
| 507 | vertices = [a, b, c, d] |
---|
| 508 | triangles = [ [1,0,2], [2,3,1] ] #bac, cdb |
---|
| 509 | |
---|
| 510 | #Far away point |
---|
| 511 | d7 = [-1., -1.] |
---|
| 512 | |
---|
| 513 | point_coords = [ d7] |
---|
| 514 | interp = Interpolate(vertices, triangles) |
---|
| 515 | |
---|
| 516 | #Known values at vertices |
---|
| 517 | #Functions are x+y, x+2y, 2x+y, x-y-5 |
---|
| 518 | f = [ [0., 0., 0., -5.], # (0,0) |
---|
| 519 | [5., 10., 5., -10.], # (0,5) |
---|
| 520 | [5., 5., 10.0, 0.], # (5,0) |
---|
| 521 | [10., 15., 15., -5.]] # (5,5) |
---|
| 522 | |
---|
[3018] | 523 | z = interp.interpolate(f, point_coords) #, verbose=True) |
---|
[2655] | 524 | answer = array([ [INF, INF, INF, INF]]) # (-1,-1) |
---|
[2189] | 525 | |
---|
| 526 | #print "***********" |
---|
| 527 | #print "z",z |
---|
| 528 | #print "answer",answer |
---|
| 529 | #print "***********" |
---|
| 530 | |
---|
| 531 | #Should an error message be returned if points are outside |
---|
[3018] | 532 | # of the mesh? |
---|
| 533 | # A warning message is printed, if verbose is on. |
---|
[2189] | 534 | |
---|
[2655] | 535 | for i in range(4): |
---|
| 536 | self.failUnless( z[0,i] == answer[0,i], 'Fail!') |
---|
| 537 | |
---|
[2879] | 538 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 539 | |
---|
| 540 | #print "z",z |
---|
| 541 | #print "answer",answer |
---|
| 542 | |
---|
[2881] | 543 | for i in range(4): |
---|
| 544 | self.failUnless( z[0,i] == answer[0,i], 'Fail!') |
---|
| 545 | |
---|
| 546 | |
---|
[2189] | 547 | def test_interpolate_attributes_to_pointsIV(self): |
---|
| 548 | a = [-1.0, 0.0] |
---|
| 549 | b = [3.0, 4.0] |
---|
| 550 | c = [4.0, 1.0] |
---|
| 551 | d = [-3.0, 2.0] #3 |
---|
| 552 | e = [-1.0, -2.0] |
---|
| 553 | f = [1.0, -2.0] #5 |
---|
| 554 | |
---|
| 555 | vertices = [a, b, c, d,e,f] |
---|
| 556 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 557 | |
---|
| 558 | |
---|
| 559 | point_coords = [[-2.0, 2.0], |
---|
| 560 | [-1.0, 1.0], |
---|
| 561 | [0.0, 2.0], |
---|
| 562 | [1.0, 1.0], |
---|
| 563 | [2.0, 1.0], |
---|
| 564 | [0.0, 0.0], |
---|
| 565 | [1.0, 0.0], |
---|
| 566 | [0.0, -1.0], |
---|
| 567 | [-0.2, -0.5], |
---|
| 568 | [-0.9, -1.5], |
---|
| 569 | [0.5, -1.9], |
---|
| 570 | [3.0, 1.0]] |
---|
| 571 | |
---|
| 572 | interp = Interpolate(vertices, triangles) |
---|
| 573 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 574 | f = transpose(f) |
---|
| 575 | #print "f",f |
---|
| 576 | z = interp.interpolate(f, point_coords) |
---|
| 577 | answer = [linear_function(point_coords), |
---|
| 578 | 2*linear_function(point_coords) ] |
---|
| 579 | answer = transpose(answer) |
---|
| 580 | #print "z",z |
---|
| 581 | #print "answer",answer |
---|
| 582 | assert allclose(z, answer) |
---|
| 583 | |
---|
[2879] | 584 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
[2189] | 585 | |
---|
[2879] | 586 | #print "z",z |
---|
| 587 | #print "answer",answer |
---|
| 588 | assert allclose(z, answer) |
---|
| 589 | |
---|
[2189] | 590 | def test_interpolate_blocking(self): |
---|
| 591 | a = [-1.0, 0.0] |
---|
| 592 | b = [3.0, 4.0] |
---|
| 593 | c = [4.0, 1.0] |
---|
| 594 | d = [-3.0, 2.0] #3 |
---|
| 595 | e = [-1.0, -2.0] |
---|
| 596 | f = [1.0, -2.0] #5 |
---|
| 597 | |
---|
| 598 | vertices = [a, b, c, d,e,f] |
---|
| 599 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 600 | |
---|
| 601 | |
---|
| 602 | point_coords = [[-2.0, 2.0], |
---|
| 603 | [-1.0, 1.0], |
---|
| 604 | [0.0, 2.0], |
---|
| 605 | [1.0, 1.0], |
---|
| 606 | [2.0, 1.0], |
---|
| 607 | [0.0, 0.0], |
---|
| 608 | [1.0, 0.0], |
---|
| 609 | [0.0, -1.0], |
---|
| 610 | [-0.2, -0.5], |
---|
| 611 | [-0.9, -1.5], |
---|
| 612 | [0.5, -1.9], |
---|
| 613 | [3.0, 1.0]] |
---|
| 614 | |
---|
| 615 | interp = Interpolate(vertices, triangles) |
---|
| 616 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 617 | f = transpose(f) |
---|
| 618 | #print "f",f |
---|
| 619 | for blocking_max in range(len(point_coords)+2): |
---|
| 620 | #if True: |
---|
| 621 | # blocking_max = 5 |
---|
| 622 | z = interp.interpolate(f, point_coords, |
---|
| 623 | start_blocking_len=blocking_max) |
---|
| 624 | answer = [linear_function(point_coords), |
---|
| 625 | 2*linear_function(point_coords) ] |
---|
| 626 | answer = transpose(answer) |
---|
| 627 | #print "z",z |
---|
| 628 | #print "answer",answer |
---|
| 629 | assert allclose(z, answer) |
---|
[2660] | 630 | |
---|
| 631 | f = array([linear_function(vertices),2*linear_function(vertices), |
---|
| 632 | 2*linear_function(vertices) - 100 ]) |
---|
| 633 | f = transpose(f) |
---|
| 634 | #print "f",f |
---|
| 635 | for blocking_max in range(len(point_coords)+2): |
---|
| 636 | #if True: |
---|
| 637 | # blocking_max = 5 |
---|
| 638 | z = interp.interpolate(f, point_coords, |
---|
| 639 | start_blocking_len=blocking_max) |
---|
| 640 | answer = array([linear_function(point_coords), |
---|
| 641 | 2*linear_function(point_coords) , |
---|
| 642 | 2*linear_function(point_coords)-100 ]) |
---|
| 643 | z = transpose(z) |
---|
| 644 | #print "z",z |
---|
| 645 | #print "answer",answer |
---|
| 646 | assert allclose(z, answer) |
---|
[2189] | 647 | |
---|
[2787] | 648 | def test_interpolate_geo_spatial(self): |
---|
| 649 | a = [-1.0, 0.0] |
---|
| 650 | b = [3.0, 4.0] |
---|
| 651 | c = [4.0, 1.0] |
---|
| 652 | d = [-3.0, 2.0] #3 |
---|
| 653 | e = [-1.0, -2.0] |
---|
| 654 | f = [1.0, -2.0] #5 |
---|
| 655 | |
---|
| 656 | vertices = [a, b, c, d,e,f] |
---|
| 657 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 658 | |
---|
| 659 | |
---|
| 660 | point_coords_absolute = [[-2.0, 2.0], |
---|
| 661 | [-1.0, 1.0], |
---|
| 662 | [0.0, 2.0], |
---|
| 663 | [1.0, 1.0], |
---|
| 664 | [2.0, 1.0], |
---|
| 665 | [0.0, 0.0], |
---|
| 666 | [1.0, 0.0], |
---|
| 667 | [0.0, -1.0], |
---|
| 668 | [-0.2, -0.5], |
---|
| 669 | [-0.9, -1.5], |
---|
| 670 | [0.5, -1.9], |
---|
| 671 | [3.0, 1.0]] |
---|
| 672 | |
---|
| 673 | geo = Geo_reference(57,100, 500) |
---|
| 674 | point_coords = geo.change_points_geo_ref(point_coords_absolute) |
---|
| 675 | point_coords = Geospatial_data(point_coords,geo_reference = geo) |
---|
| 676 | |
---|
| 677 | interp = Interpolate(vertices, triangles) |
---|
| 678 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 679 | f = transpose(f) |
---|
| 680 | #print "f",f |
---|
| 681 | for blocking_max in range(14): |
---|
| 682 | #if True: |
---|
| 683 | # blocking_max = 5 |
---|
| 684 | z = interp.interpolate(f, point_coords, |
---|
| 685 | start_blocking_len=blocking_max) |
---|
| 686 | answer = [linear_function(point_coords.get_data_points( \ |
---|
| 687 | absolute = True)), |
---|
| 688 | 2*linear_function(point_coords.get_data_points( \ |
---|
| 689 | absolute = True)) ] |
---|
| 690 | answer = transpose(answer) |
---|
| 691 | #print "z",z |
---|
| 692 | #print "answer",answer |
---|
| 693 | assert allclose(z, answer) |
---|
| 694 | |
---|
| 695 | f = array([linear_function(vertices),2*linear_function(vertices), |
---|
| 696 | 2*linear_function(vertices) - 100 ]) |
---|
| 697 | f = transpose(f) |
---|
| 698 | #print "f",f |
---|
| 699 | for blocking_max in range(14): |
---|
| 700 | #if True: |
---|
| 701 | # blocking_max = 5 |
---|
| 702 | z = interp.interpolate(f, point_coords, |
---|
| 703 | start_blocking_len=blocking_max) |
---|
| 704 | answer = array([linear_function(point_coords.get_data_points( \ |
---|
| 705 | absolute = True)), |
---|
| 706 | 2*linear_function(point_coords.get_data_points( \ |
---|
| 707 | absolute = True)) , |
---|
| 708 | 2*linear_function(point_coords.get_data_points( \ |
---|
| 709 | absolute = True))-100 ]) |
---|
| 710 | z = transpose(z) |
---|
| 711 | #print "z",z |
---|
| 712 | #print "answer",answer |
---|
| 713 | assert allclose(z, answer) |
---|
| 714 | |
---|
[2879] | 715 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 716 | |
---|
| 717 | #print "z",z |
---|
| 718 | #print "answer",answer |
---|
| 719 | assert allclose(z, answer) |
---|
| 720 | |
---|
[2787] | 721 | def test_interpolate_geo_spatial(self): |
---|
| 722 | a = [-1.0, 0.0] |
---|
| 723 | b = [3.0, 4.0] |
---|
| 724 | c = [4.0, 1.0] |
---|
| 725 | d = [-3.0, 2.0] #3 |
---|
| 726 | e = [-1.0, -2.0] |
---|
| 727 | f = [1.0, -2.0] #5 |
---|
| 728 | |
---|
| 729 | vertices = [a, b, c, d,e,f] |
---|
| 730 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 731 | |
---|
| 732 | |
---|
| 733 | point_coords_absolute = [[-2.0, 2.0], |
---|
| 734 | [-1.0, 1.0], |
---|
| 735 | [0.0, 2.0], |
---|
| 736 | [1.0, 1.0], |
---|
| 737 | [2.0, 1.0], |
---|
| 738 | [0.0, 0.0], |
---|
| 739 | [1.0, 0.0], |
---|
| 740 | [0.0, -1.0], |
---|
| 741 | [-0.2, -0.5], |
---|
| 742 | [-0.9, -1.5], |
---|
| 743 | [0.5, -1.9], |
---|
| 744 | [3.0, 1.0]] |
---|
| 745 | |
---|
| 746 | geo = Geo_reference(57,100, 500) |
---|
| 747 | point_coords = geo.change_points_geo_ref(point_coords_absolute) |
---|
| 748 | point_coords = Geospatial_data(point_coords,geo_reference = geo) |
---|
| 749 | |
---|
| 750 | interp = Interpolate(vertices, triangles) |
---|
| 751 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 752 | f = transpose(f) |
---|
| 753 | #print "f",f |
---|
| 754 | z = interp.interpolate_block(f, point_coords) |
---|
| 755 | answer = [linear_function(point_coords.get_data_points( \ |
---|
| 756 | absolute = True)), |
---|
| 757 | 2*linear_function(point_coords.get_data_points( \ |
---|
| 758 | absolute = True)) ] |
---|
| 759 | answer = transpose(answer) |
---|
| 760 | #print "z",z |
---|
| 761 | #print "answer",answer |
---|
| 762 | assert allclose(z, answer) |
---|
| 763 | |
---|
[2879] | 764 | z = interp.interpolate(f, point_coords, start_blocking_len = 2) |
---|
| 765 | |
---|
| 766 | #print "z",z |
---|
| 767 | #print "answer",answer |
---|
| 768 | assert allclose(z, answer) |
---|
| 769 | |
---|
| 770 | |
---|
[2189] | 771 | def test_interpolate_reuse(self): |
---|
| 772 | a = [-1.0, 0.0] |
---|
| 773 | b = [3.0, 4.0] |
---|
| 774 | c = [4.0, 1.0] |
---|
| 775 | d = [-3.0, 2.0] #3 |
---|
| 776 | e = [-1.0, -2.0] |
---|
| 777 | f = [1.0, -2.0] #5 |
---|
| 778 | |
---|
| 779 | vertices = [a, b, c, d,e,f] |
---|
| 780 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 781 | |
---|
| 782 | |
---|
| 783 | point_coords = [[-2.0, 2.0], |
---|
| 784 | [-1.0, 1.0], |
---|
| 785 | [0.0, 2.0], |
---|
| 786 | [1.0, 1.0], |
---|
| 787 | [2.0, 1.0], |
---|
| 788 | [0.0, 0.0], |
---|
| 789 | [1.0, 0.0], |
---|
| 790 | [0.0, -1.0], |
---|
| 791 | [-0.2, -0.5], |
---|
| 792 | [-0.9, -1.5], |
---|
| 793 | [0.5, -1.9], |
---|
| 794 | [3.0, 1.0]] |
---|
| 795 | |
---|
| 796 | interp = Interpolate(vertices, triangles) |
---|
| 797 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 798 | f = transpose(f) |
---|
| 799 | z = interp.interpolate(f, point_coords, |
---|
| 800 | start_blocking_len=20) |
---|
| 801 | answer = [linear_function(point_coords), |
---|
| 802 | 2*linear_function(point_coords) ] |
---|
| 803 | answer = transpose(answer) |
---|
| 804 | #print "z",z |
---|
| 805 | #print "answer",answer |
---|
| 806 | assert allclose(z, answer) |
---|
[2201] | 807 | assert allclose(interp._A_can_be_reused, True) |
---|
[2189] | 808 | |
---|
| 809 | z = interp.interpolate(f) |
---|
| 810 | assert allclose(z, answer) |
---|
| 811 | |
---|
| 812 | # This causes blocking to occur. |
---|
| 813 | z = interp.interpolate(f, start_blocking_len=10) |
---|
| 814 | assert allclose(z, answer) |
---|
[2201] | 815 | assert allclose(interp._A_can_be_reused, False) |
---|
[2189] | 816 | |
---|
| 817 | #A is recalculated |
---|
| 818 | z = interp.interpolate(f) |
---|
| 819 | assert allclose(z, answer) |
---|
[2201] | 820 | assert allclose(interp._A_can_be_reused, True) |
---|
| 821 | |
---|
[2189] | 822 | interp = Interpolate(vertices, triangles) |
---|
| 823 | #Must raise an exception, no points specified |
---|
| 824 | try: |
---|
| 825 | z = interp.interpolate(f) |
---|
| 826 | except: |
---|
| 827 | pass |
---|
| 828 | |
---|
| 829 | |
---|
[2394] | 830 | |
---|
| 831 | def test_interpolation_interface_time_only(self): |
---|
| 832 | |
---|
[2655] | 833 | # Test spatio-temporal interpolation |
---|
| 834 | # Test that spatio temporal function performs the correct |
---|
| 835 | # interpolations in both time and space |
---|
| 836 | |
---|
[2394] | 837 | |
---|
[2655] | 838 | |
---|
[2394] | 839 | #Three timesteps |
---|
| 840 | time = [1.0, 5.0, 6.0] |
---|
| 841 | |
---|
| 842 | |
---|
| 843 | #One quantity |
---|
| 844 | Q = zeros( (3,6), Float ) |
---|
| 845 | |
---|
| 846 | #Linear in time and space |
---|
| 847 | a = [0.0, 0.0] |
---|
| 848 | b = [0.0, 2.0] |
---|
| 849 | c = [2.0, 0.0] |
---|
| 850 | d = [0.0, 4.0] |
---|
| 851 | e = [2.0, 2.0] |
---|
| 852 | f = [4.0, 0.0] |
---|
| 853 | |
---|
| 854 | points = [a, b, c, d, e, f] |
---|
| 855 | |
---|
| 856 | for i, t in enumerate(time): |
---|
| 857 | Q[i, :] = t*linear_function(points) |
---|
| 858 | |
---|
| 859 | |
---|
| 860 | #Check basic interpolation of one quantity using averaging |
---|
| 861 | #(no interpolation points or spatial info) |
---|
[2563] | 862 | I = Interpolation_function(time, [mean(Q[0,:]), |
---|
[2394] | 863 | mean(Q[1,:]), |
---|
| 864 | mean(Q[2,:])]) |
---|
| 865 | |
---|
| 866 | |
---|
| 867 | |
---|
| 868 | #Check temporal interpolation |
---|
| 869 | for i in [0,1,2]: |
---|
| 870 | assert allclose(I(time[i]), mean(Q[i,:])) |
---|
| 871 | |
---|
| 872 | #Midway |
---|
| 873 | assert allclose(I( (time[0] + time[1])/2 ), |
---|
| 874 | (I(time[0]) + I(time[1]))/2 ) |
---|
| 875 | |
---|
| 876 | assert allclose(I( (time[1] + time[2])/2 ), |
---|
| 877 | (I(time[1]) + I(time[2]))/2 ) |
---|
| 878 | |
---|
| 879 | assert allclose(I( (time[0] + time[2])/2 ), |
---|
| 880 | (I(time[0]) + I(time[2]))/2 ) |
---|
| 881 | |
---|
| 882 | #1/3 |
---|
| 883 | assert allclose(I( (time[0] + time[2])/3 ), |
---|
| 884 | (I(time[0]) + I(time[2]))/3 ) |
---|
| 885 | |
---|
| 886 | |
---|
| 887 | #Out of bounds checks |
---|
| 888 | try: |
---|
| 889 | I(time[0]-1) |
---|
| 890 | except: |
---|
| 891 | pass |
---|
| 892 | else: |
---|
| 893 | raise 'Should raise exception' |
---|
| 894 | |
---|
| 895 | try: |
---|
| 896 | I(time[-1]+1) |
---|
| 897 | except: |
---|
| 898 | pass |
---|
| 899 | else: |
---|
| 900 | raise 'Should raise exception' |
---|
| 901 | |
---|
| 902 | |
---|
| 903 | |
---|
| 904 | |
---|
| 905 | def test_interpolation_interface_spatial_only(self): |
---|
[2655] | 906 | # Test spatio-temporal interpolation with constant time |
---|
| 907 | |
---|
[2394] | 908 | #Three timesteps |
---|
| 909 | time = [1.0, 5.0, 6.0] |
---|
| 910 | |
---|
| 911 | |
---|
| 912 | #Setup mesh used to represent fitted function |
---|
| 913 | a = [0.0, 0.0] |
---|
| 914 | b = [0.0, 2.0] |
---|
| 915 | c = [2.0, 0.0] |
---|
| 916 | d = [0.0, 4.0] |
---|
| 917 | e = [2.0, 2.0] |
---|
| 918 | f = [4.0, 0.0] |
---|
| 919 | |
---|
| 920 | points = [a, b, c, d, e, f] |
---|
| 921 | #bac, bce, ecf, dbe |
---|
| 922 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 923 | |
---|
| 924 | |
---|
| 925 | #New datapoints where interpolated values are sought |
---|
| 926 | interpolation_points = [[ 0.0, 0.0], |
---|
| 927 | [ 0.5, 0.5], |
---|
| 928 | [ 0.7, 0.7], |
---|
| 929 | [ 1.0, 0.5], |
---|
| 930 | [ 2.0, 0.4], |
---|
| 931 | [ 2.8, 1.2]] |
---|
| 932 | |
---|
| 933 | |
---|
| 934 | #One quantity linear in space |
---|
| 935 | Q = linear_function(points) |
---|
| 936 | |
---|
| 937 | |
---|
| 938 | #Check interpolation of one quantity using interpolaton points |
---|
[2563] | 939 | I = Interpolation_function(time, Q, |
---|
[2394] | 940 | vertex_coordinates = points, |
---|
| 941 | triangles = triangles, |
---|
| 942 | interpolation_points = interpolation_points, |
---|
| 943 | verbose = False) |
---|
| 944 | |
---|
| 945 | |
---|
| 946 | answer = linear_function(interpolation_points) |
---|
| 947 | |
---|
| 948 | t = time[0] |
---|
| 949 | for j in range(50): #t in [1, 6] |
---|
| 950 | for id in range(len(interpolation_points)): |
---|
| 951 | assert allclose(I(t, id), answer[id]) |
---|
| 952 | |
---|
| 953 | t += 0.1 |
---|
| 954 | |
---|
| 955 | |
---|
| 956 | try: |
---|
| 957 | I(1) |
---|
| 958 | except: |
---|
| 959 | pass |
---|
| 960 | else: |
---|
| 961 | raise 'Should raise exception' |
---|
| 962 | |
---|
| 963 | |
---|
| 964 | |
---|
| 965 | def test_interpolation_interface(self): |
---|
[2655] | 966 | # Test spatio-temporal interpolation |
---|
| 967 | # Test that spatio temporal function performs the correct |
---|
| 968 | # interpolations in both time and space |
---|
| 969 | |
---|
[2394] | 970 | #Three timesteps |
---|
[2659] | 971 | time = [1.0, 5.0, 6.0] |
---|
[2394] | 972 | |
---|
| 973 | #Setup mesh used to represent fitted function |
---|
| 974 | a = [0.0, 0.0] |
---|
| 975 | b = [0.0, 2.0] |
---|
| 976 | c = [2.0, 0.0] |
---|
| 977 | d = [0.0, 4.0] |
---|
| 978 | e = [2.0, 2.0] |
---|
| 979 | f = [4.0, 0.0] |
---|
| 980 | |
---|
| 981 | points = [a, b, c, d, e, f] |
---|
| 982 | #bac, bce, ecf, dbe |
---|
| 983 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 984 | |
---|
| 985 | |
---|
| 986 | #New datapoints where interpolated values are sought |
---|
| 987 | interpolation_points = [[ 0.0, 0.0], |
---|
| 988 | [ 0.5, 0.5], |
---|
| 989 | [ 0.7, 0.7], |
---|
| 990 | [ 1.0, 0.5], |
---|
| 991 | [ 2.0, 0.4], |
---|
| 992 | [ 2.8, 1.2]] |
---|
| 993 | |
---|
| 994 | #One quantity |
---|
| 995 | Q = zeros( (3,6), Float ) |
---|
| 996 | |
---|
| 997 | #Linear in time and space |
---|
| 998 | for i, t in enumerate(time): |
---|
| 999 | Q[i, :] = t*linear_function(points) |
---|
| 1000 | |
---|
| 1001 | #Check interpolation of one quantity using interpolaton points) |
---|
[2563] | 1002 | I = Interpolation_function(time, Q, |
---|
[2394] | 1003 | vertex_coordinates = points, |
---|
| 1004 | triangles = triangles, |
---|
| 1005 | interpolation_points = interpolation_points, |
---|
| 1006 | verbose = False) |
---|
| 1007 | |
---|
| 1008 | answer = linear_function(interpolation_points) |
---|
| 1009 | |
---|
| 1010 | t = time[0] |
---|
| 1011 | for j in range(50): #t in [1, 6] |
---|
| 1012 | for id in range(len(interpolation_points)): |
---|
| 1013 | assert allclose(I(t, id), t*answer[id]) |
---|
| 1014 | t += 0.1 |
---|
| 1015 | |
---|
| 1016 | try: |
---|
| 1017 | I(1) |
---|
| 1018 | except: |
---|
| 1019 | pass |
---|
| 1020 | else: |
---|
| 1021 | raise 'Should raise exception' |
---|
| 1022 | |
---|
| 1023 | |
---|
[2750] | 1024 | def test_interpolation_precompute_points(self): |
---|
[2684] | 1025 | # looking at a discrete mesh |
---|
| 1026 | # |
---|
| 1027 | |
---|
| 1028 | #Three timesteps |
---|
| 1029 | time = [0.0, 60.0] |
---|
| 1030 | |
---|
| 1031 | #Setup mesh used to represent fitted function |
---|
| 1032 | points = [[ 15., -20.], |
---|
| 1033 | [ 15., 10.], |
---|
| 1034 | [ 0., -20.], |
---|
| 1035 | [ 0., 10.], |
---|
| 1036 | [ 0., -20.], |
---|
| 1037 | [ 15., 10.]] |
---|
| 1038 | |
---|
| 1039 | triangles = [[0, 1, 2], |
---|
| 1040 | [3, 4, 5]] |
---|
| 1041 | |
---|
| 1042 | #New datapoints where interpolated values are sought |
---|
| 1043 | interpolation_points = [[ 1., 0.], [0.,1.]] |
---|
| 1044 | |
---|
| 1045 | #One quantity |
---|
| 1046 | Q = zeros( (2,6), Float ) |
---|
| 1047 | |
---|
| 1048 | #Linear in time and space |
---|
| 1049 | for i, t in enumerate(time): |
---|
| 1050 | Q[i, :] = t*linear_function(points) |
---|
| 1051 | #print "Q", Q |
---|
| 1052 | |
---|
| 1053 | |
---|
| 1054 | |
---|
| 1055 | interp = Interpolate(points, triangles) |
---|
| 1056 | f = array([linear_function(points),2*linear_function(points) ]) |
---|
| 1057 | f = transpose(f) |
---|
| 1058 | #print "f",f |
---|
| 1059 | z = interp.interpolate(f, interpolation_points) |
---|
| 1060 | answer = [linear_function(interpolation_points), |
---|
| 1061 | 2*linear_function(interpolation_points) ] |
---|
| 1062 | answer = transpose(answer) |
---|
[2750] | 1063 | #print "z",z |
---|
| 1064 | #print "answer",answer |
---|
[2684] | 1065 | assert allclose(z, answer) |
---|
| 1066 | |
---|
| 1067 | |
---|
| 1068 | #Check interpolation of one quantity using interpolaton points) |
---|
| 1069 | I = Interpolation_function(time, Q, |
---|
| 1070 | vertex_coordinates = points, |
---|
| 1071 | triangles = triangles, |
---|
| 1072 | interpolation_points = interpolation_points, |
---|
| 1073 | verbose = False) |
---|
[2755] | 1074 | |
---|
[2750] | 1075 | #print "I.precomputed_values", I.precomputed_values |
---|
[2755] | 1076 | |
---|
| 1077 | msg = 'Interpolation failed' |
---|
| 1078 | assert allclose(I.precomputed_values['Attribute'][1], [60, 60]), msg |
---|
| 1079 | #self.failUnless( I.precomputed_values['Attribute'][1] == 60.0, |
---|
| 1080 | # ' failed') |
---|
[2684] | 1081 | |
---|
[2659] | 1082 | def test_interpolation_function_outside_point(self): |
---|
| 1083 | # Test spatio-temporal interpolation |
---|
| 1084 | # Test that spatio temporal function performs the correct |
---|
| 1085 | # interpolations in both time and space |
---|
| 1086 | |
---|
| 1087 | #Three timesteps |
---|
| 1088 | time = [1.0, 5.0, 6.0] |
---|
[2394] | 1089 | |
---|
[2659] | 1090 | #Setup mesh used to represent fitted function |
---|
| 1091 | a = [0.0, 0.0] |
---|
| 1092 | b = [0.0, 2.0] |
---|
| 1093 | c = [2.0, 0.0] |
---|
| 1094 | d = [0.0, 4.0] |
---|
| 1095 | e = [2.0, 2.0] |
---|
| 1096 | f = [4.0, 0.0] |
---|
[2394] | 1097 | |
---|
[2659] | 1098 | points = [a, b, c, d, e, f] |
---|
| 1099 | #bac, bce, ecf, dbe |
---|
| 1100 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
[2577] | 1101 | |
---|
| 1102 | |
---|
[2659] | 1103 | #New datapoints where interpolated values are sought |
---|
| 1104 | interpolation_points = [[ 0.0, 0.0], |
---|
| 1105 | [ 0.5, 0.5], |
---|
| 1106 | [ 0.7, 0.7], |
---|
| 1107 | [ 1.0, 0.5], |
---|
| 1108 | [ 2.0, 0.4], |
---|
| 1109 | [ 545354534, 4354354353]] # outside the mesh |
---|
| 1110 | |
---|
| 1111 | #One quantity |
---|
| 1112 | Q = zeros( (3,6), Float ) |
---|
| 1113 | |
---|
| 1114 | #Linear in time and space |
---|
| 1115 | for i, t in enumerate(time): |
---|
| 1116 | Q[i, :] = t*linear_function(points) |
---|
| 1117 | |
---|
| 1118 | #Check interpolation of one quantity using interpolaton points) |
---|
| 1119 | I = Interpolation_function(time, Q, |
---|
| 1120 | vertex_coordinates = points, |
---|
| 1121 | triangles = triangles, |
---|
| 1122 | interpolation_points = interpolation_points, |
---|
| 1123 | verbose = False) |
---|
| 1124 | |
---|
| 1125 | answer = linear_function(interpolation_points) |
---|
| 1126 | |
---|
| 1127 | t = time[0] |
---|
| 1128 | for j in range(50): #t in [1, 6] |
---|
| 1129 | for id in range(len(interpolation_points)-1): |
---|
| 1130 | assert allclose(I(t, id), t*answer[id]) |
---|
| 1131 | t += 0.1 |
---|
| 1132 | |
---|
| 1133 | # Now test the point outside the mesh |
---|
| 1134 | t = time[0] |
---|
| 1135 | for j in range(50): #t in [1, 6] |
---|
| 1136 | self.failUnless(I(t, 5) == INF, 'Fail!') |
---|
| 1137 | t += 0.1 |
---|
| 1138 | |
---|
| 1139 | try: |
---|
| 1140 | I(1) |
---|
| 1141 | except: |
---|
| 1142 | pass |
---|
| 1143 | else: |
---|
| 1144 | raise 'Should raise exception' |
---|
| 1145 | |
---|
[2995] | 1146 | |
---|
| 1147 | def test_interpolation_function_time(self): |
---|
[3019] | 1148 | #Test a long time series with an error in it (this did cause an |
---|
| 1149 | #error once) |
---|
| 1150 | |
---|
[2995] | 1151 | |
---|
| 1152 | time = array(\ |
---|
| 1153 | [0.00000000e+00, 5.00000000e-02, 1.00000000e-01, 1.50000000e-01, |
---|
| 1154 | 2.00000000e-01, 2.50000000e-01, 3.00000000e-01, 3.50000000e-01, |
---|
| 1155 | 4.00000000e-01, 4.50000000e-01, 5.00000000e-01, 5.50000000e-01, |
---|
| 1156 | 6.00000000e-01, 6.50000000e-01, 7.00000000e-01, 7.50000000e-01, |
---|
| 1157 | 8.00000000e-01, 8.50000000e-01, 9.00000000e-01, 9.50000000e-01, |
---|
| 1158 | 1.00000000e-00, 1.05000000e+00, 1.10000000e+00, 1.15000000e+00, |
---|
| 1159 | 1.20000000e+00, 1.25000000e+00, 1.30000000e+00, 1.35000000e+00, |
---|
| 1160 | 1.40000000e+00, 1.45000000e+00, 1.50000000e+00, 1.55000000e+00, |
---|
| 1161 | 1.60000000e+00, 1.65000000e+00, 1.70000000e+00, 1.75000000e+00, |
---|
| 1162 | 1.80000000e+00, 1.85000000e+00, 1.90000000e+00, 1.95000000e+00, |
---|
| 1163 | 2.00000000e+00, 2.05000000e+00, 2.10000000e+00, 2.15000000e+00, |
---|
| 1164 | 2.20000000e+00, 2.25000000e+00, 2.30000000e+00, 2.35000000e+00, |
---|
| 1165 | 2.40000000e+00, 2.45000000e+00, 2.50000000e+00, 2.55000000e+00, |
---|
| 1166 | 2.60000000e+00, 2.65000000e+00, 2.70000000e+00, 2.75000000e+00, |
---|
| 1167 | 2.80000000e+00, 2.85000000e+00, 2.90000000e+00, 2.95000000e+00, |
---|
| 1168 | 3.00000000e+00, 3.05000000e+00, 9.96920997e+36, 3.15000000e+00, |
---|
| 1169 | 3.20000000e+00, 3.25000000e+00, 3.30000000e+00, 3.35000000e+00, |
---|
| 1170 | 3.40000000e+00, 3.45000000e+00, 3.50000000e+00, 3.55000000e+00, |
---|
| 1171 | 3.60000000e+00, 3.65000000e+00, 3.70000000e+00, 3.75000000e+00, |
---|
| 1172 | 3.80000000e+00, 3.85000000e+00, 3.90000000e+00, 3.95000000e+00, |
---|
| 1173 | 4.00000000e+00, 4.05000000e+00, 4.10000000e+00, 4.15000000e+00, |
---|
| 1174 | 4.20000000e+00, 4.25000000e+00, 4.30000000e+00, 4.35000000e+00, |
---|
| 1175 | 4.40000000e+00, 4.45000000e+00, 4.50000000e+00, 4.55000000e+00, |
---|
| 1176 | 4.60000000e+00, 4.65000000e+00, 4.70000000e+00, 4.75000000e+00, |
---|
| 1177 | 4.80000000e+00, 4.85000000e+00, 4.90000000e+00, 4.95000000e+00, |
---|
| 1178 | 5.00000000e+00, 5.05000000e+00, 5.10000000e+00, 5.15000000e+00, |
---|
| 1179 | 5.20000000e+00, 5.25000000e+00, 5.30000000e+00, 5.35000000e+00, |
---|
| 1180 | 5.40000000e+00, 5.45000000e+00, 5.50000000e+00, 5.55000000e+00, |
---|
| 1181 | 5.60000000e+00, 5.65000000e+00, 5.70000000e+00, 5.75000000e+00, |
---|
| 1182 | 5.80000000e+00, 5.85000000e+00, 5.90000000e+00, 5.95000000e+00, |
---|
| 1183 | 6.00000000e+00, 6.05000000e+00, 6.10000000e+00, 6.15000000e+00, |
---|
| 1184 | 6.20000000e+00, 6.25000000e+00, 6.30000000e+00, 6.35000000e+00, |
---|
| 1185 | 6.40000000e+00, 6.45000000e+00, 6.50000000e+00, 6.55000000e+00, |
---|
| 1186 | 6.60000000e+00, 6.65000000e+00, 6.70000000e+00, 6.75000000e+00, |
---|
| 1187 | 6.80000000e+00, 6.85000000e+00, 6.90000000e+00, 6.95000000e+00, |
---|
| 1188 | 7.00000000e+00, 7.05000000e+00, 7.10000000e+00, 7.15000000e+00, |
---|
| 1189 | 7.20000000e+00, 7.25000000e+00, 7.30000000e+00, 7.35000000e+00, |
---|
| 1190 | 7.40000000e+00, 7.45000000e+00, 7.50000000e+00, 7.55000000e+00, |
---|
| 1191 | 7.60000000e+00, 7.65000000e+00, 7.70000000e+00, 7.75000000e+00, |
---|
| 1192 | 7.80000000e+00, 7.85000000e+00, 7.90000000e+00, 7.95000000e+00, |
---|
| 1193 | 8.00000000e+00, 8.05000000e+00, 8.10000000e+00, 8.15000000e+00, |
---|
| 1194 | 8.20000000e+00, 8.25000000e+00, 8.30000000e+00, 8.35000000e+00, |
---|
| 1195 | 8.40000000e+00, 8.45000000e+00, 8.50000000e+00, 8.55000000e+00, |
---|
| 1196 | 8.60000000e+00, 8.65000000e+00, 8.70000000e+00, 8.75000000e+00, |
---|
| 1197 | 8.80000000e+00, 8.85000000e+00, 8.90000000e+00, 8.95000000e+00, |
---|
| 1198 | 9.00000000e+00, 9.05000000e+00, 9.10000000e+00, 9.15000000e+00, |
---|
| 1199 | 9.20000000e+00, 9.25000000e+00, 9.30000000e+00, 9.35000000e+00, |
---|
| 1200 | 9.40000000e+00, 9.45000000e+00, 9.50000000e+00, 9.55000000e+00, |
---|
| 1201 | 9.60000000e+00, 9.65000000e+00, 9.70000000e+00, 9.75000000e+00, |
---|
| 1202 | 9.80000000e+00, 9.85000000e+00, 9.90000000e+00, 9.95000000e+00, |
---|
| 1203 | 1.00000000e+01, 1.00500000e+01, 1.01000000e+01, 1.01500000e+01, |
---|
| 1204 | 1.02000000e+01, 1.02500000e+01, 1.03000000e+01, 1.03500000e+01, |
---|
| 1205 | 1.04000000e+01, 1.04500000e+01, 1.05000000e+01, 1.05500000e+01, |
---|
| 1206 | 1.06000000e+01, 1.06500000e+01, 1.07000000e+01, 1.07500000e+01, |
---|
| 1207 | 1.08000000e+01, 1.08500000e+01, 1.09000000e+01, 1.09500000e+01, |
---|
| 1208 | 1.10000000e+01, 1.10500000e+01, 1.11000000e+01, 1.11500000e+01, |
---|
| 1209 | 1.12000000e+01, 1.12500000e+01, 1.13000000e+01, 1.13500000e+01, |
---|
| 1210 | 1.14000000e+01, 1.14500000e+01, 1.15000000e+01, 1.15500000e+01, |
---|
| 1211 | 1.16000000e+01, 1.16500000e+01, 1.17000000e+01, 1.17500000e+01, |
---|
| 1212 | 1.18000000e+01, 1.18500000e+01, 1.19000000e+01, 1.19500000e+01, |
---|
| 1213 | 1.20000000e+01, 1.20500000e+01, 1.21000000e+01, 1.21500000e+01, |
---|
| 1214 | 1.22000000e+01, 1.22500000e+01, 1.23000000e+01, 1.23500000e+01, |
---|
| 1215 | 1.24000000e+01, 1.24500000e+01, 1.25000000e+01, 1.25500000e+01, |
---|
| 1216 | 1.26000000e+01, 1.26500000e+01, 1.27000000e+01, 1.27500000e+01, |
---|
| 1217 | 1.28000000e+01, 1.28500000e+01, 1.29000000e+01, 1.29500000e+01, |
---|
| 1218 | 1.30000000e+01, 1.30500000e+01, 1.31000000e+01, 1.31500000e+01, |
---|
| 1219 | 1.32000000e+01, 1.32500000e+01, 1.33000000e+01, 1.33500000e+01, |
---|
| 1220 | 1.34000000e+01, 1.34500000e+01, 1.35000000e+01, 1.35500000e+01, |
---|
| 1221 | 1.36000000e+01, 1.36500000e+01, 1.37000000e+01, 1.37500000e+01, |
---|
| 1222 | 1.38000000e+01, 1.38500000e+01, 1.39000000e+01, 1.39500000e+01, |
---|
| 1223 | 1.40000000e+01, 1.40500000e+01, 1.41000000e+01, 1.41500000e+01, |
---|
| 1224 | 1.42000000e+01, 1.42500000e+01, 1.43000000e+01, 1.43500000e+01, |
---|
| 1225 | 1.44000000e+01, 1.44500000e+01, 1.45000000e+01, 1.45500000e+01, |
---|
| 1226 | 1.46000000e+01, 1.46500000e+01, 1.47000000e+01, 1.47500000e+01, |
---|
| 1227 | 1.48000000e+01, 1.48500000e+01, 1.49000000e+01, 1.49500000e+01, |
---|
| 1228 | 1.50000000e+01, 1.50500000e+01, 1.51000000e+01, 1.51500000e+01, |
---|
| 1229 | 1.52000000e+01, 1.52500000e+01, 1.53000000e+01, 1.53500000e+01, |
---|
| 1230 | 1.54000000e+01, 1.54500000e+01, 1.55000000e+01, 1.55500000e+01, |
---|
| 1231 | 1.56000000e+01, 1.56500000e+01, 1.57000000e+01, 1.57500000e+01, |
---|
| 1232 | 1.58000000e+01, 1.58500000e+01, 1.59000000e+01, 1.59500000e+01, |
---|
| 1233 | 1.60000000e+01, 1.60500000e+01, 1.61000000e+01, 1.61500000e+01, |
---|
| 1234 | 1.62000000e+01, 1.62500000e+01, 1.63000000e+01, 1.63500000e+01, |
---|
| 1235 | 1.64000000e+01, 1.64500000e+01, 1.65000000e+01, 1.65500000e+01, |
---|
| 1236 | 1.66000000e+01, 1.66500000e+01, 1.67000000e+01, 1.67500000e+01, |
---|
| 1237 | 1.68000000e+01, 1.68500000e+01, 1.69000000e+01, 1.69500000e+01, |
---|
| 1238 | 1.70000000e+01, 1.70500000e+01, 1.71000000e+01, 1.71500000e+01, |
---|
| 1239 | 1.72000000e+01, 1.72500000e+01, 1.73000000e+01, 1.73500000e+01, |
---|
| 1240 | 1.74000000e+01, 1.74500000e+01, 1.75000000e+01, 1.75500000e+01, |
---|
| 1241 | 1.76000000e+01, 1.76500000e+01, 1.77000000e+01, 1.77500000e+01, |
---|
| 1242 | 1.78000000e+01, 1.78500000e+01, 1.79000000e+01, 1.79500000e+01, |
---|
| 1243 | 1.80000000e+01, 1.80500000e+01, 1.81000000e+01, 1.81500000e+01, |
---|
| 1244 | 1.82000000e+01, 1.82500000e+01, 1.83000000e+01, 1.83500000e+01, |
---|
| 1245 | 1.84000000e+01, 1.84500000e+01, 1.85000000e+01, 1.85500000e+01, |
---|
| 1246 | 1.86000000e+01, 1.86500000e+01, 1.87000000e+01, 1.87500000e+01, |
---|
| 1247 | 1.88000000e+01, 1.88500000e+01, 1.89000000e+01, 1.89500000e+01, |
---|
| 1248 | 1.90000000e+01, 1.90500000e+01, 1.91000000e+01, 1.91500000e+01, |
---|
| 1249 | 1.92000000e+01, 1.92500000e+01, 1.93000000e+01, 1.93500000e+01, |
---|
| 1250 | 1.94000000e+01, 1.94500000e+01, 1.95000000e+01, 1.95500000e+01, |
---|
| 1251 | 1.96000000e+01, 1.96500000e+01, 1.97000000e+01, 1.97500000e+01, |
---|
| 1252 | 1.98000000e+01, 1.98500000e+01, 1.99000000e+01, 1.99500000e+01, |
---|
| 1253 | 2.00000000e+01, 2.00500000e+01, 2.01000000e+01, 2.01500000e+01, |
---|
| 1254 | 2.02000000e+01, 2.02500000e+01, 2.03000000e+01, 2.03500000e+01, |
---|
| 1255 | 2.04000000e+01, 2.04500000e+01, 2.05000000e+01, 2.05500000e+01, |
---|
| 1256 | 2.06000000e+01, 2.06500000e+01, 2.07000000e+01, 2.07500000e+01, |
---|
| 1257 | 2.08000000e+01, 2.08500000e+01, 2.09000000e+01, 2.09500000e+01, |
---|
| 1258 | 2.10000000e+01, 2.10500000e+01, 2.11000000e+01, 2.11500000e+01, |
---|
| 1259 | 2.12000000e+01, 2.12500000e+01, 2.13000000e+01, 2.13500000e+01, |
---|
| 1260 | 2.14000000e+01, 2.14500000e+01, 2.15000000e+01, 2.15500000e+01, |
---|
| 1261 | 2.16000000e+01, 2.16500000e+01, 2.17000000e+01, 2.17500000e+01, |
---|
| 1262 | 2.18000000e+01, 2.18500000e+01, 2.19000000e+01, 2.19500000e+01, |
---|
| 1263 | 2.20000000e+01, 2.20500000e+01, 2.21000000e+01, 2.21500000e+01, |
---|
| 1264 | 2.22000000e+01, 2.22500000e+01, 2.23000000e+01, 2.23500000e+01, |
---|
| 1265 | 2.24000000e+01, 2.24500000e+01, 2.25000000e+01]) |
---|
| 1266 | |
---|
| 1267 | #print 'Diff', time[1:] - time[:-1] |
---|
| 1268 | |
---|
| 1269 | #Setup mesh used to represent fitted function |
---|
| 1270 | a = [0.0, 0.0] |
---|
| 1271 | b = [0.0, 2.0] |
---|
| 1272 | c = [2.0, 0.0] |
---|
| 1273 | d = [0.0, 4.0] |
---|
| 1274 | e = [2.0, 2.0] |
---|
| 1275 | f = [4.0, 0.0] |
---|
| 1276 | |
---|
| 1277 | points = [a, b, c, d, e, f] |
---|
| 1278 | #bac, bce, ecf, dbe |
---|
| 1279 | triangles = [[1,0,2], [1,2,4], [4,2,5], [3,1,4]] |
---|
| 1280 | |
---|
| 1281 | |
---|
| 1282 | #New datapoints where interpolated values are sought |
---|
| 1283 | interpolation_points = [[ 0.0, 0.0], |
---|
| 1284 | [ 0.5, 0.5], |
---|
| 1285 | [ 0.7, 0.7], |
---|
| 1286 | [ 1.0, 0.5], |
---|
| 1287 | [ 2.0, 0.4], |
---|
| 1288 | [ 545354534, 4354354353]] # outside the mesh |
---|
| 1289 | |
---|
| 1290 | #One quantity |
---|
| 1291 | Q = zeros( (len(time),6), Float ) |
---|
| 1292 | |
---|
| 1293 | #Linear in time and space |
---|
| 1294 | for i, t in enumerate(time): |
---|
| 1295 | Q[i, :] = t*linear_function(points) |
---|
| 1296 | |
---|
| 1297 | #Check interpolation of one quantity using interpolaton points) |
---|
| 1298 | try: |
---|
| 1299 | I = Interpolation_function(time, Q, |
---|
| 1300 | vertex_coordinates = points, |
---|
| 1301 | triangles = triangles, |
---|
| 1302 | interpolation_points = interpolation_points, |
---|
| 1303 | verbose = False) |
---|
| 1304 | except: |
---|
| 1305 | pass |
---|
| 1306 | else: |
---|
| 1307 | raise 'Should raise exception due to time being non-monotoneous' |
---|
| 1308 | |
---|
| 1309 | |
---|
[2655] | 1310 | def test_points_outside_the_polygon(self): |
---|
| 1311 | a = [-1.0, 0.0] |
---|
| 1312 | b = [3.0, 4.0] |
---|
| 1313 | c = [4.0, 1.0] |
---|
| 1314 | d = [-3.0, 2.0] #3 |
---|
| 1315 | e = [-1.0, -2.0] |
---|
| 1316 | f = [1.0, -2.0] #5 |
---|
| 1317 | |
---|
| 1318 | vertices = [a, b, c, d,e,f] |
---|
| 1319 | triangles = [[0,1,3], [1,0,2], [0,4,5], [0,5,2]] #abd bac aef afc |
---|
| 1320 | |
---|
| 1321 | point_coords = [[-2.0, 2.0], |
---|
| 1322 | [-1.0, 1.0], |
---|
| 1323 | [9999.0, 9999.0], # point Outside poly |
---|
| 1324 | [-9999.0, 1.0], # point Outside poly |
---|
| 1325 | [2.0, 1.0], |
---|
| 1326 | [0.0, 0.0], |
---|
| 1327 | [1.0, 0.0], |
---|
| 1328 | [0.0, -1.0], |
---|
| 1329 | [-0.2, -0.5], |
---|
| 1330 | [-0.9, -1.5], |
---|
| 1331 | [0.5, -1.9], |
---|
| 1332 | [999999, 9999999]] # point Outside poly |
---|
| 1333 | geo_data = Geospatial_data(data_points = point_coords) |
---|
| 1334 | |
---|
| 1335 | interp = Interpolate(vertices, triangles) |
---|
| 1336 | f = array([linear_function(vertices),2*linear_function(vertices) ]) |
---|
| 1337 | f = transpose(f) |
---|
| 1338 | #print "f",f |
---|
| 1339 | z = interp.interpolate(f, geo_data) |
---|
| 1340 | #z = interp.interpolate(f, point_coords) |
---|
| 1341 | answer = [linear_function(point_coords), |
---|
| 1342 | 2*linear_function(point_coords) ] |
---|
| 1343 | answer = transpose(answer) |
---|
| 1344 | answer[2,:] = [INF, INF] |
---|
| 1345 | answer[3,:] = [INF, INF] |
---|
| 1346 | answer[11,:] = [INF, INF] |
---|
| 1347 | #print "z",z |
---|
| 1348 | #print "answer _ fixed",answer |
---|
| 1349 | assert allclose(z[0:1], answer[0:1]) |
---|
| 1350 | assert allclose(z[4:10], answer[4:10]) |
---|
| 1351 | for i in [2,3,11]: |
---|
| 1352 | self.failUnless( z[i,1] == answer[11,1], 'Fail!') |
---|
| 1353 | self.failUnless( z[i,0] == answer[11,0], 'Fail!') |
---|
[3411] | 1354 | |
---|
| 1355 | def ztest_interpolate_sww2csv(self): |
---|
| 1356 | |
---|
| 1357 | def elevation_function(x, y): |
---|
| 1358 | return -x |
---|
[2655] | 1359 | |
---|
[3411] | 1360 | # create mesh |
---|
| 1361 | mesh_file = tempfile.mktemp(".tsh") |
---|
| 1362 | points = [[0.0,0.0],[6.0,0.0],[6.0,6.0],[0.0,6.0]] |
---|
| 1363 | m = Mesh() |
---|
| 1364 | m.add_vertices(points) |
---|
| 1365 | m.autoSegment() |
---|
| 1366 | m.generate_mesh(verbose=False) |
---|
| 1367 | m.export_mesh_file(mesh_file) |
---|
| 1368 | |
---|
| 1369 | #Create shallow water domain |
---|
| 1370 | domain = Domain(mesh_file) |
---|
| 1371 | os.remove(mesh_file) |
---|
| 1372 | |
---|
| 1373 | domain.default_order=2 |
---|
| 1374 | domain.beta_h = 0 |
---|
| 1375 | |
---|
| 1376 | #Set some field values |
---|
| 1377 | domain.set_quantity('elevation', elevation_function) |
---|
| 1378 | domain.set_quantity('friction', 0.03) |
---|
| 1379 | domain.set_quantity('xmomentum', 10.0) |
---|
| 1380 | domain.set_quantity('ymomentum', 100.0) |
---|
| 1381 | |
---|
| 1382 | ###################### |
---|
| 1383 | # Boundary conditions |
---|
| 1384 | B = Transmissive_boundary(domain) |
---|
| 1385 | domain.set_boundary( {'exterior': B}) |
---|
| 1386 | |
---|
| 1387 | # This call mangles the stage values. |
---|
| 1388 | domain.distribute_to_vertices_and_edges() |
---|
| 1389 | domain.set_quantity('stage', 1.0) |
---|
| 1390 | |
---|
| 1391 | #sww_file = tempfile.mktemp("") |
---|
| 1392 | domain.filename = 'datatest' + str(time.time()) |
---|
| 1393 | #domain.filename = sww_file |
---|
| 1394 | #print "domain.filename",domain.filename |
---|
| 1395 | domain.format = 'sww' |
---|
| 1396 | domain.smooth = True |
---|
| 1397 | domain.reduction = mean |
---|
| 1398 | |
---|
| 1399 | sww = get_dataobject(domain) |
---|
| 1400 | sww.store_connectivity() |
---|
| 1401 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
| 1402 | domain.set_quantity('stage', -1.0) |
---|
| 1403 | domain.time = 2. |
---|
| 1404 | sww.store_timestep(['stage', 'xmomentum', 'ymomentum']) |
---|
| 1405 | |
---|
| 1406 | # test the function |
---|
| 1407 | points = [[5.0,1.],[0.5,2.]] |
---|
| 1408 | interpolate_sww2csv(sww.filename, points, "aa.csv", "bb.csv") |
---|
| 1409 | |
---|
| 1410 | print "sww.filename",sww.filename |
---|
| 1411 | #os.remove(sww.filename) |
---|
[2187] | 1412 | #------------------------------------------------------------- |
---|
| 1413 | if __name__ == "__main__": |
---|
[2655] | 1414 | |
---|
[3412] | 1415 | suite = unittest.makeSuite(Test_Interpolate,'test') |
---|
| 1416 | #suite = unittest.makeSuite(Test_Interpolate,'test_interpolate_sww2csv') |
---|
[2187] | 1417 | runner = unittest.TextTestRunner(verbosity=1) |
---|
| 1418 | runner.run(suite) |
---|
| 1419 | |
---|
| 1420 | |
---|
| 1421 | |
---|
| 1422 | |
---|
| 1423 | |
---|