1 | """Example of shallow water wave equation analytical solution of the |
---|
2 | one-dimensional Thacker and Greenspan wave run-up treated as a two-dimensional solution. |
---|
3 | |
---|
4 | Copyright 2004 |
---|
5 | Christopher Zoppou, Stephen Roberts, Ole Nielsen, Duncan Gray |
---|
6 | Geoscience Australia |
---|
7 | |
---|
8 | Specific methods pertaining to the 2D shallow water equation |
---|
9 | are imported from shallow_water |
---|
10 | for use with the generic finite volume framework |
---|
11 | |
---|
12 | Conserved quantities are h, uh and vh stored as elements 0, 1 and 2 in the |
---|
13 | numerical vector named conserved_quantities. |
---|
14 | """ |
---|
15 | |
---|
16 | ###################### |
---|
17 | # Module imports |
---|
18 | import sys |
---|
19 | from os import sep |
---|
20 | sys.path.append('..'+sep+'pyvolution') |
---|
21 | |
---|
22 | from shallow_water import Domain, Reflective_boundary, Time_boundary |
---|
23 | from math import sqrt, cos, sin, pi |
---|
24 | from mesh_factory import strang_mesh |
---|
25 | |
---|
26 | #Convenience functions |
---|
27 | def imag(a): |
---|
28 | return a.imag |
---|
29 | |
---|
30 | def real(a): |
---|
31 | return a.real |
---|
32 | |
---|
33 | |
---|
34 | ###################### |
---|
35 | # Domain |
---|
36 | # Strang_domain will search through the file and test to see if there are |
---|
37 | # two or three entries. Two entries are for points and three for triangles. |
---|
38 | |
---|
39 | points, elements = strang_mesh('run-up.pt') |
---|
40 | domain = Domain(points, elements) |
---|
41 | |
---|
42 | domain.default_order = 2 |
---|
43 | domain.smooth = True |
---|
44 | |
---|
45 | #Set a default tagging |
---|
46 | epsilon = 1.0e-12 |
---|
47 | |
---|
48 | for id, face in domain.boundary: |
---|
49 | domain.boundary[(id,face)] = 'external' |
---|
50 | |
---|
51 | domain.boundary[(0,0)] = 'left' |
---|
52 | |
---|
53 | |
---|
54 | # Provide file name for storing output |
---|
55 | domain.store = True |
---|
56 | domain.format = 'sww' |
---|
57 | domain.filename = 'run-up_second_order' |
---|
58 | |
---|
59 | print "Number of triangles = ", len(domain) |
---|
60 | |
---|
61 | #Reduction operation for get_vertex_values |
---|
62 | from util import mean |
---|
63 | domain.reduction = mean |
---|
64 | #domain.reduction = min #Looks better near steep slopes |
---|
65 | |
---|
66 | #Define the boundary condition |
---|
67 | def stage_setup(x,t_star1): |
---|
68 | vh = 0 |
---|
69 | alpha = 0.1 |
---|
70 | eta = 0.1 |
---|
71 | a = 1.5*sqrt(1.+0.9*eta) |
---|
72 | l_0 = 200. |
---|
73 | ii = complex(0,1) |
---|
74 | g = 9.81 |
---|
75 | v_0 = sqrt(g*l_0*alpha) |
---|
76 | v1 = 0. |
---|
77 | |
---|
78 | sigma_max = 100. |
---|
79 | sigma_min = -100. |
---|
80 | for j in range (1,50): |
---|
81 | sigma0 = (sigma_max+sigma_min)/2. |
---|
82 | lambda_prime = 2./a*(t_star1/sqrt(l_0/alpha/g)+v1) |
---|
83 | sigma_prime = sigma0/a |
---|
84 | const = (1.-ii*lambda_prime)**2+sigma_prime**2 |
---|
85 | |
---|
86 | v1 = 8.*eta/a*imag(1./const**(3./2.) \ |
---|
87 | -3./4.*(1.-ii*lambda_prime)/const**(5./2.)) |
---|
88 | |
---|
89 | x1 = -v1**2/2.-a**2*sigma_prime**2/16.+eta \ |
---|
90 | *real(1.-2.*(5./4.-ii*lambda_prime) \ |
---|
91 | /const**(3./2.)+3./2.*(1.-ii*lambda_prime)**2 \ |
---|
92 | /const**(5./2.)) |
---|
93 | |
---|
94 | neta1 = x1 + a*a*sigma_prime**2/16. |
---|
95 | |
---|
96 | v_star1 = v1*v_0 |
---|
97 | x_star1 = x1*l_0 |
---|
98 | neta_star1 = neta1*alpha*l_0 |
---|
99 | stage = neta_star1 |
---|
100 | z = stage - x_star1*alpha |
---|
101 | uh = z*v_star1 |
---|
102 | |
---|
103 | if x_star1-x > 0: |
---|
104 | sigma_max = sigma0 |
---|
105 | else: |
---|
106 | sigma_min = sigma0 |
---|
107 | |
---|
108 | if abs(abs(sigma0)-100.) < 10: |
---|
109 | |
---|
110 | # solution does not converge because bed is dry |
---|
111 | stage = 0. |
---|
112 | uh = 0. |
---|
113 | z = 0. |
---|
114 | |
---|
115 | return [stage, uh, vh] |
---|
116 | |
---|
117 | def boundary_stage(t): |
---|
118 | x = -200 |
---|
119 | return stage_setup(x,t) |
---|
120 | |
---|
121 | |
---|
122 | ###################### |
---|
123 | #Initial condition |
---|
124 | print 'Initial condition' |
---|
125 | t_star1 = 0.0 |
---|
126 | slope = -0.1 |
---|
127 | |
---|
128 | #Set bed-elevation and friction(None) |
---|
129 | def x_slope(x,y): |
---|
130 | n = x.shape[0] |
---|
131 | z = 0*x |
---|
132 | for i in range(n): |
---|
133 | z[i] = -slope*x[i] |
---|
134 | return z |
---|
135 | |
---|
136 | domain.set_quantity('elevation', x_slope) |
---|
137 | |
---|
138 | #Set the water depth |
---|
139 | def stage(x,y): |
---|
140 | z = x_slope(x,y) |
---|
141 | n = x.shape[0] |
---|
142 | w = 0*x |
---|
143 | for i in range(n): |
---|
144 | w[i], uh, vh = stage_setup(x[i],t_star1) |
---|
145 | h = w[i] - z[i] |
---|
146 | if h < 0: |
---|
147 | h = 0 |
---|
148 | w[i] = z[i] |
---|
149 | return w |
---|
150 | |
---|
151 | domain.set_quantity('stage', stage) |
---|
152 | |
---|
153 | |
---|
154 | ##################### |
---|
155 | #Set up boundary conditions |
---|
156 | Br = Reflective_boundary(domain) |
---|
157 | Bw = Time_boundary(domain, boundary_stage) |
---|
158 | domain.set_boundary({'left': Bw, 'external': Br}) |
---|
159 | |
---|
160 | |
---|
161 | ###################### |
---|
162 | #Evolution |
---|
163 | import time |
---|
164 | t0 = time.time() |
---|
165 | for t in domain.evolve(yieldstep = 1., finaltime = 100): |
---|
166 | domain.write_time() |
---|
167 | print boundary_stage(domain.time) |
---|
168 | |
---|
169 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
170 | |
---|
171 | |
---|