[1363] | 1 | import sys |
---|
| 2 | from os import sep |
---|
| 3 | sys.path.append('..'+sep+'pyvolution') |
---|
| 4 | |
---|
[195] | 5 | """Class Domain - |
---|
| 6 | 2D triangular domains for finite-volume computations of |
---|
| 7 | the advection equation. |
---|
| 8 | |
---|
| 9 | This module contains a specialisation of class Domain from module domain.py |
---|
| 10 | consisting of methods specific to the advection equantion |
---|
| 11 | |
---|
| 12 | The equation is |
---|
| 13 | |
---|
| 14 | u_t + (v_1 u)_x + (v_2 u)_y = 0 |
---|
| 15 | |
---|
[773] | 16 | There is only one conserved quantity, the stage u |
---|
[195] | 17 | |
---|
| 18 | The advection equation is a very simple specialisation of the generic |
---|
| 19 | domain and may serve as an instructive example or a test of other |
---|
| 20 | components such as visualisation. |
---|
| 21 | |
---|
| 22 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
[1363] | 23 | Geoscience Australia, 2004 |
---|
[195] | 24 | """ |
---|
| 25 | |
---|
[1556] | 26 | |
---|
| 27 | import logging, logging.config |
---|
| 28 | logger = logging.getLogger('advection') |
---|
| 29 | logger.setLevel(logging.WARNING) |
---|
| 30 | |
---|
| 31 | try: |
---|
| 32 | logging.config.fileConfig('log.ini') |
---|
| 33 | except: |
---|
| 34 | pass |
---|
| 35 | |
---|
| 36 | |
---|
[195] | 37 | from domain import * |
---|
| 38 | Generic_domain = Domain #Rename |
---|
| 39 | |
---|
| 40 | class Domain(Generic_domain): |
---|
| 41 | |
---|
[1556] | 42 | def __init__(self, coordinates, vertices, boundary = None, |
---|
| 43 | tagged_elements = None, geo_reference = None, |
---|
| 44 | use_inscribed_circle=False, velocity = None): |
---|
[195] | 45 | |
---|
[1556] | 46 | conserved_quantities = ['stage'] |
---|
| 47 | other_quantities = [] |
---|
[195] | 48 | Generic_domain.__init__(self, coordinates, vertices, boundary, |
---|
[1556] | 49 | conserved_quantities, other_quantities, |
---|
| 50 | tagged_elements, geo_reference, |
---|
| 51 | use_inscribed_circle) |
---|
[195] | 52 | |
---|
[1556] | 53 | |
---|
[195] | 54 | if velocity is None: |
---|
| 55 | self.velocity = [1,0] |
---|
| 56 | else: |
---|
| 57 | self.velocity = velocity |
---|
| 58 | |
---|
[1363] | 59 | #Only first is implemented for advection |
---|
| 60 | self.default_order = self.order = 1 |
---|
[195] | 61 | |
---|
[271] | 62 | #Realtime visualisation |
---|
[1556] | 63 | self.visualiser = None |
---|
| 64 | self.visualise = False |
---|
[1363] | 65 | self.visualise_color_stage = False |
---|
| 66 | self.visualise_timer = True |
---|
| 67 | self.visualise_range_z = None |
---|
[1556] | 68 | |
---|
[271] | 69 | self.smooth = True |
---|
[195] | 70 | |
---|
[1556] | 71 | def initialise_visualiser(self,scale_z=1.0,rect=None): |
---|
[1575] | 72 | #Realtime visualisation |
---|
[1556] | 73 | if self.visualiser is None: |
---|
[1564] | 74 | from realtime_visualisation_new import Visualiser |
---|
[1556] | 75 | self.visualiser = Visualiser(self,scale_z,rect) |
---|
| 76 | self.visualise = True |
---|
[271] | 77 | |
---|
[1363] | 78 | |
---|
[195] | 79 | def check_integrity(self): |
---|
| 80 | Generic_domain.check_integrity(self) |
---|
| 81 | |
---|
[773] | 82 | msg = 'Conserved quantity must be "stage"' |
---|
| 83 | assert self.conserved_quantities[0] == 'stage', msg |
---|
[195] | 84 | |
---|
[1363] | 85 | |
---|
[195] | 86 | def flux_function(self, normal, ql, qr, zl=None, zr=None): |
---|
| 87 | """Compute outward flux as inner product between velocity |
---|
| 88 | vector v=(v_1, v_2) and normal vector n. |
---|
[1363] | 89 | |
---|
[195] | 90 | if <n,v> > 0 flux direction is outward bound and its magnitude is |
---|
| 91 | determined by the quantity inside volume: ql. |
---|
| 92 | Otherwise it is inbound and magnitude is determined by the |
---|
| 93 | quantity outside the volume: qr. |
---|
| 94 | """ |
---|
[1363] | 95 | |
---|
[195] | 96 | v1 = self.velocity[0] |
---|
| 97 | v2 = self.velocity[1] |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | normal_velocity = v1*normal[0] + v2*normal[1] |
---|
| 101 | |
---|
| 102 | if normal_velocity < 0: |
---|
| 103 | flux = qr * normal_velocity |
---|
| 104 | else: |
---|
| 105 | flux = ql * normal_velocity |
---|
[1363] | 106 | |
---|
[195] | 107 | max_speed = abs(normal_velocity) |
---|
[1363] | 108 | return flux, max_speed |
---|
[195] | 109 | |
---|
[1556] | 110 | def compute_fluxes(self): |
---|
[1363] | 111 | |
---|
[1575] | 112 | try: |
---|
| 113 | import weave |
---|
| 114 | self.weave_available = True |
---|
| 115 | except: |
---|
| 116 | self.weave_available = False |
---|
[1556] | 117 | |
---|
[1575] | 118 | if self.weave_available: |
---|
| 119 | self.compute_fluxes_weave() |
---|
| 120 | else: |
---|
| 121 | self.compute_fluxes_python() |
---|
| 122 | |
---|
| 123 | |
---|
| 124 | |
---|
[1556] | 125 | def compute_fluxes_python(self): |
---|
[195] | 126 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 127 | in domain. |
---|
[1363] | 128 | |
---|
[195] | 129 | Compute total flux for each conserved quantity using "flux_function" |
---|
[1363] | 130 | |
---|
[195] | 131 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 132 | Resulting flux is then scaled by area and stored in |
---|
| 133 | domain.explicit_update |
---|
| 134 | |
---|
| 135 | The maximal allowable speed computed by the flux_function |
---|
| 136 | for each volume |
---|
| 137 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 138 | those is computed as the next overall timestep. |
---|
| 139 | |
---|
| 140 | Post conditions: |
---|
| 141 | domain.explicit_update is reset to computed flux values |
---|
[1363] | 142 | domain.timestep is set to the largest step satisfying all volumes. |
---|
[195] | 143 | """ |
---|
| 144 | |
---|
| 145 | import sys |
---|
| 146 | from Numeric import zeros, Float |
---|
| 147 | from config import max_timestep |
---|
| 148 | |
---|
| 149 | N = self.number_of_elements |
---|
[1363] | 150 | |
---|
[195] | 151 | neighbours = self.neighbours |
---|
| 152 | neighbour_edges = self.neighbour_edges |
---|
| 153 | normals = self.normals |
---|
| 154 | |
---|
| 155 | areas = self.areas |
---|
| 156 | radii = self.radii |
---|
| 157 | edgelengths = self.edgelengths |
---|
[1363] | 158 | |
---|
[195] | 159 | timestep = max_timestep #FIXME: Get rid of this |
---|
| 160 | |
---|
| 161 | #Shortcuts |
---|
[773] | 162 | Stage = self.quantities['stage'] |
---|
[195] | 163 | |
---|
| 164 | #Arrays |
---|
[773] | 165 | stage = Stage.edge_values |
---|
[195] | 166 | |
---|
[773] | 167 | stage_bdry = Stage.boundary_values |
---|
[1363] | 168 | |
---|
[195] | 169 | flux = zeros(1, Float) #Work array for summing up fluxes |
---|
| 170 | |
---|
| 171 | #Loop |
---|
| 172 | for k in range(N): |
---|
| 173 | optimal_timestep = float(sys.maxint) |
---|
| 174 | |
---|
| 175 | flux[:] = 0. #Reset work array |
---|
| 176 | for i in range(3): |
---|
| 177 | #Quantities inside volume facing neighbour i |
---|
[773] | 178 | ql = stage[k, i] |
---|
[195] | 179 | |
---|
| 180 | #Quantities at neighbour on nearest face |
---|
[1363] | 181 | n = neighbours[k,i] |
---|
[195] | 182 | if n < 0: |
---|
| 183 | m = -n-1 #Convert neg flag to index |
---|
[773] | 184 | qr = stage_bdry[m] |
---|
[1363] | 185 | else: |
---|
[195] | 186 | m = neighbour_edges[k,i] |
---|
[773] | 187 | qr = stage[n, m] |
---|
[195] | 188 | |
---|
[1363] | 189 | |
---|
| 190 | #Outward pointing normal vector |
---|
[195] | 191 | normal = normals[k, 2*i:2*i+2] |
---|
| 192 | |
---|
| 193 | #Flux computation using provided function |
---|
| 194 | edgeflux, max_speed = self.flux_function(normal, ql, qr) |
---|
| 195 | flux -= edgeflux * edgelengths[k,i] |
---|
[1363] | 196 | |
---|
[195] | 197 | #Update optimal_timestep |
---|
| 198 | try: |
---|
| 199 | optimal_timestep = min(optimal_timestep, radii[k]/max_speed) |
---|
| 200 | except ZeroDivisionError: |
---|
| 201 | pass |
---|
| 202 | |
---|
| 203 | #Normalise by area and store for when all conserved |
---|
| 204 | #quantities get updated |
---|
| 205 | flux /= areas[k] |
---|
[773] | 206 | Stage.explicit_update[k] = flux[0] |
---|
[1363] | 207 | |
---|
[195] | 208 | timestep = min(timestep, optimal_timestep) |
---|
| 209 | |
---|
[1363] | 210 | self.timestep = timestep |
---|
[195] | 211 | |
---|
[1556] | 212 | def compute_fluxes_weave(self): |
---|
| 213 | """Compute all fluxes and the timestep suitable for all volumes |
---|
| 214 | in domain. |
---|
[271] | 215 | |
---|
[1556] | 216 | Compute total flux for each conserved quantity using "flux_function" |
---|
[1363] | 217 | |
---|
[1556] | 218 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 219 | Resulting flux is then scaled by area and stored in |
---|
| 220 | domain.explicit_update |
---|
| 221 | |
---|
| 222 | The maximal allowable speed computed by the flux_function |
---|
| 223 | for each volume |
---|
| 224 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 225 | those is computed as the next overall timestep. |
---|
| 226 | |
---|
| 227 | Post conditions: |
---|
| 228 | domain.explicit_update is reset to computed flux values |
---|
| 229 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 230 | """ |
---|
| 231 | |
---|
| 232 | import sys |
---|
| 233 | from Numeric import zeros, Float |
---|
| 234 | from config import max_timestep |
---|
| 235 | |
---|
| 236 | import weave |
---|
| 237 | from weave import converters |
---|
| 238 | |
---|
| 239 | N = self.number_of_elements |
---|
| 240 | |
---|
| 241 | |
---|
| 242 | timestep = zeros( 1, Float); |
---|
| 243 | timestep[0] = float(max_timestep) #FIXME: Get rid of this |
---|
| 244 | |
---|
| 245 | #Shortcuts |
---|
| 246 | Stage = self.quantities['stage'] |
---|
| 247 | |
---|
| 248 | #Arrays |
---|
| 249 | neighbours = self.neighbours |
---|
| 250 | neighbour_edges = self.neighbour_edges |
---|
| 251 | normals = self.normals |
---|
| 252 | areas = self.areas |
---|
| 253 | radii = self.radii |
---|
| 254 | edgelengths = self.edgelengths |
---|
| 255 | |
---|
| 256 | stage_edge = Stage.edge_values |
---|
| 257 | stage_bdry = Stage.boundary_values |
---|
| 258 | stage_update = Stage.explicit_update |
---|
| 259 | |
---|
| 260 | huge_timestep = float(sys.maxint) |
---|
| 261 | |
---|
| 262 | v1 = self.velocity[0] |
---|
| 263 | v2 = self.velocity[1] |
---|
| 264 | |
---|
| 265 | code = """ |
---|
| 266 | //Loop |
---|
| 267 | |
---|
| 268 | double qr,ql; |
---|
| 269 | int m,n; |
---|
| 270 | double normal[2]; |
---|
| 271 | double normal_velocity; |
---|
| 272 | double flux, edgeflux; |
---|
| 273 | double max_speed; |
---|
| 274 | double optimal_timestep; |
---|
| 275 | for (int k=0; k<N; k++){ |
---|
| 276 | |
---|
| 277 | optimal_timestep = huge_timestep; |
---|
| 278 | flux = 0.0; //Reset work array |
---|
| 279 | for (int i=0; i<3; i++){ |
---|
| 280 | //Quantities inside volume facing neighbour i |
---|
| 281 | ql = stage_edge(k, i); |
---|
| 282 | |
---|
| 283 | //Quantities at neighbour on nearest face |
---|
| 284 | n = neighbours(k,i); |
---|
| 285 | if (n < 0) { |
---|
| 286 | m = -n-1; //Convert neg flag to index |
---|
| 287 | qr = stage_bdry(m); |
---|
| 288 | } else { |
---|
| 289 | m = neighbour_edges(k,i); |
---|
| 290 | qr = stage_edge(n, m); |
---|
| 291 | } |
---|
| 292 | |
---|
| 293 | |
---|
| 294 | //Outward pointing normal vector |
---|
| 295 | for (int j=0; j<2; j++){ |
---|
| 296 | normal[j] = normals(k, 2*i+j); |
---|
| 297 | } |
---|
| 298 | |
---|
| 299 | |
---|
| 300 | //Flux computation using provided function |
---|
| 301 | normal_velocity = v1*normal[0] + v2*normal[1]; |
---|
| 302 | |
---|
| 303 | if (normal_velocity < 0) { |
---|
| 304 | edgeflux = qr * normal_velocity; |
---|
| 305 | } else { |
---|
| 306 | edgeflux = ql * normal_velocity; |
---|
| 307 | } |
---|
| 308 | |
---|
| 309 | max_speed = fabs(normal_velocity); |
---|
| 310 | flux = flux - edgeflux * edgelengths(k,i); |
---|
| 311 | |
---|
| 312 | //Update optimal_timestep |
---|
| 313 | if (max_speed != 0.0) { |
---|
| 314 | optimal_timestep = (optimal_timestep>radii(k)/max_speed) ? radii(k)/max_speed : optimal_timestep; |
---|
| 315 | } |
---|
| 316 | |
---|
| 317 | } |
---|
| 318 | |
---|
| 319 | //Normalise by area and store for when all conserved |
---|
| 320 | //quantities get updated |
---|
| 321 | stage_update(k) = flux/areas(k); |
---|
| 322 | |
---|
| 323 | timestep(0) = (timestep(0)>optimal_timestep) ? optimal_timestep : timestep(0); |
---|
| 324 | |
---|
| 325 | } |
---|
| 326 | """ |
---|
| 327 | |
---|
[1639] | 328 | logger.debug('Trying to weave advection.compute_fluxes') |
---|
[1556] | 329 | weave.inline(code, ['stage_edge','stage_bdry','stage_update', |
---|
| 330 | 'neighbours','neighbour_edges','normals', |
---|
| 331 | 'areas','radii','edgelengths','huge_timestep', |
---|
| 332 | 'timestep','v1','v2','N'], |
---|
| 333 | type_converters = converters.blitz, compiler='gcc'); |
---|
| 334 | |
---|
| 335 | self.timestep = timestep[0] |
---|
| 336 | |
---|
| 337 | |
---|
[271] | 338 | def evolve(self, yieldstep = None, finaltime = None): |
---|
| 339 | """Specialisation of basic evolve method from parent class |
---|
| 340 | """ |
---|
[1363] | 341 | |
---|
[271] | 342 | #Initialise real time viz if requested |
---|
| 343 | if self.visualise is True and self.time == 0.0: |
---|
[1556] | 344 | #import realtime_visualisation_new as visualise |
---|
| 345 | self.initialise_visualiser() |
---|
[1639] | 346 | #self.visualiser.update_quantity('stage') |
---|
[1556] | 347 | self.visualiser.update_timer() |
---|
[271] | 348 | |
---|
| 349 | #Call basic machinery from parent class |
---|
| 350 | for t in Generic_domain.evolve(self, yieldstep, finaltime): |
---|
| 351 | #Real time viz |
---|
| 352 | if self.visualise is True: |
---|
[1639] | 353 | #self.visualiser.update_quantity('stage') |
---|
[1556] | 354 | self.visualiser.update_timer() |
---|
[271] | 355 | |
---|
[1363] | 356 | #Pass control on to outer loop for more specific actions |
---|
[271] | 357 | yield(t) |
---|