[482] | 1 | """Least squares smooting and interpolation. |
---|
| 2 | |
---|
| 3 | Implements a penalised least-squares fit and associated interpolations. |
---|
| 4 | |
---|
[488] | 5 | The penalty term (or smoothing term) is controlled by the smoothing |
---|
[482] | 6 | parameter alpha. |
---|
| 7 | With a value of alpha=0, the fit function will attempt |
---|
| 8 | to interpolate as closely as possible in the least-squares sense. |
---|
| 9 | With values alpha > 0, a certain amount of smoothing will be applied. |
---|
| 10 | A positive alpha is essential in cases where there are too few |
---|
| 11 | data points. |
---|
| 12 | A negative alpha is not allowed. |
---|
| 13 | A typical value of alpha is 1.0e-6 |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
| 17 | Geoscience Australia, 2004. |
---|
| 18 | """ |
---|
| 19 | |
---|
| 20 | |
---|
[485] | 21 | #FIXME (Ole): Currently datapoints outside the triangular mesh are ignored. |
---|
[488] | 22 | # Is there a clean way of including them? |
---|
[485] | 23 | |
---|
| 24 | |
---|
[595] | 25 | |
---|
[482] | 26 | import exceptions |
---|
| 27 | class ShapeError(exceptions.Exception): pass |
---|
| 28 | |
---|
| 29 | from general_mesh import General_mesh |
---|
| 30 | from Numeric import zeros, array, Float, Int, dot, transpose |
---|
[641] | 31 | ##from LinearAlgebra import solve_linear_equations |
---|
[606] | 32 | from sparse import Sparse, Sparse_CSR |
---|
[482] | 33 | from cg_solve import conjugate_gradient, VectorShapeError |
---|
| 34 | |
---|
| 35 | try: |
---|
| 36 | from util import gradient |
---|
| 37 | except ImportError, e: |
---|
| 38 | #FIXME reduce the dependency of modules in pyvolution |
---|
| 39 | # Have util in a dir, working like load_mesh, and get rid of this |
---|
| 40 | def gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2): |
---|
| 41 | """ |
---|
| 42 | """ |
---|
| 43 | |
---|
| 44 | det = (y2-y0)*(x1-x0) - (y1-y0)*(x2-x0) |
---|
| 45 | a = (y2-y0)*(q1-q0) - (y1-y0)*(q2-q0) |
---|
| 46 | a /= det |
---|
| 47 | |
---|
| 48 | b = (x1-x0)*(q2-q0) - (x2-x0)*(q1-q0) |
---|
| 49 | b /= det |
---|
| 50 | |
---|
| 51 | return a, b |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | DEFAULT_ALPHA = 0.001 |
---|
| 55 | |
---|
| 56 | def fit_to_mesh_file(mesh_file, point_file, mesh_output_file, alpha=DEFAULT_ALPHA): |
---|
| 57 | """ |
---|
| 58 | Given a mesh file (tsh) and a point attribute file (xya), fit |
---|
| 59 | point attributes to the mesh and write a mesh file with the |
---|
| 60 | results. |
---|
| 61 | """ |
---|
| 62 | from load_mesh.loadASCII import mesh_file_to_mesh_dictionary, \ |
---|
| 63 | load_xya_file, export_trianglulation_file |
---|
| 64 | # load in the .tsh file |
---|
| 65 | mesh_dict = mesh_file_to_mesh_dictionary(mesh_file) |
---|
| 66 | vertex_coordinates = mesh_dict['generatedpointlist'] |
---|
| 67 | triangles = mesh_dict['generatedtrianglelist'] |
---|
| 68 | |
---|
| 69 | old_point_attributes = mesh_dict['generatedpointattributelist'] |
---|
| 70 | old_title_list = mesh_dict['generatedpointattributetitlelist'] |
---|
| 71 | |
---|
[485] | 72 | |
---|
[482] | 73 | # load in the .xya file |
---|
[595] | 74 | try: |
---|
| 75 | point_dict = load_xya_file(point_file) |
---|
| 76 | except SyntaxError,e: |
---|
| 77 | point_dict = load_xya_file(point_file,delimiter = ' ') |
---|
[482] | 78 | point_coordinates = point_dict['pointlist'] |
---|
| 79 | point_attributes = point_dict['pointattributelist'] |
---|
| 80 | title_string = point_dict['title'] |
---|
[485] | 81 | title_list = title_string.split(',') #FIXME iffy! Hard coding title delimiter |
---|
[482] | 82 | for i in range(len(title_list)): |
---|
| 83 | title_list[i] = title_list[i].strip() |
---|
| 84 | #print "title_list stripped", title_list |
---|
| 85 | f = fit_to_mesh(vertex_coordinates, |
---|
| 86 | triangles, |
---|
| 87 | point_coordinates, |
---|
| 88 | point_attributes, |
---|
| 89 | alpha = alpha) |
---|
| 90 | |
---|
| 91 | # convert array to list of lists |
---|
| 92 | new_point_attributes = f.tolist() |
---|
| 93 | |
---|
| 94 | #FIXME have this overwrite attributes with the same title - DSG |
---|
| 95 | #Put the newer attributes last |
---|
| 96 | if old_title_list <> []: |
---|
| 97 | old_title_list.extend(title_list) |
---|
| 98 | #FIXME can this be done a faster way? - DSG |
---|
| 99 | for i in range(len(old_point_attributes)): |
---|
| 100 | old_point_attributes[i].extend(new_point_attributes[i]) |
---|
| 101 | mesh_dict['generatedpointattributelist'] = old_point_attributes |
---|
| 102 | mesh_dict['generatedpointattributetitlelist'] = old_title_list |
---|
| 103 | else: |
---|
| 104 | mesh_dict['generatedpointattributelist'] = new_point_attributes |
---|
| 105 | mesh_dict['generatedpointattributetitlelist'] = title_list |
---|
| 106 | |
---|
| 107 | export_trianglulation_file(mesh_output_file, mesh_dict) |
---|
| 108 | |
---|
| 109 | |
---|
| 110 | def fit_to_mesh(vertex_coordinates, |
---|
| 111 | triangles, |
---|
| 112 | point_coordinates, |
---|
| 113 | point_attributes, |
---|
| 114 | alpha = DEFAULT_ALPHA): |
---|
| 115 | """ |
---|
| 116 | Fit a smooth surface to a trianglulation, |
---|
| 117 | given data points with attributes. |
---|
| 118 | |
---|
| 119 | |
---|
| 120 | Inputs: |
---|
| 121 | |
---|
| 122 | vertex_coordinates: List of coordinate pairs [xi, eta] of points |
---|
| 123 | constituting mesh (or a an m x 2 Numeric array) |
---|
| 124 | |
---|
| 125 | triangles: List of 3-tuples (or a Numeric array) of |
---|
| 126 | integers representing indices of all vertices in the mesh. |
---|
| 127 | |
---|
| 128 | point_coordinates: List of coordinate pairs [x, y] of data points |
---|
| 129 | (or an nx2 Numeric array) |
---|
| 130 | |
---|
| 131 | alpha: Smoothing parameter. |
---|
| 132 | |
---|
| 133 | point_attributes: Vector or array of data at the point_coordinates. |
---|
| 134 | """ |
---|
| 135 | interp = Interpolation(vertex_coordinates, |
---|
| 136 | triangles, |
---|
| 137 | point_coordinates, |
---|
| 138 | alpha = alpha) |
---|
| 139 | |
---|
| 140 | vertex_attributes = interp.fit_points(point_attributes) |
---|
| 141 | return vertex_attributes |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | class Interpolation: |
---|
| 145 | |
---|
| 146 | def __init__(self, |
---|
| 147 | vertex_coordinates, |
---|
| 148 | triangles, |
---|
| 149 | point_coordinates = None, |
---|
| 150 | alpha = DEFAULT_ALPHA): |
---|
| 151 | |
---|
| 152 | |
---|
| 153 | """ Build interpolation matrix mapping from |
---|
| 154 | function values at vertices to function values at data points |
---|
| 155 | |
---|
| 156 | Inputs: |
---|
| 157 | |
---|
[488] | 158 | vertex_coordinates: List of coordinate pairs [xi, eta] of |
---|
| 159 | points constituting mesh (or a an m x 2 Numeric array) |
---|
[482] | 160 | |
---|
| 161 | triangles: List of 3-tuples (or a Numeric array) of |
---|
| 162 | integers representing indices of all vertices in the mesh. |
---|
| 163 | |
---|
[488] | 164 | point_coordinates: List of coordinate pairs [x, y] of |
---|
| 165 | data points (or an nx2 Numeric array) |
---|
| 166 | If point_coordinates is absent, only smoothing matrix will |
---|
| 167 | be built |
---|
[482] | 168 | |
---|
| 169 | alpha: Smoothing parameter |
---|
| 170 | |
---|
| 171 | """ |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | #Convert input to Numeric arrays |
---|
| 175 | vertex_coordinates = array(vertex_coordinates).astype(Float) |
---|
| 176 | triangles = array(triangles).astype(Int) |
---|
| 177 | |
---|
| 178 | #Build underlying mesh |
---|
| 179 | self.mesh = General_mesh(vertex_coordinates, triangles) |
---|
| 180 | |
---|
| 181 | #Smoothing parameter |
---|
| 182 | self.alpha = alpha |
---|
| 183 | |
---|
| 184 | #Build coefficient matrices |
---|
| 185 | self.build_coefficient_matrix_B(point_coordinates) |
---|
| 186 | |
---|
[611] | 187 | def set_point_coordinates(self, point_coordinates): |
---|
| 188 | """ |
---|
| 189 | A public interface to setting the point co-ordinates. |
---|
| 190 | """ |
---|
| 191 | self.build_coefficient_matrix_B(point_coordinates) |
---|
[482] | 192 | |
---|
| 193 | def build_coefficient_matrix_B(self, point_coordinates=None): |
---|
| 194 | """Build final coefficient matrix""" |
---|
| 195 | |
---|
| 196 | |
---|
| 197 | if self.alpha <> 0: |
---|
| 198 | self.build_smoothing_matrix_D() |
---|
| 199 | |
---|
| 200 | if point_coordinates: |
---|
| 201 | |
---|
| 202 | self.build_interpolation_matrix_A(point_coordinates) |
---|
| 203 | |
---|
| 204 | if self.alpha <> 0: |
---|
| 205 | self.B = self.AtA + self.alpha*self.D |
---|
| 206 | else: |
---|
| 207 | self.B = self.AtA |
---|
| 208 | |
---|
[606] | 209 | #Convert self.B matrix to CSR format for faster matrix vector |
---|
| 210 | self.B = Sparse_CSR(self.B) |
---|
[482] | 211 | |
---|
| 212 | def build_interpolation_matrix_A(self, point_coordinates): |
---|
| 213 | """Build n x m interpolation matrix, where |
---|
| 214 | n is the number of data points and |
---|
[484] | 215 | m is the number of basis functions phi_k (one per vertex) |
---|
| 216 | |
---|
| 217 | This algorithm uses a quad tree data structure for fast binning of data points |
---|
| 218 | """ |
---|
| 219 | |
---|
| 220 | from quad import build_quadtree |
---|
[482] | 221 | |
---|
| 222 | #Convert input to Numeric arrays |
---|
| 223 | point_coordinates = array(point_coordinates).astype(Float) |
---|
| 224 | |
---|
| 225 | #Build n x m interpolation matrix |
---|
| 226 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
| 227 | n = point_coordinates.shape[0] #Nbr of data points |
---|
[621] | 228 | |
---|
[641] | 229 | |
---|
| 230 | #FIXME (Ole): We should use CSR here since mat-mat mult is now OK. |
---|
[482] | 231 | self.A = Sparse(n,m) |
---|
| 232 | self.AtA = Sparse(m,m) |
---|
| 233 | |
---|
[485] | 234 | #Build quad tree of vertices (FIXME: Is this the right spot for that?) |
---|
[484] | 235 | root = build_quadtree(self.mesh) |
---|
| 236 | |
---|
[482] | 237 | #Compute matrix elements |
---|
| 238 | for i in range(n): |
---|
| 239 | #For each data_coordinate point |
---|
| 240 | |
---|
[484] | 241 | #print 'Doing %d of %d' %(i, n) |
---|
[482] | 242 | |
---|
| 243 | x = point_coordinates[i] |
---|
[484] | 244 | |
---|
| 245 | #Find vertices near x |
---|
| 246 | candidate_vertices = root.search(x[0], x[1]) |
---|
| 247 | |
---|
[608] | 248 | is_more_elements = True |
---|
[611] | 249 | if candidate_vertices == []: |
---|
| 250 | # The point isn't even within the root cell! |
---|
| 251 | is_more_elements = False |
---|
| 252 | element_found = False |
---|
| 253 | else: |
---|
| 254 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
| 255 | self.search_triangles_of_vertices(candidate_vertices, x) |
---|
| 256 | |
---|
[608] | 257 | while not element_found and is_more_elements: |
---|
| 258 | candidate_vertices = root.expand_search() |
---|
| 259 | if candidate_vertices == []: |
---|
| 260 | # All the triangles have been searched. |
---|
| 261 | is_more_elements = False |
---|
| 262 | else: |
---|
| 263 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
| 264 | self.search_triangles_of_vertices(candidate_vertices, x) |
---|
| 265 | |
---|
| 266 | |
---|
[570] | 267 | |
---|
[608] | 268 | #Update interpolation matrix A if necessary |
---|
| 269 | if element_found is True: |
---|
| 270 | #Assign values to matrix A |
---|
| 271 | |
---|
| 272 | j0 = self.mesh.triangles[k,0] #Global vertex id |
---|
| 273 | #self.A[i, j0] = sigma0 |
---|
| 274 | |
---|
| 275 | j1 = self.mesh.triangles[k,1] #Global vertex id |
---|
| 276 | #self.A[i, j1] = sigma1 |
---|
| 277 | |
---|
| 278 | j2 = self.mesh.triangles[k,2] #Global vertex id |
---|
| 279 | #self.A[i, j2] = sigma2 |
---|
| 280 | |
---|
| 281 | sigmas = {j0:sigma0, j1:sigma1, j2:sigma2} |
---|
| 282 | js = [j0,j1,j2] |
---|
| 283 | |
---|
| 284 | for j in js: |
---|
| 285 | self.A[i,j] = sigmas[j] |
---|
| 286 | for k in js: |
---|
| 287 | self.AtA[j,k] += sigmas[j]*sigmas[k] |
---|
| 288 | else: |
---|
| 289 | pass |
---|
| 290 | #Ok if there is no triangle for datapoint |
---|
| 291 | #(as in brute force version) |
---|
| 292 | #raise 'Could not find triangle for point', x |
---|
| 293 | |
---|
| 294 | |
---|
| 295 | def search_triangles_of_vertices(self, candidate_vertices, x): |
---|
[485] | 296 | #Find triangle containing x: |
---|
[608] | 297 | element_found = False |
---|
| 298 | |
---|
| 299 | # This will be returned if element_found = False |
---|
| 300 | sigma2 = -10.0 |
---|
| 301 | sigma0 = -10.0 |
---|
| 302 | sigma1 = -10.0 |
---|
| 303 | |
---|
[485] | 304 | #For all vertices in same cell as point x |
---|
[484] | 305 | for v in candidate_vertices: |
---|
[485] | 306 | |
---|
| 307 | #for each triangle id (k) which has v as a vertex |
---|
| 308 | for k, _ in self.mesh.vertexlist[v]: |
---|
[484] | 309 | |
---|
| 310 | #Get the three vertex_points of candidate triangle |
---|
| 311 | xi0 = self.mesh.get_vertex_coordinate(k, 0) |
---|
| 312 | xi1 = self.mesh.get_vertex_coordinate(k, 1) |
---|
[485] | 313 | xi2 = self.mesh.get_vertex_coordinate(k, 2) |
---|
[484] | 314 | |
---|
[608] | 315 | #print "PDSG - k", k |
---|
| 316 | #print "PDSG - xi0", xi0 |
---|
| 317 | #print "PDSG - xi1", xi1 |
---|
| 318 | #print "PDSG - xi2", xi2 |
---|
| 319 | #print "PDSG element %i verts((%f, %f),(%f, %f),(%f, %f))" \ |
---|
| 320 | # % (k, xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1]) |
---|
| 321 | |
---|
[484] | 322 | #Get the three normals |
---|
| 323 | n0 = self.mesh.get_normal(k, 0) |
---|
| 324 | n1 = self.mesh.get_normal(k, 1) |
---|
| 325 | n2 = self.mesh.get_normal(k, 2) |
---|
| 326 | |
---|
[570] | 327 | |
---|
[571] | 328 | |
---|
[484] | 329 | #Compute interpolation |
---|
| 330 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
| 331 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
| 332 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
| 333 | |
---|
[608] | 334 | #print "PDSG - sigma0", sigma0 |
---|
| 335 | #print "PDSG - sigma1", sigma1 |
---|
| 336 | #print "PDSG - sigma2", sigma2 |
---|
| 337 | |
---|
[484] | 338 | #FIXME: Maybe move out to test or something |
---|
| 339 | epsilon = 1.0e-6 |
---|
| 340 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
[570] | 341 | |
---|
[484] | 342 | #Check that this triangle contains the data point |
---|
[570] | 343 | |
---|
| 344 | #Sigmas can get negative within |
---|
| 345 | #machine precision on some machines (e.g nautilus) |
---|
[608] | 346 | #Hence the small eps |
---|
[570] | 347 | eps = 1.0e-15 |
---|
| 348 | if sigma0 >= -eps and sigma1 >= -eps and sigma2 >= -eps: |
---|
[484] | 349 | element_found = True |
---|
| 350 | break |
---|
| 351 | |
---|
| 352 | if element_found is True: |
---|
| 353 | #Don't look for any other triangle |
---|
| 354 | break |
---|
[608] | 355 | return element_found, sigma0, sigma1, sigma2, k |
---|
[485] | 356 | |
---|
[571] | 357 | |
---|
[484] | 358 | |
---|
| 359 | def build_interpolation_matrix_A_brute(self, point_coordinates): |
---|
| 360 | """Build n x m interpolation matrix, where |
---|
| 361 | n is the number of data points and |
---|
| 362 | m is the number of basis functions phi_k (one per vertex) |
---|
| 363 | |
---|
[485] | 364 | This is the brute force which is too slow for large problems, |
---|
| 365 | but could be used for testing |
---|
[484] | 366 | """ |
---|
| 367 | |
---|
| 368 | |
---|
| 369 | |
---|
| 370 | #Convert input to Numeric arrays |
---|
| 371 | point_coordinates = array(point_coordinates).astype(Float) |
---|
| 372 | |
---|
| 373 | #Build n x m interpolation matrix |
---|
| 374 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
| 375 | n = point_coordinates.shape[0] #Nbr of data points |
---|
| 376 | |
---|
| 377 | self.A = Sparse(n,m) |
---|
| 378 | self.AtA = Sparse(m,m) |
---|
| 379 | |
---|
| 380 | #Compute matrix elements |
---|
| 381 | for i in range(n): |
---|
| 382 | #For each data_coordinate point |
---|
| 383 | |
---|
| 384 | x = point_coordinates[i] |
---|
[482] | 385 | element_found = False |
---|
| 386 | k = 0 |
---|
| 387 | while not element_found and k < len(self.mesh): |
---|
| 388 | #For each triangle (brute force) |
---|
| 389 | #FIXME: Real algorithm should only visit relevant triangles |
---|
| 390 | |
---|
| 391 | #Get the three vertex_points |
---|
| 392 | xi0 = self.mesh.get_vertex_coordinate(k, 0) |
---|
| 393 | xi1 = self.mesh.get_vertex_coordinate(k, 1) |
---|
| 394 | xi2 = self.mesh.get_vertex_coordinate(k, 2) |
---|
| 395 | |
---|
| 396 | #Get the three normals |
---|
| 397 | n0 = self.mesh.get_normal(k, 0) |
---|
| 398 | n1 = self.mesh.get_normal(k, 1) |
---|
| 399 | n2 = self.mesh.get_normal(k, 2) |
---|
| 400 | |
---|
| 401 | #Compute interpolation |
---|
| 402 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
| 403 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
| 404 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
| 405 | |
---|
| 406 | #FIXME: Maybe move out to test or something |
---|
| 407 | epsilon = 1.0e-6 |
---|
| 408 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
| 409 | |
---|
| 410 | #Check that this triangle contains data point |
---|
| 411 | if sigma0 >= 0 and sigma1 >= 0 and sigma2 >= 0: |
---|
| 412 | element_found = True |
---|
| 413 | #Assign values to matrix A |
---|
| 414 | |
---|
| 415 | j0 = self.mesh.triangles[k,0] #Global vertex id |
---|
| 416 | #self.A[i, j0] = sigma0 |
---|
| 417 | |
---|
| 418 | j1 = self.mesh.triangles[k,1] #Global vertex id |
---|
| 419 | #self.A[i, j1] = sigma1 |
---|
| 420 | |
---|
| 421 | j2 = self.mesh.triangles[k,2] #Global vertex id |
---|
| 422 | #self.A[i, j2] = sigma2 |
---|
| 423 | |
---|
| 424 | sigmas = {j0:sigma0, j1:sigma1, j2:sigma2} |
---|
| 425 | js = [j0,j1,j2] |
---|
| 426 | |
---|
| 427 | for j in js: |
---|
| 428 | self.A[i,j] = sigmas[j] |
---|
| 429 | for k in js: |
---|
| 430 | self.AtA[j,k] += sigmas[j]*sigmas[k] |
---|
| 431 | k = k+1 |
---|
| 432 | |
---|
| 433 | |
---|
| 434 | |
---|
| 435 | def get_A(self): |
---|
| 436 | return self.A.todense() |
---|
| 437 | |
---|
| 438 | def get_B(self): |
---|
| 439 | return self.B.todense() |
---|
| 440 | |
---|
| 441 | def get_D(self): |
---|
| 442 | return self.D.todense() |
---|
| 443 | |
---|
| 444 | #FIXME: Remember to re-introduce the 1/n factor in the |
---|
| 445 | #interpolation term |
---|
| 446 | |
---|
| 447 | def build_smoothing_matrix_D(self): |
---|
| 448 | """Build m x m smoothing matrix, where |
---|
| 449 | m is the number of basis functions phi_k (one per vertex) |
---|
| 450 | |
---|
| 451 | The smoothing matrix is defined as |
---|
| 452 | |
---|
| 453 | D = D1 + D2 |
---|
| 454 | |
---|
| 455 | where |
---|
| 456 | |
---|
| 457 | [D1]_{k,l} = \int_\Omega |
---|
| 458 | \frac{\partial \phi_k}{\partial x} |
---|
| 459 | \frac{\partial \phi_l}{\partial x}\, |
---|
| 460 | dx dy |
---|
| 461 | |
---|
| 462 | [D2]_{k,l} = \int_\Omega |
---|
| 463 | \frac{\partial \phi_k}{\partial y} |
---|
| 464 | \frac{\partial \phi_l}{\partial y}\, |
---|
| 465 | dx dy |
---|
| 466 | |
---|
| 467 | |
---|
| 468 | The derivatives \frac{\partial \phi_k}{\partial x}, |
---|
| 469 | \frac{\partial \phi_k}{\partial x} for a particular triangle |
---|
| 470 | are obtained by computing the gradient a_k, b_k for basis function k |
---|
| 471 | """ |
---|
| 472 | |
---|
| 473 | #FIXME: algorithm might be optimised by computing local 9x9 |
---|
| 474 | #"element stiffness matrices: |
---|
| 475 | |
---|
| 476 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
| 477 | |
---|
| 478 | self.D = Sparse(m,m) |
---|
| 479 | |
---|
| 480 | #For each triangle compute contributions to D = D1+D2 |
---|
| 481 | for i in range(len(self.mesh)): |
---|
| 482 | |
---|
| 483 | #Get area |
---|
| 484 | area = self.mesh.areas[i] |
---|
| 485 | |
---|
| 486 | #Get global vertex indices |
---|
| 487 | v0 = self.mesh.triangles[i,0] |
---|
| 488 | v1 = self.mesh.triangles[i,1] |
---|
| 489 | v2 = self.mesh.triangles[i,2] |
---|
| 490 | |
---|
| 491 | #Get the three vertex_points |
---|
| 492 | xi0 = self.mesh.get_vertex_coordinate(i, 0) |
---|
| 493 | xi1 = self.mesh.get_vertex_coordinate(i, 1) |
---|
| 494 | xi2 = self.mesh.get_vertex_coordinate(i, 2) |
---|
| 495 | |
---|
| 496 | #Compute gradients for each vertex |
---|
| 497 | a0, b0 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
| 498 | 1, 0, 0) |
---|
| 499 | |
---|
| 500 | a1, b1 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
| 501 | 0, 1, 0) |
---|
| 502 | |
---|
| 503 | a2, b2 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
| 504 | 0, 0, 1) |
---|
| 505 | |
---|
| 506 | #Compute diagonal contributions |
---|
| 507 | self.D[v0,v0] += (a0*a0 + b0*b0)*area |
---|
| 508 | self.D[v1,v1] += (a1*a1 + b1*b1)*area |
---|
| 509 | self.D[v2,v2] += (a2*a2 + b2*b2)*area |
---|
| 510 | |
---|
| 511 | #Compute contributions for basis functions sharing edges |
---|
| 512 | e01 = (a0*a1 + b0*b1)*area |
---|
| 513 | self.D[v0,v1] += e01 |
---|
| 514 | self.D[v1,v0] += e01 |
---|
| 515 | |
---|
| 516 | e12 = (a1*a2 + b1*b2)*area |
---|
| 517 | self.D[v1,v2] += e12 |
---|
| 518 | self.D[v2,v1] += e12 |
---|
| 519 | |
---|
| 520 | e20 = (a2*a0 + b2*b0)*area |
---|
| 521 | self.D[v2,v0] += e20 |
---|
| 522 | self.D[v0,v2] += e20 |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | def fit(self, z): |
---|
| 526 | """Fit a smooth surface to given 1d array of data points z. |
---|
| 527 | |
---|
| 528 | The smooth surface is computed at each vertex in the underlying |
---|
| 529 | mesh using the formula given in the module doc string. |
---|
| 530 | |
---|
| 531 | Pre Condition: |
---|
| 532 | self.A, self.At and self.B have been initialised |
---|
| 533 | |
---|
| 534 | Inputs: |
---|
| 535 | z: Single 1d vector or array of data at the point_coordinates. |
---|
| 536 | """ |
---|
| 537 | |
---|
| 538 | #Convert input to Numeric arrays |
---|
| 539 | z = array(z).astype(Float) |
---|
| 540 | |
---|
| 541 | |
---|
| 542 | if len(z.shape) > 1 : |
---|
| 543 | raise VectorShapeError, 'Can only deal with 1d data vector' |
---|
| 544 | |
---|
| 545 | #Compute right hand side based on data |
---|
| 546 | Atz = self.A.trans_mult(z) |
---|
| 547 | |
---|
| 548 | |
---|
| 549 | #Check sanity |
---|
| 550 | n, m = self.A.shape |
---|
| 551 | if n<m and self.alpha == 0.0: |
---|
| 552 | msg = 'ERROR (least_squares): Too few data points\n' |
---|
| 553 | msg += 'There only %d data points. Need at least %d\n' %(n,m) |
---|
| 554 | msg += 'Alternatively, increase smoothing parameter alpha' |
---|
| 555 | raise msg |
---|
| 556 | |
---|
| 557 | |
---|
[606] | 558 | |
---|
[482] | 559 | return conjugate_gradient(self.B, Atz, Atz,imax=2*len(Atz) ) |
---|
| 560 | #FIXME: Should we store the result here for later use? (ON) |
---|
[485] | 561 | |
---|
| 562 | |
---|
[482] | 563 | def fit_points(self, z): |
---|
[485] | 564 | """Like fit, but more robust when each point has two or more attributes |
---|
[488] | 565 | FIXME (Ole): The name fit_points doesn't carry any meaning |
---|
| 566 | for me. How about something like fit_multiple or fit_columns? |
---|
[482] | 567 | """ |
---|
[485] | 568 | |
---|
[482] | 569 | try: |
---|
| 570 | return self.fit(z) |
---|
| 571 | except VectorShapeError, e: |
---|
| 572 | # broadcasting is not supported. |
---|
| 573 | |
---|
| 574 | #Convert input to Numeric arrays |
---|
| 575 | z = array(z).astype(Float) |
---|
| 576 | |
---|
| 577 | #Build n x m interpolation matrix |
---|
| 578 | m = self.mesh.coordinates.shape[0] #Number of vertices |
---|
| 579 | n = z.shape[1] #Number of data points |
---|
| 580 | |
---|
[485] | 581 | f = zeros((m,n), Float) #Resulting columns |
---|
[482] | 582 | |
---|
| 583 | for i in range(z.shape[1]): |
---|
| 584 | f[:,i] = self.fit(z[:,i]) |
---|
[485] | 585 | |
---|
[482] | 586 | return f |
---|
| 587 | |
---|
| 588 | |
---|
| 589 | def interpolate(self, f): |
---|
[488] | 590 | """Evaluate smooth surface f at data points implied in self.A. |
---|
[482] | 591 | |
---|
| 592 | The mesh values representing a smooth surface are |
---|
| 593 | assumed to be specified in f. This argument could, |
---|
| 594 | for example have been obtained from the method self.fit() |
---|
| 595 | |
---|
| 596 | Pre Condition: |
---|
| 597 | self.A has been initialised |
---|
| 598 | |
---|
| 599 | Inputs: |
---|
| 600 | f: Vector or array of data at the mesh vertices. |
---|
[621] | 601 | If f is an array, interpolation will be done for each column as |
---|
| 602 | per underlying matrix-matrix multiplication |
---|
[482] | 603 | """ |
---|
| 604 | |
---|
[485] | 605 | return self.A * f |
---|
| 606 | |
---|
| 607 | |
---|
[482] | 608 | #------------------------------------------------------------- |
---|
| 609 | if __name__ == "__main__": |
---|
| 610 | """ |
---|
| 611 | Load in a mesh and data points with attributes. |
---|
| 612 | Fit the attributes to the mesh. |
---|
| 613 | Save a new mesh file. |
---|
| 614 | """ |
---|
| 615 | import os, sys |
---|
[485] | 616 | usage = "usage: %s mesh_input.tsh point.xya mesh_output.tsh alpha"\ |
---|
| 617 | %os.path.basename(sys.argv[0]) |
---|
[482] | 618 | |
---|
| 619 | if len(sys.argv) < 4: |
---|
| 620 | print usage |
---|
| 621 | else: |
---|
| 622 | mesh_file = sys.argv[1] |
---|
| 623 | point_file = sys.argv[2] |
---|
| 624 | mesh_output_file = sys.argv[3] |
---|
| 625 | if len(sys.argv) > 4: |
---|
| 626 | alpha = sys.argv[4] |
---|
| 627 | else: |
---|
| 628 | alpha = DEFAULT_ALPHA |
---|
| 629 | fit_to_mesh_file(mesh_file, point_file, mesh_output_file, alpha) |
---|
| 630 | |
---|