1 | """Least squares smooting and interpolation. |
---|
2 | Very first cut - just to check a few things. |
---|
3 | Architecture is not set in concrete at all. |
---|
4 | |
---|
5 | O |
---|
6 | """ |
---|
7 | |
---|
8 | |
---|
9 | from mesh import Mesh |
---|
10 | |
---|
11 | |
---|
12 | class Interpolation(Mesh): |
---|
13 | |
---|
14 | def __init__(self, vertex_coordinates, triangles, data): |
---|
15 | """ Build interpolation matrix mapping from |
---|
16 | function values at vertices to function values at data points |
---|
17 | |
---|
18 | Inputs: |
---|
19 | |
---|
20 | vertex_coordinates: List of coordinate pairs [xi, eta] of points |
---|
21 | constituting mesh (or a an m x 2 Numeric array) |
---|
22 | |
---|
23 | triangles: List of 3-tuples (or a Numeric array) of |
---|
24 | integers representing indices of all vertices in the mesh. |
---|
25 | |
---|
26 | data: List of coordinate pairs [x, y] of data points |
---|
27 | (or an nx2 Numeric array) |
---|
28 | |
---|
29 | """ |
---|
30 | |
---|
31 | from Numeric import zeros, array, Float, Int, dot |
---|
32 | from config import epsilon |
---|
33 | |
---|
34 | #Convert input to Numeric arrays |
---|
35 | data = array(data).astype(Float) |
---|
36 | vertex_coordinates = array(vertex_coordinates).astype(Float) |
---|
37 | triangles = array(triangles).astype(Int) |
---|
38 | |
---|
39 | #Build underlying mesh |
---|
40 | Mesh.__init__(self, vertex_coordinates, triangles) |
---|
41 | |
---|
42 | |
---|
43 | #Build n x m interpolation matrix |
---|
44 | m = vertex_coordinates.shape[0] #Number of basis functions (1/vertex) |
---|
45 | n = data.shape[0] #Number of data points |
---|
46 | |
---|
47 | self.matrix = zeros((n,m), Float) |
---|
48 | |
---|
49 | #Compute matrix elements |
---|
50 | for i in range(n): |
---|
51 | #For each data point |
---|
52 | |
---|
53 | x = data[i] |
---|
54 | for k in range(len(self)): |
---|
55 | #For each triangle (brute force) |
---|
56 | #FIXME: Real algorithm should only visit relevant triangles |
---|
57 | |
---|
58 | #Get the three vertex_points |
---|
59 | xi0 = self.get_vertex_coordinate(k, 0) |
---|
60 | xi1 = self.get_vertex_coordinate(k, 1) |
---|
61 | xi2 = self.get_vertex_coordinate(k, 2) |
---|
62 | |
---|
63 | #Get the three normals |
---|
64 | n0 = self.get_normal(k, 0) |
---|
65 | n1 = self.get_normal(k, 1) |
---|
66 | n2 = self.get_normal(k, 2) |
---|
67 | |
---|
68 | #Compute interpolation |
---|
69 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
70 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
71 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
72 | |
---|
73 | #FIXME: Maybe move out to test or something |
---|
74 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
75 | |
---|
76 | |
---|
77 | #Check that this trinagle contains data point |
---|
78 | if sigma0 >= 0 and sigma1 >= 0 and sigma2 >= 0: |
---|
79 | |
---|
80 | #Assign values to matrix |
---|
81 | v_id = self.vertices[k,0] |
---|
82 | self.matrix[i, v_id] = sigma0 |
---|
83 | |
---|
84 | v_id = self.vertices[k,1] |
---|
85 | self.matrix[i, v_id] = sigma1 |
---|
86 | |
---|
87 | v_id = self.vertices[k,2] |
---|
88 | self.matrix[i, v_id] = sigma2 |
---|
89 | |
---|
90 | |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | |
---|
95 | |
---|
96 | |
---|