1 | """Least squares smooting and interpolation. |
---|
2 | |
---|
3 | Implements a penalised least-squares fit and associated interpolations. |
---|
4 | |
---|
5 | The penalty term (or smoothing term) is controlled by the smoothing |
---|
6 | parameter alpha. |
---|
7 | With a value of alpha=0, the fit function will attempt |
---|
8 | to interpolate as closely as possible in the least-squares sense. |
---|
9 | With values alpha > 0, a certain amount of smoothing will be applied. |
---|
10 | A positive alpha is essential in cases where there are too few |
---|
11 | data points. |
---|
12 | A negative alpha is not allowed. |
---|
13 | A typical value of alpha is 1.0e-6 |
---|
14 | |
---|
15 | |
---|
16 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
17 | Geoscience Australia, 2004. |
---|
18 | """ |
---|
19 | |
---|
20 | |
---|
21 | #FIXME (Ole): Currently datapoints outside the triangular mesh are ignored. |
---|
22 | # Is there a clean way of including them? |
---|
23 | # (DSG) No clean way was found. After discussions with stephen the best |
---|
24 | # solution was having the user increase the size of the mesh to |
---|
25 | # cover all the desired points. |
---|
26 | |
---|
27 | |
---|
28 | |
---|
29 | import exceptions |
---|
30 | class ShapeError(exceptions.Exception): pass |
---|
31 | |
---|
32 | from general_mesh import General_mesh |
---|
33 | from Numeric import zeros, array, Float, Int, dot, transpose, concatenate, ArrayType |
---|
34 | from mesh import Mesh |
---|
35 | |
---|
36 | from Numeric import zeros, take, array, Float, Int, dot, transpose, concatenate, ArrayType |
---|
37 | from sparse import Sparse, Sparse_CSR |
---|
38 | from cg_solve import conjugate_gradient, VectorShapeError |
---|
39 | import time |
---|
40 | |
---|
41 | try: |
---|
42 | from util import gradient |
---|
43 | except ImportError, e: |
---|
44 | #FIXME reduce the dependency of modules in pyvolution |
---|
45 | # Have util in a dir, working like load_mesh, and get rid of this |
---|
46 | def gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2): |
---|
47 | """ |
---|
48 | """ |
---|
49 | |
---|
50 | det = (y2-y0)*(x1-x0) - (y1-y0)*(x2-x0) |
---|
51 | a = (y2-y0)*(q1-q0) - (y1-y0)*(q2-q0) |
---|
52 | a /= det |
---|
53 | |
---|
54 | b = (x1-x0)*(q2-q0) - (x2-x0)*(q1-q0) |
---|
55 | b /= det |
---|
56 | |
---|
57 | return a, b |
---|
58 | |
---|
59 | |
---|
60 | DEFAULT_ALPHA = 0.001 |
---|
61 | |
---|
62 | def fit_to_mesh_file(mesh_file, point_file, mesh_output_file, |
---|
63 | alpha=DEFAULT_ALPHA, verbose= False, |
---|
64 | expand_search = False, |
---|
65 | data_origin = None, |
---|
66 | mesh_origin = None, |
---|
67 | precrop = False): |
---|
68 | """ |
---|
69 | Given a mesh file (tsh) and a point attribute file (xya), fit |
---|
70 | point attributes to the mesh and write a mesh file with the |
---|
71 | results. |
---|
72 | |
---|
73 | |
---|
74 | If data_origin is not None it is assumed to be |
---|
75 | a 3-tuple with geo referenced |
---|
76 | UTM coordinates (zone, easting, northing) |
---|
77 | |
---|
78 | mesh_origin is the same but refers to the input tsh file. |
---|
79 | FIXME: When the tsh format contains it own origin, these parameters can go. |
---|
80 | FIXME: And both origins should be obtained from the specified files. |
---|
81 | """ |
---|
82 | |
---|
83 | from load_mesh.loadASCII import mesh_file_to_mesh_dictionary, \ |
---|
84 | load_points_file, export_mesh_file, \ |
---|
85 | concatinate_attributelist |
---|
86 | |
---|
87 | # load in the .tsh file |
---|
88 | #FIXME (Ole): mesh_origin should be extracted here |
---|
89 | mesh_dict = mesh_file_to_mesh_dictionary(mesh_file) |
---|
90 | vertex_coordinates = mesh_dict['vertices'] |
---|
91 | triangles = mesh_dict['triangles'] |
---|
92 | if type(mesh_dict['vertex_attributes']) == ArrayType: |
---|
93 | old_point_attributes = mesh_dict['vertex_attributes'].tolist() |
---|
94 | else: |
---|
95 | old_point_attributes = mesh_dict['vertex_attributes'] |
---|
96 | |
---|
97 | if type(mesh_dict['vertex_attribute_titles']) == ArrayType: |
---|
98 | old_title_list = mesh_dict['vertex_attribute_titles'].tolist() |
---|
99 | else: |
---|
100 | old_title_list = mesh_dict['vertex_attribute_titles'] |
---|
101 | |
---|
102 | if verbose:print "tsh file loaded" |
---|
103 | |
---|
104 | # load in the .pts file |
---|
105 | #FIXME (Ole): data_origin should be extracted here |
---|
106 | try: |
---|
107 | point_dict = load_points_file(point_file,delimiter = ',') |
---|
108 | except SyntaxError,e: |
---|
109 | point_dict = load_points_file(point_file,delimiter = ' ') |
---|
110 | point_coordinates = point_dict['pointlist'] |
---|
111 | title_list,point_attributes = concatinate_attributelist(point_dict['attributelist']) |
---|
112 | if verbose: print "points file loaded" |
---|
113 | if verbose:print "fitting to mesh" |
---|
114 | f = fit_to_mesh(vertex_coordinates, |
---|
115 | triangles, |
---|
116 | point_coordinates, |
---|
117 | point_attributes, |
---|
118 | alpha = alpha, |
---|
119 | verbose = verbose, |
---|
120 | expand_search = expand_search, |
---|
121 | data_origin = data_origin, |
---|
122 | mesh_origin = mesh_origin, |
---|
123 | precrop = precrop) |
---|
124 | if verbose: print "finished fitting to mesh" |
---|
125 | |
---|
126 | # convert array to list of lists |
---|
127 | new_point_attributes = f.tolist() |
---|
128 | #FIXME have this overwrite attributes with the same title - DSG |
---|
129 | #Put the newer attributes last |
---|
130 | if old_title_list <> []: |
---|
131 | old_title_list.extend(title_list) |
---|
132 | #FIXME can this be done a faster way? - DSG |
---|
133 | for i in range(len(old_point_attributes)): |
---|
134 | old_point_attributes[i].extend(new_point_attributes[i]) |
---|
135 | mesh_dict['vertex_attributes'] = old_point_attributes |
---|
136 | mesh_dict['vertex_attribute_titles'] = old_title_list |
---|
137 | else: |
---|
138 | mesh_dict['vertex_attributes'] = new_point_attributes |
---|
139 | mesh_dict['vertex_attribute_titles'] = title_list |
---|
140 | |
---|
141 | #FIXME (Ole): Remember to output mesh_origin as well |
---|
142 | export_mesh_file(mesh_output_file, mesh_dict) |
---|
143 | |
---|
144 | |
---|
145 | def fit_to_mesh(vertex_coordinates, |
---|
146 | triangles, |
---|
147 | point_coordinates, |
---|
148 | point_attributes, |
---|
149 | alpha = DEFAULT_ALPHA, |
---|
150 | verbose = False, |
---|
151 | expand_search = False, |
---|
152 | data_origin = None, |
---|
153 | mesh_origin = None, |
---|
154 | precrop = False): |
---|
155 | """ |
---|
156 | Fit a smooth surface to a triangulation, |
---|
157 | given data points with attributes. |
---|
158 | |
---|
159 | |
---|
160 | Inputs: |
---|
161 | |
---|
162 | vertex_coordinates: List of coordinate pairs [xi, eta] of points |
---|
163 | constituting mesh (or a an m x 2 Numeric array) |
---|
164 | |
---|
165 | triangles: List of 3-tuples (or a Numeric array) of |
---|
166 | integers representing indices of all vertices in the mesh. |
---|
167 | |
---|
168 | point_coordinates: List of coordinate pairs [x, y] of data points |
---|
169 | (or an nx2 Numeric array) |
---|
170 | |
---|
171 | alpha: Smoothing parameter. |
---|
172 | |
---|
173 | point_attributes: Vector or array of data at the point_coordinates. |
---|
174 | |
---|
175 | data_origin and mesh_origin are 3-tuples consisting of |
---|
176 | UTM zone, easting and northing. If specified |
---|
177 | point coordinates and vertex coordinates are assumed to be |
---|
178 | relative to their respective origins. |
---|
179 | |
---|
180 | """ |
---|
181 | interp = Interpolation(vertex_coordinates, |
---|
182 | triangles, |
---|
183 | point_coordinates, |
---|
184 | alpha = alpha, |
---|
185 | verbose = verbose, |
---|
186 | expand_search = expand_search, |
---|
187 | data_origin = data_origin, |
---|
188 | mesh_origin = mesh_origin, |
---|
189 | precrop = precrop) |
---|
190 | |
---|
191 | vertex_attributes = interp.fit_points(point_attributes, verbose = verbose) |
---|
192 | return vertex_attributes |
---|
193 | |
---|
194 | |
---|
195 | |
---|
196 | def pts2rectangular(pts_name, M, N, alpha = DEFAULT_ALPHA, |
---|
197 | verbose = False, reduction = 1, format = 'netcdf'): |
---|
198 | """Fits attributes from pts file to MxN rectangular mesh |
---|
199 | |
---|
200 | Read pts file and create rectangular mesh of resolution MxN such that |
---|
201 | it covers all points specified in pts file. |
---|
202 | |
---|
203 | FIXME: This may be a temporary function until we decide on |
---|
204 | netcdf formats etc |
---|
205 | |
---|
206 | FIXME: Uses elevation hardwired |
---|
207 | """ |
---|
208 | |
---|
209 | import util, mesh_factory |
---|
210 | |
---|
211 | if verbose: print 'Read pts' |
---|
212 | points, attributes = util.read_xya(pts_name, format) |
---|
213 | |
---|
214 | #Reduce number of points a bit |
---|
215 | points = points[::reduction] |
---|
216 | elevation = attributes['elevation'] #Must be elevation |
---|
217 | elevation = elevation[::reduction] |
---|
218 | |
---|
219 | if verbose: print 'Got %d data points' %len(points) |
---|
220 | |
---|
221 | if verbose: print 'Create mesh' |
---|
222 | #Find extent |
---|
223 | max_x = min_x = points[0][0] |
---|
224 | max_y = min_y = points[0][1] |
---|
225 | for point in points[1:]: |
---|
226 | x = point[0] |
---|
227 | if x > max_x: max_x = x |
---|
228 | if x < min_x: min_x = x |
---|
229 | y = point[1] |
---|
230 | if y > max_y: max_y = y |
---|
231 | if y < min_y: min_y = y |
---|
232 | |
---|
233 | #Create appropriate mesh |
---|
234 | vertex_coordinates, triangles, boundary =\ |
---|
235 | mesh_factory.rectangular(M, N, max_x-min_x, max_y-min_y, |
---|
236 | (min_x, min_y)) |
---|
237 | |
---|
238 | #Fit attributes to mesh |
---|
239 | vertex_attributes = fit_to_mesh(vertex_coordinates, |
---|
240 | triangles, |
---|
241 | points, |
---|
242 | elevation, alpha=alpha, verbose=verbose) |
---|
243 | |
---|
244 | |
---|
245 | |
---|
246 | return vertex_coordinates, triangles, boundary, vertex_attributes |
---|
247 | |
---|
248 | |
---|
249 | |
---|
250 | class Interpolation: |
---|
251 | |
---|
252 | def __init__(self, |
---|
253 | vertex_coordinates, |
---|
254 | triangles, |
---|
255 | point_coordinates = None, |
---|
256 | alpha = DEFAULT_ALPHA, |
---|
257 | verbose = False, |
---|
258 | expand_search = True, |
---|
259 | max_points_per_cell = 30, |
---|
260 | mesh_origin = None, |
---|
261 | data_origin = None, |
---|
262 | precrop = False): |
---|
263 | |
---|
264 | |
---|
265 | """ Build interpolation matrix mapping from |
---|
266 | function values at vertices to function values at data points |
---|
267 | |
---|
268 | Inputs: |
---|
269 | |
---|
270 | vertex_coordinates: List of coordinate pairs [xi, eta] of |
---|
271 | points constituting mesh (or a an m x 2 Numeric array) |
---|
272 | |
---|
273 | triangles: List of 3-tuples (or a Numeric array) of |
---|
274 | integers representing indices of all vertices in the mesh. |
---|
275 | |
---|
276 | point_coordinates: List of coordinate pairs [x, y] of |
---|
277 | data points (or an nx2 Numeric array) |
---|
278 | If point_coordinates is absent, only smoothing matrix will |
---|
279 | be built |
---|
280 | |
---|
281 | alpha: Smoothing parameter |
---|
282 | |
---|
283 | data_origin and mesh_origin are 3-tuples consisting of |
---|
284 | UTM zone, easting and northing. If specified |
---|
285 | point coordinates and vertex coordinates are assumed to be |
---|
286 | relative to their respective origins. |
---|
287 | |
---|
288 | """ |
---|
289 | |
---|
290 | #Convert input to Numeric arrays |
---|
291 | triangles = array(triangles).astype(Int) |
---|
292 | vertex_coordinates = array(vertex_coordinates).astype(Float) |
---|
293 | |
---|
294 | #Build underlying mesh |
---|
295 | if verbose: print 'Building mesh' |
---|
296 | #self.mesh = General_mesh(vertex_coordinates, triangles, |
---|
297 | #FIXME: Trying the normal mesh while testing precrop |
---|
298 | self.mesh = Mesh(vertex_coordinates, triangles, |
---|
299 | origin = mesh_origin) |
---|
300 | self.data_origin = data_origin |
---|
301 | |
---|
302 | self.point_indices = None |
---|
303 | |
---|
304 | #Smoothing parameter |
---|
305 | self.alpha = alpha |
---|
306 | |
---|
307 | #Build coefficient matrices |
---|
308 | self.build_coefficient_matrix_B(point_coordinates, |
---|
309 | verbose = verbose, |
---|
310 | expand_search = expand_search, |
---|
311 | max_points_per_cell =\ |
---|
312 | max_points_per_cell, |
---|
313 | data_origin = data_origin, |
---|
314 | precrop = precrop) |
---|
315 | |
---|
316 | |
---|
317 | def set_point_coordinates(self, point_coordinates, |
---|
318 | data_origin = None): |
---|
319 | """ |
---|
320 | A public interface to setting the point co-ordinates. |
---|
321 | """ |
---|
322 | self.build_coefficient_matrix_B(point_coordinates, data_origin) |
---|
323 | |
---|
324 | def build_coefficient_matrix_B(self, point_coordinates=None, |
---|
325 | verbose = False, expand_search = True, |
---|
326 | max_points_per_cell=30, |
---|
327 | data_origin = None, |
---|
328 | precrop = False): |
---|
329 | """Build final coefficient matrix""" |
---|
330 | |
---|
331 | |
---|
332 | if self.alpha <> 0: |
---|
333 | if verbose: print 'Building smoothing matrix' |
---|
334 | self.build_smoothing_matrix_D() |
---|
335 | |
---|
336 | if point_coordinates is not None: |
---|
337 | |
---|
338 | if verbose: print 'Building interpolation matrix' |
---|
339 | self.build_interpolation_matrix_A(point_coordinates, |
---|
340 | verbose = verbose, |
---|
341 | expand_search = expand_search, |
---|
342 | max_points_per_cell =\ |
---|
343 | max_points_per_cell, |
---|
344 | data_origin = data_origin, |
---|
345 | precrop = precrop) |
---|
346 | |
---|
347 | if self.alpha <> 0: |
---|
348 | self.B = self.AtA + self.alpha*self.D |
---|
349 | else: |
---|
350 | self.B = self.AtA |
---|
351 | |
---|
352 | #Convert self.B matrix to CSR format for faster matrix vector |
---|
353 | self.B = Sparse_CSR(self.B) |
---|
354 | |
---|
355 | def build_interpolation_matrix_A(self, point_coordinates, |
---|
356 | verbose = False, expand_search = True, |
---|
357 | max_points_per_cell=30, |
---|
358 | data_origin = None, |
---|
359 | precrop = False): |
---|
360 | """Build n x m interpolation matrix, where |
---|
361 | n is the number of data points and |
---|
362 | m is the number of basis functions phi_k (one per vertex) |
---|
363 | |
---|
364 | This algorithm uses a quad tree data structure for fast binning of data points |
---|
365 | origin is a 3-tuple consisting of UTM zone, easting and northing. |
---|
366 | If specified coordinates are assumed to be relative to this origin. |
---|
367 | |
---|
368 | This one will override any data_origin that may be specified in |
---|
369 | interpolation instance |
---|
370 | |
---|
371 | """ |
---|
372 | |
---|
373 | from quad import build_quadtree |
---|
374 | |
---|
375 | if data_origin is None: |
---|
376 | data_origin = self.data_origin #Use the one from |
---|
377 | #interpolation instance |
---|
378 | |
---|
379 | #Convert input to Numeric arrays just in case. |
---|
380 | point_coordinates = array(point_coordinates).astype(Float) |
---|
381 | |
---|
382 | |
---|
383 | #Shift data points to same origin as mesh (if specified) |
---|
384 | mesh_origin = self.mesh.origin |
---|
385 | if point_coordinates is not None: |
---|
386 | if data_origin is not None: |
---|
387 | if mesh_origin is not None: |
---|
388 | |
---|
389 | #Transformation: |
---|
390 | # |
---|
391 | #Let x_0 be the reference point of the point coordinates |
---|
392 | #and xi_0 the reference point of the mesh. |
---|
393 | # |
---|
394 | #A point coordinate (x + x_0) is then made relative |
---|
395 | #to xi_0 by |
---|
396 | # |
---|
397 | # x_new = x + x_0 - xi_0 |
---|
398 | # |
---|
399 | #and similarly for eta |
---|
400 | |
---|
401 | x_offset = data_origin[1] - mesh_origin[1] |
---|
402 | y_offset = data_origin[2] - mesh_origin[2] |
---|
403 | else: #Shift back to a zero origin |
---|
404 | x_offset = data_origin[1] |
---|
405 | y_offset = data_origin[2] |
---|
406 | |
---|
407 | point_coordinates[:,0] += x_offset |
---|
408 | point_coordinates[:,1] += y_offset |
---|
409 | else: |
---|
410 | if mesh_origin is not None: |
---|
411 | #Use mesh origin for data points |
---|
412 | point_coordinates[:,0] -= mesh_origin[1] |
---|
413 | point_coordinates[:,1] -= mesh_origin[2] |
---|
414 | |
---|
415 | |
---|
416 | |
---|
417 | #Remove points falling outside mesh boundary |
---|
418 | #This reduced one example from 1356 seconds to 825 seconds |
---|
419 | #And more could be had by writing util.inside_polygon in C |
---|
420 | if precrop is True: |
---|
421 | from Numeric import take |
---|
422 | from util import inside_polygon |
---|
423 | |
---|
424 | if verbose: print 'Getting boundary polygon' |
---|
425 | P = self.mesh.get_boundary_polygon() |
---|
426 | |
---|
427 | if verbose: print 'Getting indices inside mesh boundary' |
---|
428 | indices = inside_polygon(point_coordinates, P, verbose = verbose) |
---|
429 | |
---|
430 | if verbose: |
---|
431 | if len(indices) != point_coordinates.shape[0]: |
---|
432 | print '%d points outside mesh have been cropped.'\ |
---|
433 | %(point_coordinates.shape[0] - len(indices)) |
---|
434 | point_coordinates = take(point_coordinates, indices) |
---|
435 | self.point_indices = indices |
---|
436 | |
---|
437 | |
---|
438 | |
---|
439 | |
---|
440 | #Build n x m interpolation matrix |
---|
441 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
442 | n = point_coordinates.shape[0] #Nbr of data points |
---|
443 | |
---|
444 | if verbose: print 'Number of datapoints: %d' %n |
---|
445 | if verbose: print 'Number of basis functions: %d' %m |
---|
446 | |
---|
447 | #FIXME (Ole): We should use CSR here since mat-mat mult is now OK. |
---|
448 | #However, Sparse_CSR does not have the same methods as Sparse yet |
---|
449 | #The tests will reveal what needs to be done |
---|
450 | self.A = Sparse(n,m) |
---|
451 | self.AtA = Sparse(m,m) |
---|
452 | |
---|
453 | #Build quad tree of vertices (FIXME: Is this the right spot for that?) |
---|
454 | root = build_quadtree(self.mesh, |
---|
455 | max_points_per_cell = max_points_per_cell) |
---|
456 | |
---|
457 | #Compute matrix elements |
---|
458 | for i in range(n): |
---|
459 | #For each data_coordinate point |
---|
460 | |
---|
461 | if verbose and i%((n+10)/10)==0: print 'Doing %d of %d' %(i, n) |
---|
462 | |
---|
463 | x = point_coordinates[i] |
---|
464 | |
---|
465 | #Find vertices near x |
---|
466 | candidate_vertices = root.search(x[0], x[1]) |
---|
467 | is_more_elements = True |
---|
468 | |
---|
469 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
470 | self.search_triangles_of_vertices(candidate_vertices, x) |
---|
471 | while not element_found and is_more_elements and expand_search: |
---|
472 | #if verbose: print 'Expanding search' |
---|
473 | candidate_vertices, branch = root.expand_search() |
---|
474 | if branch == []: |
---|
475 | # Searching all the verts from the root cell that haven't |
---|
476 | # been searched. This is the last try |
---|
477 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
478 | self.search_triangles_of_vertices(candidate_vertices, x) |
---|
479 | is_more_elements = False |
---|
480 | else: |
---|
481 | element_found, sigma0, sigma1, sigma2, k = \ |
---|
482 | self.search_triangles_of_vertices(candidate_vertices, x) |
---|
483 | |
---|
484 | |
---|
485 | #Update interpolation matrix A if necessary |
---|
486 | if element_found is True: |
---|
487 | #Assign values to matrix A |
---|
488 | |
---|
489 | j0 = self.mesh.triangles[k,0] #Global vertex id for sigma0 |
---|
490 | j1 = self.mesh.triangles[k,1] #Global vertex id for sigma1 |
---|
491 | j2 = self.mesh.triangles[k,2] #Global vertex id for sigma2 |
---|
492 | |
---|
493 | sigmas = {j0:sigma0, j1:sigma1, j2:sigma2} |
---|
494 | js = [j0,j1,j2] |
---|
495 | |
---|
496 | for j in js: |
---|
497 | self.A[i,j] = sigmas[j] |
---|
498 | for k in js: |
---|
499 | self.AtA[j,k] += sigmas[j]*sigmas[k] |
---|
500 | else: |
---|
501 | pass |
---|
502 | #Ok if there is no triangle for datapoint |
---|
503 | #(as in brute force version) |
---|
504 | #raise 'Could not find triangle for point', x |
---|
505 | |
---|
506 | |
---|
507 | |
---|
508 | def search_triangles_of_vertices(self, candidate_vertices, x): |
---|
509 | #Find triangle containing x: |
---|
510 | element_found = False |
---|
511 | |
---|
512 | # This will be returned if element_found = False |
---|
513 | sigma2 = -10.0 |
---|
514 | sigma0 = -10.0 |
---|
515 | sigma1 = -10.0 |
---|
516 | k = -10.0 |
---|
517 | |
---|
518 | #For all vertices in same cell as point x |
---|
519 | for v in candidate_vertices: |
---|
520 | |
---|
521 | #for each triangle id (k) which has v as a vertex |
---|
522 | for k, _ in self.mesh.vertexlist[v]: |
---|
523 | |
---|
524 | #Get the three vertex_points of candidate triangle |
---|
525 | xi0 = self.mesh.get_vertex_coordinate(k, 0) |
---|
526 | xi1 = self.mesh.get_vertex_coordinate(k, 1) |
---|
527 | xi2 = self.mesh.get_vertex_coordinate(k, 2) |
---|
528 | |
---|
529 | #print "PDSG - k", k |
---|
530 | #print "PDSG - xi0", xi0 |
---|
531 | #print "PDSG - xi1", xi1 |
---|
532 | #print "PDSG - xi2", xi2 |
---|
533 | #print "PDSG element %i verts((%f, %f),(%f, %f),(%f, %f))"\ |
---|
534 | # % (k, xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1]) |
---|
535 | |
---|
536 | #Get the three normals |
---|
537 | n0 = self.mesh.get_normal(k, 0) |
---|
538 | n1 = self.mesh.get_normal(k, 1) |
---|
539 | n2 = self.mesh.get_normal(k, 2) |
---|
540 | |
---|
541 | |
---|
542 | #Compute interpolation |
---|
543 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
544 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
545 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
546 | |
---|
547 | #print "PDSG - sigma0", sigma0 |
---|
548 | #print "PDSG - sigma1", sigma1 |
---|
549 | #print "PDSG - sigma2", sigma2 |
---|
550 | |
---|
551 | #FIXME: Maybe move out to test or something |
---|
552 | epsilon = 1.0e-6 |
---|
553 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
554 | |
---|
555 | #Check that this triangle contains the data point |
---|
556 | |
---|
557 | #Sigmas can get negative within |
---|
558 | #machine precision on some machines (e.g nautilus) |
---|
559 | #Hence the small eps |
---|
560 | eps = 1.0e-15 |
---|
561 | if sigma0 >= -eps and sigma1 >= -eps and sigma2 >= -eps: |
---|
562 | element_found = True |
---|
563 | break |
---|
564 | |
---|
565 | if element_found is True: |
---|
566 | #Don't look for any other triangle |
---|
567 | break |
---|
568 | return element_found, sigma0, sigma1, sigma2, k |
---|
569 | |
---|
570 | |
---|
571 | |
---|
572 | def build_interpolation_matrix_A_brute(self, point_coordinates): |
---|
573 | """Build n x m interpolation matrix, where |
---|
574 | n is the number of data points and |
---|
575 | m is the number of basis functions phi_k (one per vertex) |
---|
576 | |
---|
577 | This is the brute force which is too slow for large problems, |
---|
578 | but could be used for testing |
---|
579 | """ |
---|
580 | |
---|
581 | |
---|
582 | |
---|
583 | #Convert input to Numeric arrays |
---|
584 | point_coordinates = array(point_coordinates).astype(Float) |
---|
585 | |
---|
586 | #Build n x m interpolation matrix |
---|
587 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
588 | n = point_coordinates.shape[0] #Nbr of data points |
---|
589 | |
---|
590 | self.A = Sparse(n,m) |
---|
591 | self.AtA = Sparse(m,m) |
---|
592 | |
---|
593 | #Compute matrix elements |
---|
594 | for i in range(n): |
---|
595 | #For each data_coordinate point |
---|
596 | |
---|
597 | x = point_coordinates[i] |
---|
598 | element_found = False |
---|
599 | k = 0 |
---|
600 | while not element_found and k < len(self.mesh): |
---|
601 | #For each triangle (brute force) |
---|
602 | #FIXME: Real algorithm should only visit relevant triangles |
---|
603 | |
---|
604 | #Get the three vertex_points |
---|
605 | xi0 = self.mesh.get_vertex_coordinate(k, 0) |
---|
606 | xi1 = self.mesh.get_vertex_coordinate(k, 1) |
---|
607 | xi2 = self.mesh.get_vertex_coordinate(k, 2) |
---|
608 | |
---|
609 | #Get the three normals |
---|
610 | n0 = self.mesh.get_normal(k, 0) |
---|
611 | n1 = self.mesh.get_normal(k, 1) |
---|
612 | n2 = self.mesh.get_normal(k, 2) |
---|
613 | |
---|
614 | #Compute interpolation |
---|
615 | sigma2 = dot((x-xi0), n2)/dot((xi2-xi0), n2) |
---|
616 | sigma0 = dot((x-xi1), n0)/dot((xi0-xi1), n0) |
---|
617 | sigma1 = dot((x-xi2), n1)/dot((xi1-xi2), n1) |
---|
618 | |
---|
619 | #FIXME: Maybe move out to test or something |
---|
620 | epsilon = 1.0e-6 |
---|
621 | assert abs(sigma0 + sigma1 + sigma2 - 1.0) < epsilon |
---|
622 | |
---|
623 | #Check that this triangle contains data point |
---|
624 | if sigma0 >= 0 and sigma1 >= 0 and sigma2 >= 0: |
---|
625 | element_found = True |
---|
626 | #Assign values to matrix A |
---|
627 | |
---|
628 | j0 = self.mesh.triangles[k,0] #Global vertex id |
---|
629 | #self.A[i, j0] = sigma0 |
---|
630 | |
---|
631 | j1 = self.mesh.triangles[k,1] #Global vertex id |
---|
632 | #self.A[i, j1] = sigma1 |
---|
633 | |
---|
634 | j2 = self.mesh.triangles[k,2] #Global vertex id |
---|
635 | #self.A[i, j2] = sigma2 |
---|
636 | |
---|
637 | sigmas = {j0:sigma0, j1:sigma1, j2:sigma2} |
---|
638 | js = [j0,j1,j2] |
---|
639 | |
---|
640 | for j in js: |
---|
641 | self.A[i,j] = sigmas[j] |
---|
642 | for k in js: |
---|
643 | self.AtA[j,k] += sigmas[j]*sigmas[k] |
---|
644 | k = k+1 |
---|
645 | |
---|
646 | |
---|
647 | |
---|
648 | def get_A(self): |
---|
649 | return self.A.todense() |
---|
650 | |
---|
651 | def get_B(self): |
---|
652 | return self.B.todense() |
---|
653 | |
---|
654 | def get_D(self): |
---|
655 | return self.D.todense() |
---|
656 | |
---|
657 | #FIXME: Remember to re-introduce the 1/n factor in the |
---|
658 | #interpolation term |
---|
659 | |
---|
660 | def build_smoothing_matrix_D(self): |
---|
661 | """Build m x m smoothing matrix, where |
---|
662 | m is the number of basis functions phi_k (one per vertex) |
---|
663 | |
---|
664 | The smoothing matrix is defined as |
---|
665 | |
---|
666 | D = D1 + D2 |
---|
667 | |
---|
668 | where |
---|
669 | |
---|
670 | [D1]_{k,l} = \int_\Omega |
---|
671 | \frac{\partial \phi_k}{\partial x} |
---|
672 | \frac{\partial \phi_l}{\partial x}\, |
---|
673 | dx dy |
---|
674 | |
---|
675 | [D2]_{k,l} = \int_\Omega |
---|
676 | \frac{\partial \phi_k}{\partial y} |
---|
677 | \frac{\partial \phi_l}{\partial y}\, |
---|
678 | dx dy |
---|
679 | |
---|
680 | |
---|
681 | The derivatives \frac{\partial \phi_k}{\partial x}, |
---|
682 | \frac{\partial \phi_k}{\partial x} for a particular triangle |
---|
683 | are obtained by computing the gradient a_k, b_k for basis function k |
---|
684 | """ |
---|
685 | |
---|
686 | #FIXME: algorithm might be optimised by computing local 9x9 |
---|
687 | #"element stiffness matrices: |
---|
688 | |
---|
689 | m = self.mesh.coordinates.shape[0] #Nbr of basis functions (1/vertex) |
---|
690 | |
---|
691 | self.D = Sparse(m,m) |
---|
692 | |
---|
693 | #For each triangle compute contributions to D = D1+D2 |
---|
694 | for i in range(len(self.mesh)): |
---|
695 | |
---|
696 | #Get area |
---|
697 | area = self.mesh.areas[i] |
---|
698 | |
---|
699 | #Get global vertex indices |
---|
700 | v0 = self.mesh.triangles[i,0] |
---|
701 | v1 = self.mesh.triangles[i,1] |
---|
702 | v2 = self.mesh.triangles[i,2] |
---|
703 | |
---|
704 | #Get the three vertex_points |
---|
705 | xi0 = self.mesh.get_vertex_coordinate(i, 0) |
---|
706 | xi1 = self.mesh.get_vertex_coordinate(i, 1) |
---|
707 | xi2 = self.mesh.get_vertex_coordinate(i, 2) |
---|
708 | |
---|
709 | #Compute gradients for each vertex |
---|
710 | a0, b0 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
711 | 1, 0, 0) |
---|
712 | |
---|
713 | a1, b1 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
714 | 0, 1, 0) |
---|
715 | |
---|
716 | a2, b2 = gradient(xi0[0], xi0[1], xi1[0], xi1[1], xi2[0], xi2[1], |
---|
717 | 0, 0, 1) |
---|
718 | |
---|
719 | #Compute diagonal contributions |
---|
720 | self.D[v0,v0] += (a0*a0 + b0*b0)*area |
---|
721 | self.D[v1,v1] += (a1*a1 + b1*b1)*area |
---|
722 | self.D[v2,v2] += (a2*a2 + b2*b2)*area |
---|
723 | |
---|
724 | #Compute contributions for basis functions sharing edges |
---|
725 | e01 = (a0*a1 + b0*b1)*area |
---|
726 | self.D[v0,v1] += e01 |
---|
727 | self.D[v1,v0] += e01 |
---|
728 | |
---|
729 | e12 = (a1*a2 + b1*b2)*area |
---|
730 | self.D[v1,v2] += e12 |
---|
731 | self.D[v2,v1] += e12 |
---|
732 | |
---|
733 | e20 = (a2*a0 + b2*b0)*area |
---|
734 | self.D[v2,v0] += e20 |
---|
735 | self.D[v0,v2] += e20 |
---|
736 | |
---|
737 | |
---|
738 | def fit(self, z): |
---|
739 | """Fit a smooth surface to given 1d array of data points z. |
---|
740 | |
---|
741 | The smooth surface is computed at each vertex in the underlying |
---|
742 | mesh using the formula given in the module doc string. |
---|
743 | |
---|
744 | Pre Condition: |
---|
745 | self.A, self.At and self.B have been initialised |
---|
746 | |
---|
747 | Inputs: |
---|
748 | z: Single 1d vector or array of data at the point_coordinates. |
---|
749 | """ |
---|
750 | |
---|
751 | #Convert input to Numeric arrays |
---|
752 | z = array(z).astype(Float) |
---|
753 | |
---|
754 | if len(z.shape) > 1 : |
---|
755 | raise VectorShapeError, 'Can only deal with 1d data vector' |
---|
756 | |
---|
757 | if self.point_indices is not None: |
---|
758 | #Remove values for any points that were outside mesh |
---|
759 | z = take(z, self.point_indices) |
---|
760 | |
---|
761 | #Compute right hand side based on data |
---|
762 | Atz = self.A.trans_mult(z) |
---|
763 | |
---|
764 | |
---|
765 | #Check sanity |
---|
766 | n, m = self.A.shape |
---|
767 | if n<m and self.alpha == 0.0: |
---|
768 | msg = 'ERROR (least_squares): Too few data points\n' |
---|
769 | msg += 'There are only %d data points and alpha == 0. ' %n |
---|
770 | msg += 'Need at least %d\n' %m |
---|
771 | msg += 'Alternatively, set smoothing parameter alpha to a small ' |
---|
772 | msg += 'positive value,\ne.g. 1.0e-3.' |
---|
773 | raise msg |
---|
774 | |
---|
775 | |
---|
776 | |
---|
777 | return conjugate_gradient(self.B, Atz, Atz,imax=2*len(Atz) ) |
---|
778 | #FIXME: Should we store the result here for later use? (ON) |
---|
779 | |
---|
780 | |
---|
781 | def fit_points(self, z, verbose=False): |
---|
782 | """Like fit, but more robust when each point has two or more attributes |
---|
783 | FIXME (Ole): The name fit_points doesn't carry any meaning |
---|
784 | for me. How about something like fit_multiple or fit_columns? |
---|
785 | """ |
---|
786 | |
---|
787 | try: |
---|
788 | if verbose: print 'Solving penalised least_squares problem' |
---|
789 | return self.fit(z) |
---|
790 | except VectorShapeError, e: |
---|
791 | # broadcasting is not supported. |
---|
792 | |
---|
793 | #Convert input to Numeric arrays |
---|
794 | z = array(z).astype(Float) |
---|
795 | |
---|
796 | #Build n x m interpolation matrix |
---|
797 | m = self.mesh.coordinates.shape[0] #Number of vertices |
---|
798 | n = z.shape[1] #Number of data points |
---|
799 | |
---|
800 | f = zeros((m,n), Float) #Resulting columns |
---|
801 | |
---|
802 | for i in range(z.shape[1]): |
---|
803 | f[:,i] = self.fit(z[:,i]) |
---|
804 | |
---|
805 | return f |
---|
806 | |
---|
807 | |
---|
808 | def interpolate(self, f): |
---|
809 | """Evaluate smooth surface f at data points implied in self.A. |
---|
810 | |
---|
811 | The mesh values representing a smooth surface are |
---|
812 | assumed to be specified in f. This argument could, |
---|
813 | for example have been obtained from the method self.fit() |
---|
814 | |
---|
815 | Pre Condition: |
---|
816 | self.A has been initialised |
---|
817 | |
---|
818 | Inputs: |
---|
819 | f: Vector or array of data at the mesh vertices. |
---|
820 | If f is an array, interpolation will be done for each column as |
---|
821 | per underlying matrix-matrix multiplication |
---|
822 | |
---|
823 | Output: |
---|
824 | Interpolated values at data points implied in self.A |
---|
825 | |
---|
826 | """ |
---|
827 | |
---|
828 | return self.A * f |
---|
829 | |
---|
830 | def cull_outsiders(self, f): |
---|
831 | pass |
---|
832 | |
---|
833 | |
---|
834 | #------------------------------------------------------------- |
---|
835 | if __name__ == "__main__": |
---|
836 | """ |
---|
837 | Load in a mesh and data points with attributes. |
---|
838 | Fit the attributes to the mesh. |
---|
839 | Save a new mesh file. |
---|
840 | """ |
---|
841 | import os, sys |
---|
842 | usage = "usage: %s mesh_input.tsh point.xya mesh_output.tsh [expand|no_expand][vervose|non_verbose] [alpha]"\ |
---|
843 | %os.path.basename(sys.argv[0]) |
---|
844 | |
---|
845 | if len(sys.argv) < 4: |
---|
846 | print usage |
---|
847 | else: |
---|
848 | mesh_file = sys.argv[1] |
---|
849 | point_file = sys.argv[2] |
---|
850 | mesh_output_file = sys.argv[3] |
---|
851 | |
---|
852 | expand_search = False |
---|
853 | if len(sys.argv) > 4: |
---|
854 | if sys.argv[4][0] == "e" or sys.argv[4][0] == "E": |
---|
855 | expand_search = True |
---|
856 | else: |
---|
857 | expand_search = False |
---|
858 | |
---|
859 | verbose = False |
---|
860 | if len(sys.argv) > 5: |
---|
861 | if sys.argv[5][0] == "n" or sys.argv[5][0] == "N": |
---|
862 | verbose = False |
---|
863 | else: |
---|
864 | verbose = True |
---|
865 | |
---|
866 | if len(sys.argv) > 6: |
---|
867 | alpha = sys.argv[6] |
---|
868 | else: |
---|
869 | alpha = DEFAULT_ALPHA |
---|
870 | |
---|
871 | t0 = time.time() |
---|
872 | fit_to_mesh_file(mesh_file, |
---|
873 | point_file, |
---|
874 | mesh_output_file, |
---|
875 | alpha, |
---|
876 | verbose= verbose, |
---|
877 | expand_search = expand_search) |
---|
878 | |
---|
879 | print 'That took %.2f seconds' %(time.time()-t0) |
---|
880 | |
---|