1 | """Classes implementing general 2D geometrical mesh of triangles. |
---|
2 | |
---|
3 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
4 | Geoscience Australia, 2004 |
---|
5 | """ |
---|
6 | |
---|
7 | |
---|
8 | class Mesh: |
---|
9 | """Collection of triangular elements (purely geometric) |
---|
10 | |
---|
11 | A triangular element is defined in terms of three vertex ids, |
---|
12 | ordered counter clock-wise, |
---|
13 | each corresponding to a given coordinate set. |
---|
14 | Vertices from different elements can point to the same |
---|
15 | coordinate set. |
---|
16 | |
---|
17 | Coordinate sets are implemented as an N x 2 Numeric array containing |
---|
18 | x and y coordinates. |
---|
19 | |
---|
20 | |
---|
21 | To instantiate: |
---|
22 | Mesh(points, vertices) |
---|
23 | |
---|
24 | where |
---|
25 | |
---|
26 | points is either a list of 2-tuples or an Mx2 Numeric array of |
---|
27 | floats representing all x, y coordinates in the mesh. |
---|
28 | |
---|
29 | vertices is either a list of 3-tuples or an Nx3 Numeric array of |
---|
30 | integers representing indices of all vertices in the mesh. |
---|
31 | Each vertex is identified by its index i in [0, M-1]. |
---|
32 | |
---|
33 | |
---|
34 | Example: |
---|
35 | a = [0.0, 0.0] |
---|
36 | b = [0.0, 2.0] |
---|
37 | c = [2.0,0.0] |
---|
38 | e = [2.0, 2.0] |
---|
39 | |
---|
40 | points = [a, b, c, e] |
---|
41 | vertices = [ [1,0,2], [1,2,3] ] #bac, bce |
---|
42 | mesh = Mesh(points, vertices) |
---|
43 | |
---|
44 | #creates two triangles: bac and bce |
---|
45 | |
---|
46 | |
---|
47 | Mesh takes the optional third argument boundary which is a |
---|
48 | dictionary mapping from (element_id, edge_id) to boundary tag. |
---|
49 | The default value is None which will assign the defualt_boundary_tag |
---|
50 | as specified in config.py to all boundary edges. |
---|
51 | """ |
---|
52 | |
---|
53 | def __init__(self, coordinates, vertices, boundary = None): |
---|
54 | """ |
---|
55 | Build triangles from x,y coordinates (sequence of 2-tuples or |
---|
56 | Mx2 Numeric array of floats) and vertices (sequence of 3-tuples |
---|
57 | or Nx3 Numeric array of non-negative integers). |
---|
58 | """ |
---|
59 | |
---|
60 | from Numeric import array, zeros, Int, Float, maximum, sqrt, sum |
---|
61 | |
---|
62 | self.vertices = array(vertices).astype(Int) |
---|
63 | self.coordinates = array(coordinates) |
---|
64 | |
---|
65 | #Input checks |
---|
66 | msg = 'Vertices must an Nx2 Numeric array or a sequence of 2-tuples' |
---|
67 | assert len(self.vertices.shape) == 2, msg |
---|
68 | |
---|
69 | msg = 'Coordinates must an Mx2 Numeric array or a sequence of 2-tuples' |
---|
70 | assert len(self.coordinates.shape) == 2, msg |
---|
71 | |
---|
72 | msg = 'Vertex indices reference non-existing coordinate sets' |
---|
73 | assert max(max(self.vertices)) <= self.coordinates.shape[0], msg |
---|
74 | |
---|
75 | |
---|
76 | #Register number of elements (N) |
---|
77 | self.number_of_elements = N = self.vertices.shape[0] |
---|
78 | |
---|
79 | #Allocate space for geometric quantities |
---|
80 | self.centroids = zeros((N, 2), Float) |
---|
81 | #FIXME: Should be renamed to centroid_coordinates |
---|
82 | |
---|
83 | self.areas = zeros(N, Float) |
---|
84 | self.radii = zeros(N, Float) |
---|
85 | self.edgelengths = zeros((N, 3), Float) |
---|
86 | |
---|
87 | self.neighbours = zeros((N, 3), Int) |
---|
88 | self.neighbour_edges = zeros((N, 3), Int) |
---|
89 | self.number_of_boundaries = zeros(N, Int) |
---|
90 | self.surrogate_neighbours = zeros((N, 3), Int) |
---|
91 | |
---|
92 | self.normals = zeros((N, 6), Float) |
---|
93 | |
---|
94 | #Get x,y coordinates for all vertices for all triangles |
---|
95 | #and store |
---|
96 | self.vertex_coordinates = V = self.compute_vertex_coordinates() |
---|
97 | |
---|
98 | |
---|
99 | ##print 'Initialise mesh' |
---|
100 | #Initialise each triangle |
---|
101 | for i in range(N): |
---|
102 | #if i % (N/10) == 0: print '(%d/%d)' %(i, N) |
---|
103 | |
---|
104 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
105 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
106 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
107 | |
---|
108 | #Compute centroid |
---|
109 | centroid = array([(x0 + x1 + x2)/3, (y0 + y1 + y2)/3]) |
---|
110 | self.centroids[i] = centroid |
---|
111 | |
---|
112 | #Area |
---|
113 | self.areas[i] = abs((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
114 | |
---|
115 | msg = 'Triangle (%f,%f), (%f,%f), (%f, %f)' %(x0,y0,x1,y1,x2,y2) |
---|
116 | msg += ' is degenerate: area == %f' %self.areas[i] |
---|
117 | assert self.areas[i] > 0.0, msg |
---|
118 | |
---|
119 | #Midpoints |
---|
120 | m0 = array([(x1 + x2)/2, (y1 + y2)/2]) |
---|
121 | m1 = array([(x0 + x2)/2, (y0 + y2)/2]) |
---|
122 | m2 = array([(x1 + x0)/2, (y1 + y0)/2]) |
---|
123 | |
---|
124 | #The radius is the distance from the centroid of |
---|
125 | #a triangle to the midpoint of the side of the triangle |
---|
126 | #closest to the centroid |
---|
127 | d0 = sqrt(sum( (centroid-m0)**2 )) |
---|
128 | d1 = sqrt(sum( (centroid-m1)**2 )) |
---|
129 | d2 = sqrt(sum( (centroid-m2)**2 )) |
---|
130 | |
---|
131 | self.radii[i] = min(d0, d1, d2) |
---|
132 | |
---|
133 | #Normals |
---|
134 | #The normal vectors |
---|
135 | # - point outward from each edge |
---|
136 | # - are orthogonal to the edge |
---|
137 | # - have unit length |
---|
138 | # - Are enumerated according to the opposite corner: |
---|
139 | # (First normal is associated with the edge opposite |
---|
140 | # the first vertex, etc) |
---|
141 | # - Stored as six floats n0x,n0y,n1x,n1y,n2x,n2y per triangle |
---|
142 | |
---|
143 | n0 = array([x2 - x1, y2 - y1]) |
---|
144 | l0 = sqrt(sum(n0**2)) |
---|
145 | |
---|
146 | n1 = array([x0 - x2, y0 - y2]) |
---|
147 | l1 = sqrt(sum(n1**2)) |
---|
148 | |
---|
149 | n2 = array([x1 - x0, y1 - y0]) |
---|
150 | l2 = sqrt(sum(n2**2)) |
---|
151 | |
---|
152 | #Normalise |
---|
153 | n0 /= l0 |
---|
154 | n1 /= l1 |
---|
155 | n2 /= l2 |
---|
156 | |
---|
157 | #Compute and store |
---|
158 | self.normals[i, :] = [n0[1], -n0[0], |
---|
159 | n1[1], -n1[0], |
---|
160 | n2[1], -n2[0]] |
---|
161 | |
---|
162 | #Edgelengths |
---|
163 | self.edgelengths[i, :] = [l0, l1, l2] |
---|
164 | |
---|
165 | #Initialise Neighbours (-1 means that it is a boundary neighbour) |
---|
166 | self.neighbours[i, :] = [-1, -1, -1] |
---|
167 | |
---|
168 | #Initialise edge ids of neighbours |
---|
169 | #In case of boundaries this slot is not used |
---|
170 | self.neighbour_edges[i, :] = [-1, -1, -1] |
---|
171 | |
---|
172 | |
---|
173 | #Build neighbour structure |
---|
174 | self.build_neighbour_structure() |
---|
175 | |
---|
176 | #Build vertex list |
---|
177 | self.build_vertexlist() |
---|
178 | |
---|
179 | #Build surrogate neighbour structure |
---|
180 | self.build_surrogate_neighbour_structure() |
---|
181 | |
---|
182 | #Build boundary dictionary mapping (id, edge) to symbolic tags |
---|
183 | self.build_boundary_dictionary(boundary) |
---|
184 | |
---|
185 | #Update boundary indices |
---|
186 | self.build_boundary_structure() |
---|
187 | |
---|
188 | |
---|
189 | def __len__(self): |
---|
190 | return self.number_of_elements |
---|
191 | |
---|
192 | def __repr__(self): |
---|
193 | return 'Mesh: %d vertices, %d elements, %d boundary segments'\ |
---|
194 | %(self.coordinates.shape[0], len(self), len(self.boundary)) |
---|
195 | |
---|
196 | |
---|
197 | def build_neighbour_structure(self): |
---|
198 | """Update all registered triangles to point to their neighbours. |
---|
199 | |
---|
200 | Also, keep a tally of the number of boundaries for each triangle |
---|
201 | |
---|
202 | Postconditions: |
---|
203 | neighbours and neighbour_edges is populated |
---|
204 | number_of_boundaries integer array is defined. |
---|
205 | """ |
---|
206 | |
---|
207 | #Step 1: |
---|
208 | #Build dictionary mapping from segments (2-tuple of points) |
---|
209 | #to left hand side edge (facing neighbouring triangle) |
---|
210 | |
---|
211 | N = self.number_of_elements |
---|
212 | neighbourdict = {} |
---|
213 | for i in range(N): |
---|
214 | |
---|
215 | #Register all segments as keys mapping to current triangle |
---|
216 | #and segment id |
---|
217 | a = self.vertices[i, 0] |
---|
218 | b = self.vertices[i, 1] |
---|
219 | c = self.vertices[i, 2] |
---|
220 | neighbourdict[a,b] = (i, 2) #(id, edge) |
---|
221 | neighbourdict[b,c] = (i, 0) #(id, edge) |
---|
222 | neighbourdict[c,a] = (i, 1) #(id, edge) |
---|
223 | |
---|
224 | |
---|
225 | #Step 2: |
---|
226 | #Go through triangles again, but this time |
---|
227 | #reverse direction of segments and lookup neighbours. |
---|
228 | for i in range(N): |
---|
229 | a = self.vertices[i, 0] |
---|
230 | b = self.vertices[i, 1] |
---|
231 | c = self.vertices[i, 2] |
---|
232 | |
---|
233 | self.number_of_boundaries[i] = 3 |
---|
234 | if neighbourdict.has_key((b,a)): |
---|
235 | self.neighbours[i, 2] = neighbourdict[b,a][0] |
---|
236 | self.neighbour_edges[i, 2] = neighbourdict[b,a][1] |
---|
237 | self.number_of_boundaries[i] -= 1 |
---|
238 | |
---|
239 | if neighbourdict.has_key((c,b)): |
---|
240 | self.neighbours[i, 0] = neighbourdict[c,b][0] |
---|
241 | self.neighbour_edges[i, 0] = neighbourdict[c,b][1] |
---|
242 | self.number_of_boundaries[i] -= 1 |
---|
243 | |
---|
244 | if neighbourdict.has_key((a,c)): |
---|
245 | self.neighbours[i, 1] = neighbourdict[a,c][0] |
---|
246 | self.neighbour_edges[i, 1] = neighbourdict[a,c][1] |
---|
247 | self.number_of_boundaries[i] -= 1 |
---|
248 | |
---|
249 | |
---|
250 | |
---|
251 | def build_vertexlist(self): |
---|
252 | """Build vertexlist index by vertex ids and for each entry (point id) |
---|
253 | build a list of (triangles, vertex_id) pairs that use the point |
---|
254 | as vertex. |
---|
255 | |
---|
256 | Preconditions: |
---|
257 | self.coordinates and self.vertices are defined |
---|
258 | |
---|
259 | Postcondition: |
---|
260 | self.vertexlist is build |
---|
261 | """ |
---|
262 | |
---|
263 | vertexlist = [None]*len(self.coordinates) |
---|
264 | for i in range(self.number_of_elements): |
---|
265 | |
---|
266 | a = self.vertices[i, 0] |
---|
267 | b = self.vertices[i, 1] |
---|
268 | c = self.vertices[i, 2] |
---|
269 | |
---|
270 | #Register the vertices v as lists of |
---|
271 | #(triangle_id, vertex_id) tuples associated with them |
---|
272 | #This is used for smoothing |
---|
273 | for vertex_id, v in enumerate([a,b,c]): |
---|
274 | if vertexlist[v] is None: |
---|
275 | vertexlist[v] = [] |
---|
276 | |
---|
277 | vertexlist[v].append( (i, vertex_id) ) |
---|
278 | |
---|
279 | self.vertexlist = vertexlist |
---|
280 | |
---|
281 | |
---|
282 | def build_surrogate_neighbour_structure(self): |
---|
283 | """Build structure where each triangle edge points to its neighbours |
---|
284 | if they exist. Otherwise point to the triangle itself. |
---|
285 | |
---|
286 | The surrogate neighbour structure is useful for computing gradients |
---|
287 | based on centroid values of neighbours. |
---|
288 | |
---|
289 | Precondition: Neighbour structure is defined |
---|
290 | Postcondition: |
---|
291 | Surrogate neighbour structure is defined: |
---|
292 | surrogate_neighbours: i0, i1, i2 where all i_k >= 0 point to |
---|
293 | triangles. |
---|
294 | |
---|
295 | """ |
---|
296 | |
---|
297 | N = self.number_of_elements |
---|
298 | for i in range(N): |
---|
299 | #Find all neighbouring volumes that are not boundaries |
---|
300 | for k in range(3): |
---|
301 | if self.neighbours[i, k] < 0: |
---|
302 | self.surrogate_neighbours[i, k] = i #Point this triangle |
---|
303 | else: |
---|
304 | self.surrogate_neighbours[i, k] = self.neighbours[i, k] |
---|
305 | |
---|
306 | |
---|
307 | |
---|
308 | def build_boundary_dictionary(self, boundary = None): |
---|
309 | """Build or input the dictionary of boundary tags. |
---|
310 | self.boundary is a dictionary of tags, |
---|
311 | keyed by volume id and edge: |
---|
312 | { (id, edge): tag, ... } |
---|
313 | |
---|
314 | Postconditions: |
---|
315 | self.boundary is defined. |
---|
316 | """ |
---|
317 | |
---|
318 | from config import default_boundary_tag |
---|
319 | |
---|
320 | if boundary is None: |
---|
321 | boundary = {} |
---|
322 | for vol_id in range(self.number_of_elements): |
---|
323 | for edge_id in range(0, 3): |
---|
324 | if self.neighbours[vol_id, edge_id] < 0: |
---|
325 | boundary[(vol_id, edge_id)] = default_boundary_tag |
---|
326 | else: |
---|
327 | #Check that all keys in given boundary exist |
---|
328 | for vol_id, edge_id in boundary.keys(): |
---|
329 | msg = 'Segment (%d, %d) does not exist' %(vol_id, edge_id) |
---|
330 | a, b = self.neighbours.shape |
---|
331 | assert vol_id < a and edge_id < b, msg |
---|
332 | |
---|
333 | msg = 'Segment (%d, %d) is not a boundary' %(vol_id, edge_id) |
---|
334 | assert self.neighbours[vol_id, edge_id] < 0, msg |
---|
335 | |
---|
336 | #Check that all boundary segments are assigned a value |
---|
337 | for vol_id in range(self.number_of_elements): |
---|
338 | for edge_id in range(0, 3): |
---|
339 | if self.neighbours[vol_id, edge_id] < 0: |
---|
340 | if not boundary.has_key( (vol_id, edge_id) ): |
---|
341 | msg = 'WARNING: Given boundary does not contain ' |
---|
342 | msg += 'tags for edge (%d, %d). '\ |
---|
343 | %(vol_id, edge_id) |
---|
344 | msg += 'Assigning default tag (%s).'\ |
---|
345 | %default_boundary_tag |
---|
346 | |
---|
347 | #FIXME: Print only as per verbosity |
---|
348 | #print msg |
---|
349 | boundary[ (vol_id, edge_id) ] =\ |
---|
350 | default_boundary_tag |
---|
351 | |
---|
352 | |
---|
353 | |
---|
354 | self.boundary = boundary |
---|
355 | |
---|
356 | |
---|
357 | def build_boundary_structure(self): |
---|
358 | """Traverse boundary and |
---|
359 | enumerate neighbour indices from -1 and |
---|
360 | counting down. |
---|
361 | |
---|
362 | Precondition: |
---|
363 | self.boundary is defined. |
---|
364 | Post condition: |
---|
365 | neighbour array has unique negative indices for boundary |
---|
366 | boundary_segments array imposes an ordering on segments |
---|
367 | (not otherwise available from the dictionary) |
---|
368 | """ |
---|
369 | |
---|
370 | if self.boundary is None: |
---|
371 | msg = 'Boundary dictionary must be defined before ' |
---|
372 | msg += 'building boundary structure' |
---|
373 | raise msg |
---|
374 | |
---|
375 | |
---|
376 | self.boundary_segments = self.boundary.keys() |
---|
377 | self.boundary_segments.sort() |
---|
378 | |
---|
379 | index = -1 |
---|
380 | for id, edge in self.boundary_segments: |
---|
381 | self.neighbours[id, edge] = index |
---|
382 | index -= 1 |
---|
383 | |
---|
384 | |
---|
385 | def get_boundary_tags(self): |
---|
386 | """Return list of available boundary tags |
---|
387 | """ |
---|
388 | |
---|
389 | tags = {} |
---|
390 | for v in self.boundary.values(): |
---|
391 | tags[v] = 1 |
---|
392 | |
---|
393 | return tags.keys() |
---|
394 | |
---|
395 | |
---|
396 | |
---|
397 | def check_integrity(self): |
---|
398 | """Check that triangles are internally consistent e.g. |
---|
399 | that area corresponds to edgelengths, that vertices |
---|
400 | are arranged in a counter-clockwise order, etc etc |
---|
401 | Neighbour structure will be checked by class Mesh |
---|
402 | """ |
---|
403 | |
---|
404 | from config import epsilon |
---|
405 | from math import pi |
---|
406 | from util import anglediff |
---|
407 | |
---|
408 | N = self.number_of_elements |
---|
409 | |
---|
410 | #Get x,y coordinates for all vertices for all triangles |
---|
411 | V = self.get_vertex_coordinates() |
---|
412 | |
---|
413 | #Check each triangle |
---|
414 | for i in range(N): |
---|
415 | x0 = V[i, 0]; y0 = V[i, 1] |
---|
416 | x1 = V[i, 2]; y1 = V[i, 3] |
---|
417 | x2 = V[i, 4]; y2 = V[i, 5] |
---|
418 | |
---|
419 | #Check that area hasn't been compromised |
---|
420 | area = self.areas[i] |
---|
421 | ref = abs((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
422 | msg = 'Wrong area for vertex coordinates: %f %f %f %f %f %f'\ |
---|
423 | %(x0,y0,x1,y1,x2,y2) |
---|
424 | assert abs((area - ref)/area) < epsilon, msg |
---|
425 | |
---|
426 | #Check that points are arranged in counter clock-wise order |
---|
427 | v0 = [x1-x0, y1-y0] |
---|
428 | v1 = [x2-x1, y2-y1] |
---|
429 | v2 = [x0-x2, y0-y2] |
---|
430 | |
---|
431 | a0 = anglediff(v1, v0) |
---|
432 | a1 = anglediff(v2, v1) |
---|
433 | a2 = anglediff(v0, v2) |
---|
434 | |
---|
435 | msg = '''Vertices (%s,%s), (%s,%s), (%s,%s) are not arranged |
---|
436 | in counter clockwise order''' %(x0, y0, x1, y1, x2, y2) |
---|
437 | assert a0 < pi and a1 < pi and a2 < pi, msg |
---|
438 | |
---|
439 | #Check that normals are orthogonal to edge vectors |
---|
440 | #Note that normal[k] lies opposite vertex k |
---|
441 | |
---|
442 | normal0 = self.normals[i, 0:2] |
---|
443 | normal1 = self.normals[i, 2:4] |
---|
444 | normal2 = self.normals[i, 4:6] |
---|
445 | |
---|
446 | for u, v in [ (v0, normal2), (v1, normal0), (v2, normal1) ]: |
---|
447 | assert u[0]*v[0] + u[1]*v[1] < epsilon |
---|
448 | |
---|
449 | |
---|
450 | #Check integrity of neighbour structure |
---|
451 | for i in range(N): |
---|
452 | for v in self.vertices[i, :]: |
---|
453 | #Check that all vertices have been registered |
---|
454 | assert self.vertexlist[v] is not None |
---|
455 | |
---|
456 | #Check that this triangle is listed with at least one vertex |
---|
457 | assert (i, 0) in self.vertexlist[v] or\ |
---|
458 | (i, 1) in self.vertexlist[v] or\ |
---|
459 | (i, 2) in self.vertexlist[v] |
---|
460 | |
---|
461 | |
---|
462 | |
---|
463 | #Check neighbour structure |
---|
464 | for k, neighbour_id in enumerate(self.neighbours[i,:]): |
---|
465 | |
---|
466 | #Assert that my neighbour's neighbour is me |
---|
467 | #Boundaries need not fulfill this |
---|
468 | if neighbour_id >= 0: |
---|
469 | edge = self.neighbour_edges[i, k] |
---|
470 | assert self.neighbours[neighbour_id, edge] == i |
---|
471 | |
---|
472 | |
---|
473 | |
---|
474 | #Check that all boundaries have |
---|
475 | # unique, consecutive, negative indices |
---|
476 | L = len(self.boundary) |
---|
477 | for i in range(L): |
---|
478 | id, edge = self.boundary_segments[i] |
---|
479 | assert self.neighbours[id, edge] == -i-1 |
---|
480 | |
---|
481 | |
---|
482 | #NOTE: This assert doesn't hold true if there are internal boundaries |
---|
483 | #FIXME: Look into this further. |
---|
484 | #for id, edge in self.boundary: |
---|
485 | # assert self.neighbours[id,edge] < 0 |
---|
486 | |
---|
487 | |
---|
488 | |
---|
489 | |
---|
490 | def get_normals(self): |
---|
491 | """Return all normal vectors. |
---|
492 | Return normal vectors for all triangles as an Nx6 array |
---|
493 | (ordered as x0, y0, x1, y1, x2, y2 for each triangle) |
---|
494 | """ |
---|
495 | return self.normals |
---|
496 | |
---|
497 | |
---|
498 | def get_normal(self, i, j): |
---|
499 | """Return normal vector j of the i'th triangle. |
---|
500 | Return value is the numeric array slice [x, y] |
---|
501 | """ |
---|
502 | return self.normals[i, 2*j:2*j+2] |
---|
503 | |
---|
504 | |
---|
505 | |
---|
506 | def get_vertex_coordinates(self): |
---|
507 | """Return all vertex coordinates. |
---|
508 | Return all vertex coordinates for all triangles as an Nx6 array |
---|
509 | (ordered as x0, y0, x1, y1, x2, y2 for each triangle) |
---|
510 | """ |
---|
511 | return self.vertex_coordinates |
---|
512 | |
---|
513 | |
---|
514 | def get_vertex_coordinate(self, i, j): |
---|
515 | """Return coordinates for vertex j of the i'th triangle. |
---|
516 | Return value is the numeric array slice [x, y] |
---|
517 | """ |
---|
518 | return self.vertex_coordinates[i, 2*j:2*j+2] |
---|
519 | |
---|
520 | |
---|
521 | def compute_vertex_coordinates(self): |
---|
522 | """Return vertex coordinates for all triangles as an Nx6 array |
---|
523 | (ordered as x0, y0, x1, y1, x2, y2 for each triangle) |
---|
524 | """ |
---|
525 | |
---|
526 | #FIXME: Perhaps they should be ordered as in obj files?? |
---|
527 | #See quantity.get_vertex_values |
---|
528 | |
---|
529 | from Numeric import zeros, Float |
---|
530 | |
---|
531 | N = self.number_of_elements |
---|
532 | vertex_coordinates = zeros((N, 6), Float) |
---|
533 | |
---|
534 | for i in range(N): |
---|
535 | for j in range(3): |
---|
536 | k = self.vertices[i,j] #Index of vertex 0 |
---|
537 | v_k = self.coordinates[k] |
---|
538 | vertex_coordinates[i, 2*j+0] = v_k[0] |
---|
539 | vertex_coordinates[i, 2*j+1] = v_k[1] |
---|
540 | |
---|
541 | return vertex_coordinates |
---|
542 | |
---|
543 | def get_vertices(self, unique=False): |
---|
544 | """Get connectivity |
---|
545 | If unique is True give them only once as stored internally. |
---|
546 | If unique is False return |
---|
547 | """ |
---|
548 | |
---|
549 | if unique is True: |
---|
550 | return self.vertices |
---|
551 | else: |
---|
552 | from Numeric import reshape, array, Int |
---|
553 | |
---|
554 | m = len(self) #Number of volumes |
---|
555 | M = 3*m #Total number of unique vertices |
---|
556 | return reshape(array(range(M)).astype(Int), (m,3)) |
---|
557 | |
---|
558 | #FIXME: May get rid of |
---|
559 | def rectangular_mesh(m, n, len1=1.0, len2=1.0, origin = (0.0, 0.0)): |
---|
560 | from mesh_factory import rectangular |
---|
561 | points, vertices, boundary = rectangular(m, n, len1, len2, origin) |
---|
562 | |
---|
563 | return Mesh(points, vertices, boundary) |
---|
564 | |
---|
565 | |
---|
566 | #FIXME: Get oblique and contracting and circular meshes from Chris |
---|
567 | |
---|