[486] | 1 | """Library of standard meshes and facilities for reading various |
---|
| 2 | mesh file formats |
---|
| 3 | """ |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | def rectangular(m, n, len1=1.0, len2=1.0, origin = (0.0, 0.0)): |
---|
| 7 | |
---|
| 8 | """Setup a rectangular grid of triangles |
---|
| 9 | with m+1 by n+1 grid points |
---|
| 10 | and side lengths len1, len2. If side lengths are omitted |
---|
| 11 | the mesh defaults to the unit square. |
---|
| 12 | |
---|
| 13 | len1: x direction (left to right) |
---|
| 14 | len2: y direction (bottom to top) |
---|
| 15 | |
---|
| 16 | Return to lists: points and elements suitable for creating a Mesh or |
---|
| 17 | FVMesh object, e.g. Mesh(points, elements) |
---|
| 18 | """ |
---|
| 19 | |
---|
| 20 | from config import epsilon |
---|
| 21 | |
---|
| 22 | #E = m*n*2 #Number of triangular elements |
---|
| 23 | #P = (m+1)*(n+1) #Number of initial vertices |
---|
| 24 | |
---|
| 25 | delta1 = float(len1)/m |
---|
| 26 | delta2 = float(len2)/n |
---|
| 27 | |
---|
| 28 | #Dictionary of vertex objects |
---|
| 29 | vertices = {} |
---|
| 30 | points = [] |
---|
| 31 | |
---|
| 32 | for i in range(m+1): |
---|
| 33 | for j in range(n+1): |
---|
| 34 | vertices[i,j] = len(points) |
---|
| 35 | points.append([i*delta1 + origin[0], j*delta2 + origin[1]]) |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | |
---|
| 39 | #Construct 2 triangles per rectangular element and assign tags to boundary |
---|
| 40 | elements = [] |
---|
| 41 | boundary = {} |
---|
| 42 | for i in range(m): |
---|
| 43 | for j in range(n): |
---|
| 44 | v1 = vertices[i,j+1] |
---|
| 45 | v2 = vertices[i,j] |
---|
| 46 | v3 = vertices[i+1,j+1] |
---|
| 47 | v4 = vertices[i+1,j] |
---|
| 48 | |
---|
| 49 | #Update boundary dictionary and create elements |
---|
| 50 | if i == m-1: |
---|
| 51 | boundary[(len(elements), 2)] = 'right' |
---|
| 52 | if j == 0: |
---|
| 53 | boundary[(len(elements), 1)] = 'bottom' |
---|
| 54 | elements.append([v4,v3,v2]) #Lower element |
---|
| 55 | |
---|
| 56 | if i == 0: |
---|
| 57 | boundary[(len(elements), 2)] = 'left' |
---|
| 58 | if j == n-1: |
---|
| 59 | boundary[(len(elements), 1)] = 'top' |
---|
| 60 | elements.append([v1,v2,v3]) #Upper element |
---|
| 61 | |
---|
| 62 | return points, elements, boundary |
---|
| 63 | |
---|
| 64 | |
---|
[541] | 65 | def oblique(m, n, lenx = 1.0, leny = 1.0, theta = 8.95, origin = (0.0, 0.0)): |
---|
| 66 | """Setup a oblique grid of triangles |
---|
| 67 | with m segments in the x-direction and n segments in the y-direction |
---|
[486] | 68 | |
---|
[541] | 69 | """ |
---|
[540] | 70 | |
---|
[541] | 71 | from Numeric import array |
---|
| 72 | import math |
---|
[540] | 73 | |
---|
[541] | 74 | from config import epsilon |
---|
[540] | 75 | |
---|
| 76 | |
---|
[541] | 77 | deltax = lenx/float(m) |
---|
| 78 | deltay = leny/float(n) |
---|
| 79 | a = 0.75*lenx*math.tan(theta/180.*math.pi) |
---|
| 80 | x1 = lenx |
---|
| 81 | y1 = 0 |
---|
| 82 | x2 = lenx |
---|
| 83 | y2 = leny |
---|
| 84 | x3 = 0.25*lenx |
---|
| 85 | y3 = leny |
---|
| 86 | x4 = x3 |
---|
| 87 | y4 = 0 |
---|
| 88 | a2 = a/(x1-x4) |
---|
| 89 | a1 = -a2*x4 |
---|
| 90 | a4 = ((a1 + a2*x3)/y3-(a1 + a2*x2)/y2)/(x2-x3) |
---|
| 91 | a3 = 1. - (a1 + a2*x3)/y3 - a4*x3 |
---|
[540] | 92 | |
---|
[541] | 93 | # Dictionary of vertex objects |
---|
| 94 | vertices = {} |
---|
| 95 | points = [] |
---|
[540] | 96 | |
---|
[541] | 97 | for i in range(m+1): |
---|
| 98 | x = deltax*i |
---|
| 99 | for j in range(n+1): |
---|
| 100 | y = deltay*j |
---|
| 101 | if x > 0.25*lenx: |
---|
| 102 | y = a1 + a2*x + a3*y + a4*x*y |
---|
[540] | 103 | |
---|
[541] | 104 | vertices[i,j] = len(points) |
---|
| 105 | points.append([x + origin[0], y + origin[1]]) |
---|
[540] | 106 | |
---|
[541] | 107 | # Construct 2 triangles per element |
---|
| 108 | elements = [] |
---|
| 109 | boundary = {} |
---|
| 110 | for i in range(m): |
---|
| 111 | for j in range(n): |
---|
| 112 | v1 = vertices[i,j+1] |
---|
| 113 | v2 = vertices[i,j] |
---|
| 114 | v3 = vertices[i+1,j+1] |
---|
| 115 | v4 = vertices[i+1,j] |
---|
| 116 | |
---|
| 117 | #Update boundary dictionary and create elements |
---|
| 118 | if i == m-1: |
---|
| 119 | boundary[(len(elements), 2)] = 'right' |
---|
| 120 | if j == 0: |
---|
| 121 | boundary[(len(elements), 1)] = 'bottom' |
---|
| 122 | elements.append([v4,v3,v2]) #Lower |
---|
[540] | 123 | |
---|
[541] | 124 | if i == 0: |
---|
| 125 | boundary[(len(elements), 2)] = 'left' |
---|
| 126 | if j == n-1: |
---|
| 127 | boundary[(len(elements), 1)] = 'top' |
---|
| 128 | |
---|
| 129 | elements.append([v1,v2,v3]) #Upper |
---|
[540] | 130 | |
---|
[541] | 131 | return points, elements, boundary |
---|
[540] | 132 | |
---|
[541] | 133 | #OLD FORMULA FOR SETTING BOUNDARY TAGS - OBSOLETE NOW |
---|
[540] | 134 | # for id, face in M.boundary: |
---|
| 135 | |
---|
| 136 | # e = element_class.instances[id] |
---|
| 137 | # x0, y0, x1, y1, x2, y2 = e.get_instance_vertex_coordinates() |
---|
| 138 | |
---|
| 139 | # if face==2: |
---|
| 140 | # #Left or right# |
---|
| 141 | # if abs(x0-origin[0]) < epsilon: |
---|
| 142 | # M.boundary[(id,face)] = 'left' |
---|
| 143 | # elif abs(origin[0]+lenx-x0) < epsilon: |
---|
| 144 | # M.boundary[(id,face)] = 'right' |
---|
| 145 | # else: |
---|
| 146 | # print face, id, id%m, m, n |
---|
| 147 | # raise 'Left or Right Unknown boundary' |
---|
| 148 | # elif face==1: |
---|
| 149 | # #Top or bottom |
---|
| 150 | # if x0 > 0.25*lenx and abs(y0-a1-a2*x0-origin[1]) < epsilon or\ |
---|
| 151 | # x0 <= 0.25*lenx and abs(y0-origin[1]) < epsilon: |
---|
| 152 | # M.boundary[(id,face)] = 'bottom' |
---|
| 153 | # elif abs(origin[1]+leny-y0) < epsilon: |
---|
| 154 | # M.boundary[(id,face)] = 'top' |
---|
| 155 | # else: |
---|
| 156 | # print face, id, id%m, m, n |
---|
| 157 | # raise 'Top or Bottom Unknown boundary' |
---|
| 158 | # else: |
---|
| 159 | # print face, id, id%m, m, n |
---|
| 160 | # raise 'Unknown boundary' |
---|
[541] | 161 | # |
---|
[540] | 162 | # return M |
---|
| 163 | |
---|
[541] | 164 | |
---|
| 165 | |
---|
[543] | 166 | |
---|
| 167 | def circular(m, n, radius=1.0, center = (0.0, 0.0)): |
---|
| 168 | """Setup a circular grid of triangles with m concentric circles and |
---|
| 169 | with n radial segments. If radius is are omitted the mesh defaults to |
---|
| 170 | the unit circle radius. |
---|
| 171 | |
---|
| 172 | radius: radius of circle |
---|
| 173 | |
---|
| 174 | #FIXME: The triangles become degenerate for large values of m or n. |
---|
| 175 | """ |
---|
| 176 | |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | from math import pi, cos, sin |
---|
| 180 | |
---|
| 181 | radius = float(radius) #Ensure floating point format |
---|
| 182 | |
---|
| 183 | #Dictionary of vertex objects and list of points |
---|
| 184 | vertices = {} |
---|
| 185 | points = [[0.0, 0.0]] #Center point |
---|
| 186 | vertices[0, 0] = 0 |
---|
| 187 | |
---|
| 188 | for i in range(n): |
---|
| 189 | theta = 2*i*pi/n |
---|
| 190 | x = cos(theta) |
---|
| 191 | y = sin(theta) |
---|
| 192 | for j in range(1,m+1): |
---|
| 193 | delta = j*radius/m |
---|
| 194 | vertices[i,j] = len(points) |
---|
| 195 | points.append([delta*x, delta*y]) |
---|
| 196 | |
---|
| 197 | #Construct 2 triangles per element |
---|
| 198 | elements = [] |
---|
| 199 | for i in range(n): |
---|
| 200 | for j in range(1,m): |
---|
| 201 | |
---|
| 202 | i1 = (i + 1) % n #Wrap around |
---|
| 203 | |
---|
| 204 | v1 = vertices[i,j+1] |
---|
| 205 | v2 = vertices[i,j] |
---|
| 206 | v3 = vertices[i1,j+1] |
---|
| 207 | v4 = vertices[i1,j] |
---|
| 208 | |
---|
| 209 | elements.append([v4,v2,v3]) #Lower |
---|
| 210 | elements.append([v1,v3,v2]) #Upper |
---|
| 211 | |
---|
| 212 | |
---|
| 213 | #Do the center |
---|
| 214 | v1 = vertices[0,0] |
---|
| 215 | for i in range(n): |
---|
| 216 | i1 = (i + 1) % n #Wrap around |
---|
| 217 | v2 = vertices[i,1] |
---|
| 218 | v3 = vertices[i1,1] |
---|
| 219 | |
---|
| 220 | elements.append([v1,v2,v3]) #center |
---|
| 221 | |
---|
| 222 | return points, elements |
---|
| 223 | |
---|
| 224 | |
---|
[486] | 225 | def from_polyfile(name): |
---|
| 226 | """Read mesh from .poly file, an obj like file format |
---|
| 227 | listing first vertex coordinates and then connectivity |
---|
| 228 | """ |
---|
| 229 | |
---|
| 230 | from util import anglediff |
---|
| 231 | from math import pi |
---|
| 232 | import os.path |
---|
| 233 | root, ext = os.path.splitext(name) |
---|
| 234 | |
---|
| 235 | if ext == 'poly': |
---|
| 236 | filename = name |
---|
| 237 | else: |
---|
| 238 | filename = name + '.poly' |
---|
| 239 | |
---|
| 240 | |
---|
| 241 | fid = open(filename) |
---|
| 242 | |
---|
| 243 | points = [] #x, y |
---|
| 244 | values = [] #z |
---|
[488] | 245 | ##vertex_values = [] #Repeated z |
---|
[486] | 246 | triangles = [] #v0, v1, v2 |
---|
| 247 | |
---|
| 248 | lines = fid.readlines() |
---|
| 249 | |
---|
| 250 | keyword = lines[0].strip() |
---|
| 251 | msg = 'First line in .poly file must contain the keyword: POINTS' |
---|
| 252 | assert keyword == 'POINTS', msg |
---|
| 253 | |
---|
| 254 | offending = 0 |
---|
| 255 | i = 1 |
---|
| 256 | while keyword == 'POINTS': |
---|
| 257 | line = lines[i].strip() |
---|
| 258 | i += 1 |
---|
| 259 | |
---|
| 260 | if line == 'POLYS': |
---|
| 261 | keyword = line |
---|
| 262 | break |
---|
| 263 | |
---|
| 264 | fields = line.split(':') |
---|
| 265 | assert int(fields[0]) == i-1, 'Point indices not consecutive' |
---|
| 266 | |
---|
| 267 | #Split the three floats |
---|
| 268 | xyz = fields[1].split() |
---|
| 269 | |
---|
| 270 | x = float(xyz[0]) |
---|
| 271 | y = float(xyz[1]) |
---|
| 272 | z = float(xyz[2]) |
---|
| 273 | |
---|
| 274 | points.append([x, y]) |
---|
| 275 | values.append(z) |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | k = i |
---|
| 279 | while keyword == 'POLYS': |
---|
| 280 | line = lines[i].strip() |
---|
| 281 | i += 1 |
---|
| 282 | |
---|
| 283 | if line == 'END': |
---|
| 284 | keyword = line |
---|
| 285 | break |
---|
| 286 | |
---|
| 287 | |
---|
| 288 | fields = line.split(':') |
---|
| 289 | assert int(fields[0]) == i-k, 'Poly indices not consecutive' |
---|
| 290 | |
---|
| 291 | #Split the three indices |
---|
| 292 | vvv = fields[1].split() |
---|
| 293 | |
---|
| 294 | i0 = int(vvv[0])-1 |
---|
| 295 | i1 = int(vvv[1])-1 |
---|
| 296 | i2 = int(vvv[2])-1 |
---|
| 297 | |
---|
| 298 | #Check for and exclude degenerate areas |
---|
| 299 | x0 = points[i0][0] |
---|
| 300 | y0 = points[i0][1] |
---|
| 301 | x1 = points[i1][0] |
---|
| 302 | y1 = points[i1][1] |
---|
| 303 | x2 = points[i2][0] |
---|
| 304 | y2 = points[i2][1] |
---|
| 305 | |
---|
| 306 | area = abs((x1*y0-x0*y1)+(x2*y1-x1*y2)+(x0*y2-x2*y0))/2 |
---|
| 307 | if area > 0: |
---|
| 308 | |
---|
| 309 | #Ensure that points are arranged in counter clock-wise order |
---|
| 310 | v0 = [x1-x0, y1-y0] |
---|
| 311 | v1 = [x2-x1, y2-y1] |
---|
| 312 | v2 = [x0-x2, y0-y2] |
---|
| 313 | |
---|
| 314 | a0 = anglediff(v1, v0) |
---|
| 315 | a1 = anglediff(v2, v1) |
---|
| 316 | a2 = anglediff(v0, v2) |
---|
| 317 | |
---|
| 318 | |
---|
| 319 | if a0 < pi and a1 < pi and a2 < pi: |
---|
| 320 | #all is well |
---|
| 321 | j0 = i0 |
---|
| 322 | j1 = i1 |
---|
| 323 | j2 = i2 |
---|
| 324 | else: |
---|
| 325 | #Swap two vertices |
---|
| 326 | j0 = i1 |
---|
| 327 | j1 = i0 |
---|
| 328 | j2 = i2 |
---|
| 329 | |
---|
| 330 | triangles.append([j0, j1, j2]) |
---|
[488] | 331 | ##vertex_values.append([values[j0], values[j1], values[j2]]) |
---|
[486] | 332 | else: |
---|
| 333 | offending +=1 |
---|
| 334 | |
---|
| 335 | print 'Removed %d offending triangles out of %d' %(offending, len(lines)) |
---|
[488] | 336 | return points, triangles, values |
---|
[534] | 337 | |
---|
| 338 | |
---|
| 339 | |
---|
| 340 | def strang_mesh(filename): |
---|
| 341 | """Read Strang generated mesh. |
---|
| 342 | """ |
---|
| 343 | |
---|
| 344 | from math import pi |
---|
| 345 | from util import anglediff |
---|
| 346 | |
---|
| 347 | |
---|
| 348 | fid = open(filename) |
---|
| 349 | points = [] # List of x, y coordinates |
---|
| 350 | triangles = [] # List of vertex ids as listed in the file |
---|
| 351 | |
---|
| 352 | for line in fid.readlines(): |
---|
| 353 | fields = line.split() |
---|
| 354 | if len(fields) == 2: |
---|
| 355 | # we are reading vertex coordinates |
---|
| 356 | points.append([float(fields[0]), float(fields[1])]) |
---|
| 357 | elif len(fields) == 3: |
---|
| 358 | # we are reading triangle point id's (format ae+b) |
---|
| 359 | triangles.append([int(float(fields[0]))-1, |
---|
| 360 | int(float(fields[1]))-1, |
---|
| 361 | int(float(fields[2]))-1]) |
---|
| 362 | else: |
---|
| 363 | raise 'wrong format in ' + filename |
---|
| 364 | |
---|
| 365 | elements = [] #Final list of elements |
---|
| 366 | |
---|
| 367 | for t in triangles: |
---|
| 368 | #Get vertex coordinates |
---|
| 369 | v0 = t[0] |
---|
| 370 | v1 = t[1] |
---|
| 371 | v2 = t[2] |
---|
| 372 | |
---|
| 373 | x0 = points[v0][0] |
---|
| 374 | y0 = points[v0][1] |
---|
| 375 | x1 = points[v1][0] |
---|
| 376 | y1 = points[v1][1] |
---|
| 377 | x2 = points[v2][0] |
---|
| 378 | y2 = points[v2][1] |
---|
| 379 | |
---|
| 380 | #Check that points are arranged in counter clock-wise order |
---|
| 381 | vec0 = [x1-x0, y1-y0] |
---|
| 382 | vec1 = [x2-x1, y2-y1] |
---|
| 383 | vec2 = [x0-x2, y0-y2] |
---|
| 384 | |
---|
| 385 | a0 = anglediff(vec1, vec0) |
---|
| 386 | a1 = anglediff(vec2, vec1) |
---|
| 387 | a2 = anglediff(vec0, vec2) |
---|
| 388 | |
---|
| 389 | if a0 < pi and a1 < pi and a2 < pi: |
---|
| 390 | elements.append([v0, v1, v2]) |
---|
| 391 | else: |
---|
| 392 | elements.append([v0, v2, v1]) |
---|
| 393 | |
---|
| 394 | return points, elements |
---|
| 395 | |
---|
| 396 | |
---|
| 397 | |
---|
| 398 | # def contracting_channel_mesh(m, n, x1 = 0.0, x2 = 1./3., x3 = 2./3., x4 = 1.0, |
---|
| 399 | # y1 =0.0, y4 = -1./4., y8 = 1.0, |
---|
| 400 | # origin = (0.0, 0.0), point_class=Point, |
---|
| 401 | # element_class=Triangle, mesh_class=Mesh): |
---|
| 402 | # """Setup a oblique grid of triangles |
---|
| 403 | # with m segments in the x-direction and n segments in the y-direction |
---|
| 404 | |
---|
| 405 | # Triangle refers to the actual class or subclass to be instantiated: |
---|
| 406 | # e.g. if Volume is a subclass of Triangle, |
---|
| 407 | # this function can be invoked with the keywords |
---|
| 408 | # oblique_mesh(...,Triangle=Volume, Mesh=Domain) |
---|
| 409 | # """ |
---|
| 410 | |
---|
| 411 | # from Numeric import array |
---|
| 412 | # from visual import rate# |
---|
| 413 | |
---|
| 414 | # import math |
---|
| 415 | |
---|
| 416 | # from config import epsilon |
---|
| 417 | |
---|
| 418 | # E = m*n*2 #Number of triangular elements |
---|
| 419 | # P = (m+1)*(n+1) #Number of initial vertices |
---|
| 420 | |
---|
| 421 | # initialise_consecutive_datastructure(P+E, E, |
---|
| 422 | # point_class, |
---|
| 423 | # element_class, |
---|
| 424 | # mesh_class) |
---|
| 425 | |
---|
| 426 | # deltax = (x4 - x1)/float(m) |
---|
| 427 | # deltay = (y8 - y1)/float(n) |
---|
| 428 | # a = y4 - y1 |
---|
| 429 | |
---|
| 430 | # if y8 - a <= y1 + a: |
---|
| 431 | # print a,y1,y4 |
---|
| 432 | # raise 'Constriction is too large reduce a' |
---|
| 433 | |
---|
| 434 | # y2 = y1 |
---|
| 435 | # y3 = y4 |
---|
| 436 | # x5 = x4 |
---|
| 437 | # y5 = y8 - a |
---|
| 438 | # x6 = x3 |
---|
| 439 | # y6 = y5 |
---|
| 440 | # x7 = x2 |
---|
| 441 | # y7 = y8 |
---|
| 442 | # x8 = x1 |
---|
| 443 | |
---|
| 444 | # a2 = a/(x3 - x2) |
---|
| 445 | # a1 = a - a*x3/(x3 - x2) |
---|
| 446 | # a4 = (-a + a2*(x7 - x6))/(x6 - x7)/y7 |
---|
| 447 | # a3 = (y7 - a1 - x7*a2 - a4*x7*y7)/y7 |
---|
| 448 | |
---|
| 449 | # # Dictionary of vertex objects |
---|
| 450 | # vertices = {} |
---|
| 451 | |
---|
| 452 | # for i in range(m+1): |
---|
| 453 | # x = deltax*i |
---|
| 454 | # for j in range(n+1): |
---|
| 455 | # y = deltay*j |
---|
| 456 | # if x > x2: |
---|
| 457 | # if x < x3: |
---|
| 458 | # y = a1 + a2*x + a3*y + a4*x*y |
---|
| 459 | # else: |
---|
| 460 | # y = a + y*(y5 - y4)/(y8 - y1) |
---|
| 461 | |
---|
| 462 | # vertices[i,j] = Point(x + origin[0],y + origin[1]) |
---|
| 463 | |
---|
| 464 | # # Construct 2 elements per element |
---|
| 465 | # elements = [] |
---|
| 466 | # for i in range(m): |
---|
| 467 | # for j in range(n): |
---|
| 468 | # v1 = vertices[i,j+1] |
---|
| 469 | # v2 = vertices[i,j] |
---|
| 470 | # v3 = vertices[i+1,j+1] |
---|
| 471 | # v4 = vertices[i+1,j] |
---|
| 472 | |
---|
| 473 | # elements.append(element_class(v4,v3,v2)) #Lower |
---|
| 474 | # elements.append(element_class(v1,v2,v3)) #Upper |
---|
| 475 | |
---|
| 476 | # M = mesh_class(elements) |
---|
| 477 | |
---|
| 478 | # #Set a default tagging |
---|
| 479 | |
---|
| 480 | # for id, face in M.boundary: |
---|
| 481 | |
---|
| 482 | # e = element_class.instances[id] |
---|
| 483 | # x_0, y_0, x_1, y_1, x_2, y_2 = e.get_instance_vertex_coordinates() |
---|
| 484 | # lenx = x4 - x1 |
---|
| 485 | # if face==2: |
---|
| 486 | # #Left or right# |
---|
| 487 | # if abs(x_0-origin[0]) < epsilon: |
---|
| 488 | # M.boundary[(id,face)] = 'left' |
---|
| 489 | # elif abs(origin[0]+lenx-x_0) < epsilon: |
---|
| 490 | # M.boundary[(id,face)] = 'right' |
---|
| 491 | # else: |
---|
| 492 | # print face, id, id%m, m, n |
---|
| 493 | # raise 'Left or Right Unknown boundary' |
---|
| 494 | # elif face==1: |
---|
| 495 | # #Top or bottom |
---|
| 496 | # if x_0 <= x2 and abs(y_0-y1-origin[1]) < epsilon or\ |
---|
| 497 | # x_0 > x3 and abs(y_0-y3-origin[1]) < epsilon or\ |
---|
| 498 | # x_0 > x2 and x_0 <= x3 and abs(y_0-(y2+(y3-y2)*(x_0-x2)/(x3-x2)+origin[1])) < epsilon: |
---|
| 499 | # M.boundary[(id,face)] = 'bottom' |
---|
| 500 | # elif x_0 <= x7 and abs(y_0-y8-origin[1]) < epsilon or\ |
---|
| 501 | # x_0 > x6 and abs(y_0-y6-origin[1]) < epsilon or\ |
---|
| 502 | # x_0 > x7 and x_0 <= x6 and abs(y_0-(y7+(y6-y7)*(x_0-x7)/(x6-x7)+origin[1])) < epsilon: |
---|
| 503 | # M.boundary[(id,face)] = 'top' |
---|
| 504 | # else: |
---|
| 505 | # print face, id, id%m, m, n |
---|
| 506 | # raise 'Top or Bottom Unknown boundary' |
---|
| 507 | # else: |
---|
| 508 | # print face, id, id%m, m, n |
---|
| 509 | # raise 'Unknown boundary' |
---|
| 510 | |
---|
| 511 | |
---|
| 512 | # # print id, face, M.boundary[(id,face)],x_0,y_0,x_1,y_1,x_2,y_2 |
---|
| 513 | |
---|
| 514 | # return M |
---|
| 515 | |
---|
| 516 | |
---|
| 517 | |
---|
| 518 | # #Map from edge number to indices of associated vertices |
---|
| 519 | # edge_map = ((1,2), (0,2), (0,1)) |
---|
| 520 | |
---|
| 521 | |
---|
| 522 | |
---|
| 523 | |
---|