[229] | 1 | """Class Quantity - Implements values at each triangular element |
---|
| 2 | |
---|
| 3 | To create: |
---|
| 4 | |
---|
| 5 | Quantity(domain, vertex_values) |
---|
| 6 | |
---|
| 7 | domain: Associated domain structure. Required. |
---|
| 8 | |
---|
| 9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
| 10 | Default None |
---|
| 11 | |
---|
| 12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
| 13 | Otherwise check that it is compatible with dimenions of domain. |
---|
| 14 | Otherwise raise an exception |
---|
| 15 | """ |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | class Quantity: |
---|
| 19 | |
---|
| 20 | def __init__(self, domain, vertex_values=None): |
---|
| 21 | |
---|
[242] | 22 | from mesh import Mesh |
---|
[229] | 23 | from Numeric import array, zeros, Float |
---|
| 24 | |
---|
| 25 | msg = 'First argument in Quantity.__init__ ' |
---|
| 26 | msg += 'must be of class Mesh (or a subclass thereof)' |
---|
| 27 | assert isinstance(domain, Mesh), msg |
---|
| 28 | |
---|
| 29 | if vertex_values is None: |
---|
| 30 | N = domain.number_of_elements |
---|
| 31 | self.vertex_values = zeros((N, 3), Float) |
---|
| 32 | else: |
---|
[265] | 33 | self.vertex_values = array(vertex_values).astype(Float) |
---|
[229] | 34 | |
---|
| 35 | N, V = self.vertex_values.shape |
---|
| 36 | assert V == 3,\ |
---|
| 37 | 'Three vertex values per element must be specified' |
---|
| 38 | |
---|
| 39 | |
---|
| 40 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
| 41 | %N |
---|
| 42 | msg += 'number of elements in specified domain (%d).'\ |
---|
| 43 | %domain.number_of_elements |
---|
| 44 | |
---|
| 45 | assert N == domain.number_of_elements, msg |
---|
| 46 | |
---|
| 47 | self.domain = domain |
---|
| 48 | |
---|
| 49 | #Allocate space for other quantities |
---|
| 50 | self.centroid_values = zeros(N, Float) |
---|
| 51 | self.edge_values = zeros((N, 3), Float) |
---|
| 52 | |
---|
| 53 | #Intialise centroid and edge_values |
---|
| 54 | self.interpolate() |
---|
| 55 | |
---|
[275] | 56 | def __len__(self): |
---|
| 57 | return self.centroid_values.shape[0] |
---|
| 58 | |
---|
[229] | 59 | def interpolate(self): |
---|
| 60 | """Compute interpolated values at edges and centroid |
---|
| 61 | Pre-condition: vertex_values have been set |
---|
| 62 | """ |
---|
| 63 | |
---|
| 64 | N = self.vertex_values.shape[0] |
---|
| 65 | for i in range(N): |
---|
| 66 | v0 = self.vertex_values[i, 0] |
---|
| 67 | v1 = self.vertex_values[i, 1] |
---|
| 68 | v2 = self.vertex_values[i, 2] |
---|
| 69 | |
---|
| 70 | self.centroid_values[i] = (v0 + v1 + v2)/3 |
---|
[242] | 71 | |
---|
| 72 | self.interpolate_from_vertices_to_edges() |
---|
| 73 | |
---|
| 74 | |
---|
| 75 | def interpolate_from_vertices_to_edges(self): |
---|
[265] | 76 | #Call correct module function |
---|
| 77 | #(either from this module or C-extension) |
---|
| 78 | interpolate_from_vertices_to_edges(self) |
---|
[229] | 79 | |
---|
[242] | 80 | |
---|
| 81 | def set_values(self, X, location='vertices'): |
---|
| 82 | """Set values for quantity |
---|
[229] | 83 | |
---|
[242] | 84 | X: Compatible list, Numeric array (see below), constant or function |
---|
| 85 | location: Where values are to be stored. |
---|
| 86 | Permissible options are: vertices, edges, centroid |
---|
| 87 | Default is "vertices" |
---|
| 88 | |
---|
| 89 | In case of location == 'centroid' the dimension values must |
---|
| 90 | be a list of a Numerical array of length N, N being the number |
---|
| 91 | of elements in the mesh. Otherwise it must be of dimension Nx3 |
---|
| 92 | |
---|
| 93 | The values will be stored in elements following their |
---|
| 94 | internal ordering. |
---|
| 95 | |
---|
| 96 | If values are described a function, it will be evaluated at specified points |
---|
| 97 | |
---|
| 98 | If selected location is vertices, values for centroid and edges |
---|
| 99 | will be assigned interpolated values. |
---|
| 100 | In any other case, only values for the specified locations |
---|
| 101 | will be assigned and the others will be left undefined. |
---|
| 102 | """ |
---|
| 103 | |
---|
| 104 | if location not in ['vertices', 'centroids', 'edges']: |
---|
| 105 | msg = 'Invalid location: %s' %location |
---|
| 106 | raise msg |
---|
| 107 | |
---|
| 108 | if X is None: |
---|
| 109 | msg = 'Given values are None' |
---|
| 110 | raise msg |
---|
| 111 | |
---|
| 112 | import types |
---|
| 113 | |
---|
| 114 | if callable(X): |
---|
| 115 | #Use function specific method |
---|
| 116 | self.set_function_values(X, location) |
---|
| 117 | elif type(X) in [types.FloatType, types.IntType, types.LongType]: |
---|
| 118 | if location == 'centroids': |
---|
| 119 | self.centroid_values[:] = X |
---|
| 120 | elif location == 'edges': |
---|
| 121 | self.edge_values[:] = X |
---|
| 122 | else: |
---|
| 123 | self.vertex_values[:] = X |
---|
| 124 | |
---|
| 125 | else: |
---|
| 126 | #Use array specific method |
---|
| 127 | self.set_array_values(X, location) |
---|
| 128 | |
---|
| 129 | if location == 'vertices': |
---|
| 130 | #Intialise centroid and edge_values |
---|
| 131 | self.interpolate() |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | def set_function_values(self, f, location='vertices'): |
---|
| 136 | """Set values for quantity using specified function |
---|
| 137 | |
---|
| 138 | f: x, y -> z Function where x, y and z are arrays |
---|
| 139 | location: Where values are to be stored. |
---|
| 140 | Permissible options are: vertices, edges, centroid |
---|
| 141 | Default is "vertices" |
---|
| 142 | """ |
---|
| 143 | |
---|
| 144 | if location == 'centroids': |
---|
| 145 | P = self.domain.centroids |
---|
| 146 | self.set_values(f(P[:,0], P[:,1]), location) |
---|
| 147 | elif location == 'edges': |
---|
| 148 | raise 'Not implemented: %s' %location |
---|
| 149 | else: |
---|
| 150 | #Vertices |
---|
| 151 | P = self.domain.get_vertex_coordinates() |
---|
| 152 | for i in range(3): |
---|
| 153 | self.vertex_values[:,i] = f(P[:,2*i], P[:,2*i+1]) |
---|
| 154 | |
---|
| 155 | |
---|
| 156 | def set_array_values(self, values, location='vertices'): |
---|
| 157 | """Set values for quantity |
---|
| 158 | |
---|
| 159 | values: Numeric array |
---|
| 160 | location: Where values are to be stored. |
---|
| 161 | Permissible options are: vertices, edges, centroid |
---|
| 162 | Default is "vertices" |
---|
| 163 | |
---|
| 164 | In case of location == 'centroid' the dimension values must |
---|
| 165 | be a list of a Numerical array of length N, N being the number |
---|
| 166 | of elements in the mesh. Otherwise it must be of dimension Nx3 |
---|
| 167 | |
---|
| 168 | The values will be stored in elements following their |
---|
| 169 | internal ordering. |
---|
| 170 | |
---|
| 171 | If selected location is vertices, values for centroid and edges |
---|
| 172 | will be assigned interpolated values. |
---|
| 173 | In any other case, only values for the specified locations |
---|
| 174 | will be assigned and the others will be left undefined. |
---|
| 175 | """ |
---|
| 176 | |
---|
| 177 | from Numeric import array, Float |
---|
| 178 | |
---|
| 179 | values = array(values).astype(Float) |
---|
| 180 | |
---|
| 181 | N = self.centroid_values.shape[0] |
---|
| 182 | |
---|
| 183 | msg = 'Number of values must match number of elements' |
---|
| 184 | assert values.shape[0] == N, msg |
---|
| 185 | |
---|
| 186 | if location == 'centroids': |
---|
| 187 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
| 188 | self.centroid_values = values |
---|
| 189 | elif location == 'edges': |
---|
| 190 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
| 191 | msg = 'Array must be N x 3' |
---|
| 192 | assert values.shape[1] == 3, msg |
---|
| 193 | |
---|
| 194 | self.edge_values = values |
---|
| 195 | else: |
---|
| 196 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
| 197 | msg = 'Array must be N x 3' |
---|
| 198 | assert values.shape[1] == 3, msg |
---|
| 199 | |
---|
| 200 | self.vertex_values = values |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | |
---|
[274] | 204 | |
---|
| 205 | def smooth_vertex_values(self, value_array='field_values', |
---|
| 206 | precision = None): |
---|
| 207 | """ Smooths field_values or conserved_quantities data. |
---|
| 208 | TODO: be able to smooth individual fields |
---|
| 209 | NOTE: This function does not have a test. |
---|
[283] | 210 | FIXME: NOT DONE - do we need it? |
---|
[274] | 211 | """ |
---|
| 212 | |
---|
| 213 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | A,V = self.get_vertex_values(xy=False, |
---|
| 217 | value_array=value_array, |
---|
| 218 | smooth = True, |
---|
| 219 | precision = precision) |
---|
| 220 | |
---|
| 221 | #Set some field values |
---|
| 222 | for volume in self: |
---|
| 223 | for i,v in enumerate(volume.vertices): |
---|
| 224 | if value_array == 'field_values': |
---|
| 225 | volume.set_field_values('vertex', i, A[v,:]) |
---|
| 226 | elif value_array == 'conserved_quantities': |
---|
| 227 | volume.set_conserved_quantities('vertex', i, A[v,:]) |
---|
| 228 | |
---|
| 229 | if value_array == 'field_values': |
---|
| 230 | self.precompute() |
---|
| 231 | elif value_array == 'conserved_quantities': |
---|
| 232 | Volume.interpolate_conserved_quantities() |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | #Method for outputting model results |
---|
[288] | 236 | #FIXME: Split up into geometric and numeric stuff. |
---|
| 237 | #FIXME: Geometric (X,Y,V) should live in mesh.py |
---|
[292] | 238 | #FIXME: STill remember to move XY to mesh |
---|
[274] | 239 | def get_vertex_values(self, |
---|
| 240 | xy=True, |
---|
| 241 | smooth = None, |
---|
| 242 | precision = None, |
---|
| 243 | reduction = None): |
---|
| 244 | """Return vertex values like an OBJ format |
---|
| 245 | |
---|
| 246 | The vertex values are returned as one sequence in the 1D float array A. |
---|
| 247 | If requested the coordinates will be returned in 1D arrays X and Y. |
---|
| 248 | |
---|
| 249 | The connectivity is represented as an integer array, V, of dimension |
---|
| 250 | M x 3, where M is the number of volumes. Each row has three indices |
---|
| 251 | into the X, Y, A arrays defining the triangle. |
---|
| 252 | |
---|
| 253 | if smooth is True, vertex values corresponding to one common |
---|
| 254 | coordinate set will be smoothed according to the given |
---|
| 255 | reduction operator. In this case vertex coordinates will be |
---|
| 256 | de-duplicated. |
---|
| 257 | |
---|
| 258 | If no smoothings is required, vertex coordinates and values will |
---|
[292] | 259 | be aggregated as a concatenation of values at |
---|
[274] | 260 | vertices 0, vertices 1 and vertices 2 |
---|
| 261 | |
---|
| 262 | |
---|
| 263 | Calling convention |
---|
| 264 | if xy is True: |
---|
| 265 | X,Y,A,V = get_vertex_values |
---|
| 266 | else: |
---|
| 267 | A,V = get_vertex_values |
---|
| 268 | |
---|
| 269 | """ |
---|
| 270 | |
---|
| 271 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
| 272 | |
---|
| 273 | |
---|
| 274 | if smooth is None: |
---|
| 275 | smooth = self.domain.smooth |
---|
| 276 | |
---|
| 277 | if precision is None: |
---|
| 278 | precision = Float |
---|
| 279 | |
---|
| 280 | if reduction is None: |
---|
| 281 | reduction = self.domain.reduction |
---|
[291] | 282 | |
---|
| 283 | #Create connectivity |
---|
| 284 | V = self.domain.get_vertices(unique=smooth) |
---|
| 285 | |
---|
[274] | 286 | if smooth == True: |
---|
[275] | 287 | |
---|
| 288 | N = len(self.domain.vertexlist) |
---|
| 289 | A = zeros(N, precision) |
---|
[291] | 290 | |
---|
[274] | 291 | #Smoothing loop |
---|
[275] | 292 | for k in range(N): |
---|
| 293 | L = self.domain.vertexlist[k] |
---|
| 294 | |
---|
| 295 | #Go through all triangle, vertex pairs |
---|
| 296 | #contributing to vertex k and register vertex value |
---|
[297] | 297 | |
---|
| 298 | if L is None: continue #In case there are unused points |
---|
| 299 | |
---|
| 300 | contributions = [] |
---|
[275] | 301 | for volume_id, vertex_id in L: |
---|
| 302 | v = self.vertex_values[volume_id, vertex_id] |
---|
| 303 | contributions.append(v) |
---|
[274] | 304 | |
---|
[275] | 305 | A[k] = reduction(contributions) |
---|
[274] | 306 | |
---|
| 307 | |
---|
| 308 | if xy is True: |
---|
[281] | 309 | X = self.domain.coordinates[:,0].astype(precision) |
---|
| 310 | Y = self.domain.coordinates[:,1].astype(precision) |
---|
| 311 | |
---|
[274] | 312 | return X, Y, A, V |
---|
| 313 | else: |
---|
| 314 | return A, V |
---|
| 315 | else: |
---|
| 316 | #Don't smooth |
---|
| 317 | |
---|
[281] | 318 | A = self.vertex_values.flat |
---|
[274] | 319 | |
---|
| 320 | #Do vertex coordinates |
---|
| 321 | if xy is True: |
---|
[275] | 322 | C = self.domain.get_vertex_coordinates() |
---|
| 323 | |
---|
[282] | 324 | X = C[:,0:6:2].copy() |
---|
| 325 | Y = C[:,1:6:2].copy() |
---|
[275] | 326 | |
---|
| 327 | return X.flat, Y.flat, A, V |
---|
[274] | 328 | else: |
---|
| 329 | return A, V |
---|
| 330 | |
---|
| 331 | |
---|
| 332 | |
---|
| 333 | |
---|
| 334 | |
---|
[242] | 335 | class Conserved_quantity(Quantity): |
---|
| 336 | """Class conserved quantity adds to Quantity: |
---|
| 337 | |
---|
| 338 | boundary values, storage and method for updating, and |
---|
| 339 | methods for extrapolation from centropid to vertices inluding |
---|
| 340 | gradients and limiters |
---|
| 341 | """ |
---|
| 342 | |
---|
| 343 | def __init__(self, domain, vertex_values=None): |
---|
| 344 | Quantity.__init__(self, domain, vertex_values) |
---|
| 345 | |
---|
| 346 | from Numeric import zeros, Float |
---|
| 347 | |
---|
| 348 | #Allocate space for boundary values |
---|
| 349 | L = len(domain.boundary) |
---|
| 350 | self.boundary_values = zeros(L, Float) |
---|
| 351 | |
---|
| 352 | #Allocate space for updates of conserved quantities by |
---|
| 353 | #flux calculations and forcing functions |
---|
| 354 | |
---|
| 355 | N = domain.number_of_elements |
---|
| 356 | self.explicit_update = zeros(N, Float ) |
---|
| 357 | self.semi_implicit_update = zeros(N, Float ) |
---|
| 358 | |
---|
| 359 | |
---|
[229] | 360 | def update(self, timestep): |
---|
[272] | 361 | #Call correct module function |
---|
| 362 | #(either from this module or C-extension) |
---|
| 363 | return update(self, timestep) |
---|
[229] | 364 | |
---|
| 365 | |
---|
| 366 | def compute_gradients(self): |
---|
[260] | 367 | #Call correct module function |
---|
| 368 | #(either from this module or C-extension) |
---|
| 369 | return compute_gradients(self) |
---|
| 370 | |
---|
[229] | 371 | |
---|
| 372 | def limit(self): |
---|
[245] | 373 | #Call correct module function |
---|
| 374 | #(either from this module or C-extension) |
---|
| 375 | limit(self) |
---|
[229] | 376 | |
---|
| 377 | |
---|
| 378 | def extrapolate_first_order(self): |
---|
| 379 | """Extrapolate conserved quantities from centroid to |
---|
| 380 | vertices for each volume using |
---|
| 381 | first order scheme. |
---|
| 382 | """ |
---|
| 383 | |
---|
| 384 | qc = self.centroid_values |
---|
| 385 | qv = self.vertex_values |
---|
| 386 | |
---|
| 387 | for i in range(3): |
---|
| 388 | qv[:,i] = qc |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | def extrapolate_second_order(self): |
---|
[255] | 392 | #Call correct module function |
---|
| 393 | #(either from this module or C-extension) |
---|
| 394 | extrapolate_second_order(self) |
---|
| 395 | |
---|
| 396 | |
---|
[272] | 397 | def update(quantity, timestep): |
---|
| 398 | """Update centroid values based on values stored in |
---|
| 399 | explicit_update and semi_implicit_update as well as given timestep |
---|
| 400 | """ |
---|
| 401 | |
---|
| 402 | from Numeric import sum, equal, ones, Float |
---|
| 403 | |
---|
| 404 | N = quantity.centroid_values.shape[0] |
---|
| 405 | |
---|
| 406 | #Explicit updates |
---|
| 407 | quantity.centroid_values += timestep*quantity.explicit_update |
---|
| 408 | |
---|
| 409 | #Semi implicit updates |
---|
| 410 | denominator = ones(N, Float)-timestep*quantity.semi_implicit_update |
---|
[265] | 411 | |
---|
[272] | 412 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
| 413 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
| 414 | raise msg |
---|
| 415 | else: |
---|
| 416 | #Update conserved_quantities from semi implicit updates |
---|
| 417 | quantity.centroid_values /= denominator |
---|
| 418 | |
---|
| 419 | |
---|
[265] | 420 | def interpolate_from_vertices_to_edges(quantity): |
---|
| 421 | """Compute edge values from vertex values using linear interpolation |
---|
| 422 | """ |
---|
| 423 | |
---|
| 424 | for k in range(quantity.vertex_values.shape[0]): |
---|
| 425 | q0 = quantity.vertex_values[k, 0] |
---|
| 426 | q1 = quantity.vertex_values[k, 1] |
---|
| 427 | q2 = quantity.vertex_values[k, 2] |
---|
| 428 | |
---|
| 429 | quantity.edge_values[k, 0] = 0.5*(q1+q2) |
---|
| 430 | quantity.edge_values[k, 1] = 0.5*(q0+q2) |
---|
| 431 | quantity.edge_values[k, 2] = 0.5*(q0+q1) |
---|
| 432 | |
---|
| 433 | |
---|
| 434 | |
---|
| 435 | def extrapolate_second_order(quantity): |
---|
[255] | 436 | """Extrapolate conserved quantities from centroid to |
---|
| 437 | vertices for each volume using |
---|
| 438 | second order scheme. |
---|
| 439 | """ |
---|
[229] | 440 | |
---|
[265] | 441 | a, b = quantity.compute_gradients() |
---|
[229] | 442 | |
---|
[265] | 443 | X = quantity.domain.get_vertex_coordinates() |
---|
| 444 | qc = quantity.centroid_values |
---|
| 445 | qv = quantity.vertex_values |
---|
[255] | 446 | |
---|
| 447 | #Check each triangle |
---|
[265] | 448 | for k in range(quantity.domain.number_of_elements): |
---|
[255] | 449 | #Centroid coordinates |
---|
[265] | 450 | x, y = quantity.domain.centroids[k] |
---|
[229] | 451 | |
---|
[255] | 452 | #vertex coordinates |
---|
[260] | 453 | x0, y0, x1, y1, x2, y2 = X[k,:] |
---|
[255] | 454 | |
---|
| 455 | #Extrapolate |
---|
| 456 | qv[k,0] = qc[k] + a[k]*(x0-x) + b[k]*(y0-y) |
---|
| 457 | qv[k,1] = qc[k] + a[k]*(x1-x) + b[k]*(y1-y) |
---|
| 458 | qv[k,2] = qc[k] + a[k]*(x2-x) + b[k]*(y2-y) |
---|
[229] | 459 | |
---|
[245] | 460 | |
---|
[260] | 461 | def compute_gradients(quantity): |
---|
| 462 | """Compute gradients of triangle surfaces defined by centroids of |
---|
| 463 | neighbouring volumes. |
---|
| 464 | If one edge is on the boundary, use own centroid as neighbour centroid. |
---|
| 465 | If two or more are on the boundary, fall back to first order scheme. |
---|
| 466 | """ |
---|
| 467 | |
---|
| 468 | from Numeric import zeros, Float |
---|
| 469 | from util import gradient |
---|
| 470 | |
---|
| 471 | centroids = quantity.domain.centroids |
---|
| 472 | surrogate_neighbours = quantity.domain.surrogate_neighbours |
---|
| 473 | centroid_values = quantity.centroid_values |
---|
| 474 | number_of_boundaries = quantity.domain.number_of_boundaries |
---|
| 475 | |
---|
| 476 | N = centroid_values.shape[0] |
---|
| 477 | |
---|
| 478 | a = zeros(N, Float) |
---|
| 479 | b = zeros(N, Float) |
---|
| 480 | |
---|
| 481 | for k in range(N): |
---|
| 482 | if number_of_boundaries[k] < 2: |
---|
| 483 | #Two or three true neighbours |
---|
| 484 | |
---|
| 485 | #Get indices of neighbours (or self when used as surrogate) |
---|
| 486 | k0, k1, k2 = surrogate_neighbours[k,:] |
---|
| 487 | |
---|
[261] | 488 | #Get data |
---|
[260] | 489 | q0 = centroid_values[k0] |
---|
| 490 | q1 = centroid_values[k1] |
---|
| 491 | q2 = centroid_values[k2] |
---|
| 492 | |
---|
| 493 | x0, y0 = centroids[k0] #V0 centroid |
---|
| 494 | x1, y1 = centroids[k1] #V1 centroid |
---|
| 495 | x2, y2 = centroids[k2] #V2 centroid |
---|
| 496 | |
---|
| 497 | #Gradient |
---|
| 498 | a[k], b[k] = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
| 499 | |
---|
| 500 | elif number_of_boundaries[k] == 2: |
---|
| 501 | #One true neighbour |
---|
| 502 | |
---|
| 503 | #Get index of the one neighbour |
---|
| 504 | for k0 in surrogate_neighbours[k,:]: |
---|
| 505 | if k0 != k: break |
---|
| 506 | assert k0 != k |
---|
| 507 | |
---|
| 508 | k1 = k #self |
---|
| 509 | |
---|
| 510 | #Get data |
---|
| 511 | q0 = centroid_values[k0] |
---|
| 512 | q1 = centroid_values[k1] |
---|
| 513 | |
---|
| 514 | x0, y0 = centroids[k0] #V0 centroid |
---|
| 515 | x1, y1 = centroids[k1] #V1 centroid |
---|
| 516 | |
---|
| 517 | #Gradient |
---|
| 518 | det = x0*y1 - x1*y0 |
---|
| 519 | if det != 0.0: |
---|
| 520 | a[k] = (y1*q0 - y0*q1)/det |
---|
| 521 | b[k] = (x0*q1 - x1*q0)/det |
---|
| 522 | |
---|
| 523 | else: |
---|
| 524 | #No true neighbours - |
---|
| 525 | #Fall back to first order scheme |
---|
| 526 | pass |
---|
| 527 | |
---|
| 528 | |
---|
| 529 | return a, b |
---|
| 530 | |
---|
| 531 | |
---|
| 532 | |
---|
[245] | 533 | def limit(quantity): |
---|
| 534 | """Limit slopes for each volume to eliminate artificial variance |
---|
| 535 | introduced by e.g. second order extrapolator |
---|
| 536 | |
---|
| 537 | This is an unsophisticated limiter as it does not take into |
---|
| 538 | account dependencies among quantities. |
---|
| 539 | |
---|
| 540 | precondition: |
---|
| 541 | vertex values are estimated from gradient |
---|
| 542 | postcondition: |
---|
| 543 | vertex values are updated |
---|
| 544 | """ |
---|
| 545 | |
---|
| 546 | from Numeric import zeros, Float |
---|
| 547 | |
---|
| 548 | N = quantity.domain.number_of_elements |
---|
| 549 | |
---|
| 550 | beta = quantity.domain.beta |
---|
| 551 | |
---|
| 552 | qc = quantity.centroid_values |
---|
| 553 | qv = quantity.vertex_values |
---|
| 554 | |
---|
| 555 | #Find min and max of this and neighbour's centroid values |
---|
| 556 | qmax = zeros(qc.shape, Float) |
---|
| 557 | qmin = zeros(qc.shape, Float) |
---|
| 558 | |
---|
| 559 | for k in range(N): |
---|
| 560 | qmax[k] = qmin[k] = qc[k] |
---|
| 561 | for i in range(3): |
---|
| 562 | n = quantity.domain.neighbours[k,i] |
---|
| 563 | if n >= 0: |
---|
| 564 | qn = qc[n] #Neighbour's centroid value |
---|
| 565 | |
---|
| 566 | qmin[k] = min(qmin[k], qn) |
---|
| 567 | qmax[k] = max(qmax[k], qn) |
---|
| 568 | |
---|
| 569 | |
---|
| 570 | #Diffences between centroids and maxima/minima |
---|
| 571 | dqmax = qmax - qc |
---|
| 572 | dqmin = qmin - qc |
---|
| 573 | |
---|
| 574 | #Deltas between vertex and centroid values |
---|
| 575 | dq = zeros(qv.shape, Float) |
---|
| 576 | for i in range(3): |
---|
| 577 | dq[:,i] = qv[:,i] - qc |
---|
| 578 | |
---|
| 579 | #Phi limiter |
---|
| 580 | for k in range(N): |
---|
| 581 | |
---|
| 582 | #Find the gradient limiter (phi) across vertices |
---|
| 583 | phi = 1.0 |
---|
| 584 | for i in range(3): |
---|
| 585 | r = 1.0 |
---|
| 586 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
| 587 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
| 588 | |
---|
| 589 | phi = min( min(r*beta, 1), phi ) |
---|
| 590 | |
---|
| 591 | #Then update using phi limiter |
---|
| 592 | for i in range(3): |
---|
| 593 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
| 594 | |
---|
| 595 | |
---|
| 596 | |
---|
| 597 | import compile |
---|
| 598 | if compile.can_use_C_extension('quantity_ext.c'): |
---|
| 599 | #Replace python version with c implementations |
---|
[259] | 600 | |
---|
[262] | 601 | from quantity_ext import limit, compute_gradients,\ |
---|
[272] | 602 | extrapolate_second_order, interpolate_from_vertices_to_edges, update |
---|
[265] | 603 | |
---|