1 | """Class Quantity - Implements values at each triangular element |
---|
2 | |
---|
3 | To create: |
---|
4 | |
---|
5 | Quantity(domain, vertex_values) |
---|
6 | |
---|
7 | domain: Associated domain structure. Required. |
---|
8 | |
---|
9 | vertex_values: N x 3 array of values at each vertex for each element. |
---|
10 | Default None |
---|
11 | |
---|
12 | If vertex_values are None Create array of zeros compatible with domain. |
---|
13 | Otherwise check that it is compatible with dimenions of domain. |
---|
14 | Otherwise raise an exception |
---|
15 | """ |
---|
16 | |
---|
17 | |
---|
18 | class Quantity: |
---|
19 | |
---|
20 | def __init__(self, domain, vertex_values=None): |
---|
21 | |
---|
22 | from mesh import Mesh |
---|
23 | from Numeric import array, zeros, Float |
---|
24 | |
---|
25 | msg = 'First argument in Quantity.__init__ ' |
---|
26 | msg += 'must be of class Mesh (or a subclass thereof)' |
---|
27 | assert isinstance(domain, Mesh), msg |
---|
28 | |
---|
29 | if vertex_values is None: |
---|
30 | N = domain.number_of_elements |
---|
31 | self.vertex_values = zeros((N, 3), Float) |
---|
32 | else: |
---|
33 | self.vertex_values = array(vertex_values).astype(Float) |
---|
34 | |
---|
35 | N, V = self.vertex_values.shape |
---|
36 | assert V == 3,\ |
---|
37 | 'Three vertex values per element must be specified' |
---|
38 | |
---|
39 | |
---|
40 | msg = 'Number of vertex values (%d) must be consistent with'\ |
---|
41 | %N |
---|
42 | msg += 'number of elements in specified domain (%d).'\ |
---|
43 | %domain.number_of_elements |
---|
44 | |
---|
45 | assert N == domain.number_of_elements, msg |
---|
46 | |
---|
47 | self.domain = domain |
---|
48 | |
---|
49 | #Allocate space for other quantities |
---|
50 | self.centroid_values = zeros(N, Float) |
---|
51 | self.edge_values = zeros((N, 3), Float) |
---|
52 | |
---|
53 | #Intialise centroid and edge_values |
---|
54 | self.interpolate() |
---|
55 | |
---|
56 | def __len__(self): |
---|
57 | return self.centroid_values.shape[0] |
---|
58 | |
---|
59 | def interpolate(self): |
---|
60 | """Compute interpolated values at edges and centroid |
---|
61 | Pre-condition: vertex_values have been set |
---|
62 | """ |
---|
63 | |
---|
64 | N = self.vertex_values.shape[0] |
---|
65 | for i in range(N): |
---|
66 | v0 = self.vertex_values[i, 0] |
---|
67 | v1 = self.vertex_values[i, 1] |
---|
68 | v2 = self.vertex_values[i, 2] |
---|
69 | |
---|
70 | self.centroid_values[i] = (v0 + v1 + v2)/3 |
---|
71 | |
---|
72 | self.interpolate_from_vertices_to_edges() |
---|
73 | |
---|
74 | |
---|
75 | def interpolate_from_vertices_to_edges(self): |
---|
76 | #Call correct module function |
---|
77 | #(either from this module or C-extension) |
---|
78 | interpolate_from_vertices_to_edges(self) |
---|
79 | |
---|
80 | |
---|
81 | def set_values(self, X, location='vertices', indexes = None): |
---|
82 | """Set values for quantity |
---|
83 | |
---|
84 | X: Compatible list, Numeric array (see below), constant or function |
---|
85 | location: Where values are to be stored. |
---|
86 | Permissible options are: vertices, edges, centroid |
---|
87 | Default is "vertices" |
---|
88 | |
---|
89 | In case of location == 'centroid' the dimension values must |
---|
90 | be a list of a Numerical array of length N, N being the number |
---|
91 | of elements. Otherwise it must be of dimension Nx3 |
---|
92 | |
---|
93 | The values will be stored in elements following their |
---|
94 | internal ordering. |
---|
95 | |
---|
96 | If values are described a function, it will be evaluated at specified points |
---|
97 | Indexes is the set of element ids that the operation applies to. |
---|
98 | |
---|
99 | If selected location is vertices, values for centroid and edges |
---|
100 | will be assigned interpolated values. |
---|
101 | In any other case, only values for the specified locations |
---|
102 | will be assigned and the others will be left undefined. |
---|
103 | """ |
---|
104 | |
---|
105 | if location not in ['vertices', 'centroids', 'edges']: |
---|
106 | msg = 'Invalid location: %s' %location |
---|
107 | raise msg |
---|
108 | |
---|
109 | if X is None: |
---|
110 | msg = 'Given values are None' |
---|
111 | raise msg |
---|
112 | |
---|
113 | import types |
---|
114 | |
---|
115 | if callable(X): |
---|
116 | #Use function specific method |
---|
117 | self.set_function_values(X, location, indexes = indexes) |
---|
118 | elif type(X) in [types.FloatType, types.IntType, types.LongType]: |
---|
119 | if location == 'centroids': |
---|
120 | if (indexes == None): |
---|
121 | self.centroid_values[:] = X |
---|
122 | else: |
---|
123 | #Brute force |
---|
124 | for i in indexes: |
---|
125 | self.centroid_values[i,:] = X |
---|
126 | |
---|
127 | elif location == 'edges': |
---|
128 | if (indexes == None): |
---|
129 | self.edge_values[:] = X |
---|
130 | else: |
---|
131 | #Brute force |
---|
132 | for i in indexes: |
---|
133 | self.edge_values[i,:] = X |
---|
134 | else: |
---|
135 | if (indexes == None): |
---|
136 | self.vertex_values[:] = X |
---|
137 | else: |
---|
138 | #Brute force |
---|
139 | for i_vertex in indexes: |
---|
140 | self.vertex_values[i_vertex,:] = X |
---|
141 | |
---|
142 | else: |
---|
143 | #Use array specific method |
---|
144 | self.set_array_values(X, location, indexes = indexes) |
---|
145 | |
---|
146 | if location == 'vertices': |
---|
147 | #Intialise centroid and edge_values |
---|
148 | self.interpolate() |
---|
149 | |
---|
150 | |
---|
151 | def get_values(self, location='vertices', indexes = None): |
---|
152 | """get values for quantity |
---|
153 | |
---|
154 | return X, Compatible list, Numeric array (see below) |
---|
155 | location: Where values are to be stored. |
---|
156 | Permissible options are: vertices, edges, centroid |
---|
157 | Default is "vertices" |
---|
158 | |
---|
159 | In case of location == 'centroid' the dimension values must |
---|
160 | be a list of a Numerical array of length N, N being the number |
---|
161 | of elements. Otherwise it must be of dimension Nx3 |
---|
162 | |
---|
163 | The returned values with be a list the length of indexes |
---|
164 | (N if indexes = None). Each value will be a list of the three |
---|
165 | vertex values for this quantity. |
---|
166 | |
---|
167 | Indexes is the set of element ids that the operation applies to. |
---|
168 | |
---|
169 | """ |
---|
170 | from Numeric import take |
---|
171 | |
---|
172 | if location not in ['vertices', 'centroids', 'edges']: |
---|
173 | msg = 'Invalid location: %s' %location |
---|
174 | raise msg |
---|
175 | |
---|
176 | if (indexes == None): |
---|
177 | indexes = range(len(self)) |
---|
178 | |
---|
179 | if location == 'centroids': |
---|
180 | return take(self.centroid_values,indexes) |
---|
181 | elif location == 'edges': |
---|
182 | return take(self.edge_values,indexes) |
---|
183 | else: |
---|
184 | return take(self.vertex_values,indexes) |
---|
185 | |
---|
186 | |
---|
187 | def set_function_values(self, f, location='vertices', indexes = None): |
---|
188 | """Set values for quantity using specified function |
---|
189 | |
---|
190 | f: x, y -> z Function where x, y and z are arrays |
---|
191 | location: Where values are to be stored. |
---|
192 | Permissible options are: vertices, centroid |
---|
193 | Default is "vertices" |
---|
194 | """ |
---|
195 | from Numeric import take |
---|
196 | |
---|
197 | if (indexes == None): |
---|
198 | indexes = range(len(self)) |
---|
199 | is_subset = False |
---|
200 | else: |
---|
201 | is_subset = True |
---|
202 | if location == 'centroids': |
---|
203 | P = take(self.domain.centroid_coordinates,indexes) |
---|
204 | if is_subset: |
---|
205 | self.set_values(f(P[:,0], P[:,1]), location, indexes = indexes) |
---|
206 | else: |
---|
207 | self.set_values(f(P[:,0], P[:,1]), location) |
---|
208 | elif location == 'vertices': |
---|
209 | P = self.domain.vertex_coordinates |
---|
210 | if is_subset: |
---|
211 | #Brute force |
---|
212 | for e in indexes: |
---|
213 | for i in range(3): |
---|
214 | self.vertex_values[e,i] = f(P[e,2*i], P[e,2*i+1]) |
---|
215 | else: |
---|
216 | for i in range(3): |
---|
217 | self.vertex_values[:,i] = f(P[:,2*i], P[:,2*i+1]) |
---|
218 | else: |
---|
219 | raise 'Not implemented: %s' %location |
---|
220 | |
---|
221 | |
---|
222 | def set_array_values(self, values, location='vertices', indexes = None): |
---|
223 | """Set values for quantity |
---|
224 | |
---|
225 | values: Numeric array |
---|
226 | location: Where values are to be stored. |
---|
227 | Permissible options are: vertices, edges, centroid |
---|
228 | Default is "vertices" |
---|
229 | |
---|
230 | indexes - if this action is carried out on a subset of elements |
---|
231 | The element indexes are specified here. |
---|
232 | |
---|
233 | In case of location == 'centroid' the dimension values must |
---|
234 | be a list of a Numerical array of length N, N being the number |
---|
235 | of elements. |
---|
236 | |
---|
237 | Otherwise it must be of dimension Nx3 |
---|
238 | |
---|
239 | The values will be stored in elements following their |
---|
240 | internal ordering. |
---|
241 | |
---|
242 | If selected location is vertices, values for centroid and edges |
---|
243 | will be assigned interpolated values. |
---|
244 | In any other case, only values for the specified locations |
---|
245 | will be assigned and the others will be left undefined. |
---|
246 | """ |
---|
247 | |
---|
248 | from Numeric import array, Float, Int |
---|
249 | |
---|
250 | values = array(values).astype(Float) |
---|
251 | |
---|
252 | if (indexes <> None): |
---|
253 | indexes = array(indexes).astype(Int) |
---|
254 | msg = 'Number of values must match number of indexes' |
---|
255 | assert values.shape[0] == indexes.shape[0], msg |
---|
256 | |
---|
257 | N = self.centroid_values.shape[0] |
---|
258 | |
---|
259 | if location == 'centroids': |
---|
260 | assert len(values.shape) == 1, 'Values array must be 1d' |
---|
261 | |
---|
262 | if indexes == None: |
---|
263 | msg = 'Number of values must match number of elements' |
---|
264 | assert values.shape[0] == N, msg |
---|
265 | |
---|
266 | self.centroid_values = values |
---|
267 | else: |
---|
268 | msg = 'Number of values must match number of indexes' |
---|
269 | assert values.shape[0] == indexes.shape[0], msg |
---|
270 | |
---|
271 | #Brute force |
---|
272 | for i in range(len(indexes)): |
---|
273 | self.centroid_values[indexes[i]] = values[i] |
---|
274 | |
---|
275 | elif location == 'edges': |
---|
276 | assert len(values.shape) == 2, 'Values array must be 2d' |
---|
277 | |
---|
278 | msg = 'Number of values must match number of elements' |
---|
279 | assert values.shape[0] == N, msg |
---|
280 | |
---|
281 | msg = 'Array must be N x 3' |
---|
282 | assert values.shape[1] == 3, msg |
---|
283 | |
---|
284 | self.edge_values = values |
---|
285 | else: |
---|
286 | if len(values.shape) == 1: |
---|
287 | |
---|
288 | if indexes == None: |
---|
289 | #Values are being specified once for each unique vertex |
---|
290 | msg = 'Number of values must match number of vertices' |
---|
291 | assert values.shape[0] == self.domain.coordinates.shape[0], msg |
---|
292 | self.set_vertex_values(values) |
---|
293 | else: |
---|
294 | for element_index, value in map(None, indexes, values): |
---|
295 | self.vertex_values[element_index, :] = value |
---|
296 | |
---|
297 | elif len(values.shape) == 2: |
---|
298 | #Vertex values are given as a triplet for each triangle |
---|
299 | |
---|
300 | msg = 'Array must be N x 3' |
---|
301 | assert values.shape[1] == 3, msg |
---|
302 | |
---|
303 | if indexes == None: |
---|
304 | self.vertex_values = values |
---|
305 | else: |
---|
306 | for element_index, value in map(None, indexes, values): |
---|
307 | self.vertex_values[element_index] = value |
---|
308 | else: |
---|
309 | msg = 'Values array must be 1d or 2d' |
---|
310 | raise msg |
---|
311 | |
---|
312 | |
---|
313 | # FIXME have a get_vertex_values as well, so the 'level' quantity can be |
---|
314 | # set, based on the elevation |
---|
315 | def set_vertex_values(self, A): |
---|
316 | """Set vertex values for all triangles based on input array A |
---|
317 | which is assumed to have one entry per (unique) vertex, i.e. |
---|
318 | one value for each row in array self.domain.coordinates. |
---|
319 | """ |
---|
320 | |
---|
321 | from Numeric import array, Float |
---|
322 | |
---|
323 | #Assert that A can be converted to a Numeric array of appropriate dim |
---|
324 | A = array(A, Float) |
---|
325 | |
---|
326 | assert len(A.shape) == 1 |
---|
327 | assert A.shape[0] == self.domain.coordinates.shape[0] |
---|
328 | |
---|
329 | N = A.shape[0] |
---|
330 | |
---|
331 | #Go through list of unique vertices |
---|
332 | for k in range(N): |
---|
333 | L = self.domain.vertexlist[k] |
---|
334 | |
---|
335 | if L is None: continue #In case there are unused points |
---|
336 | |
---|
337 | #Go through all triangle, vertex pairs |
---|
338 | #touching vertex k and set corresponding vertex value |
---|
339 | for triangle_id, vertex_id in L: |
---|
340 | self.vertex_values[triangle_id, vertex_id] = A[k] |
---|
341 | |
---|
342 | #Intialise centroid and edge_values |
---|
343 | self.interpolate() |
---|
344 | |
---|
345 | |
---|
346 | def smooth_vertex_values(self, value_array='field_values', |
---|
347 | precision = None): |
---|
348 | """ Smooths field_values or conserved_quantities data. |
---|
349 | TODO: be able to smooth individual fields |
---|
350 | NOTE: This function does not have a test. |
---|
351 | FIXME: NOT DONE - do we need it? |
---|
352 | FIXME: this function isn't called by anything. |
---|
353 | Maybe it should be removed..-DSG |
---|
354 | """ |
---|
355 | |
---|
356 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
357 | |
---|
358 | |
---|
359 | A,V = self.get_vertex_values(xy=False, |
---|
360 | value_array=value_array, |
---|
361 | smooth = True, |
---|
362 | precision = precision) |
---|
363 | |
---|
364 | #Set some field values |
---|
365 | for volume in self: |
---|
366 | for i,v in enumerate(volume.vertices): |
---|
367 | if value_array == 'field_values': |
---|
368 | volume.set_field_values('vertex', i, A[v,:]) |
---|
369 | elif value_array == 'conserved_quantities': |
---|
370 | volume.set_conserved_quantities('vertex', i, A[v,:]) |
---|
371 | |
---|
372 | if value_array == 'field_values': |
---|
373 | self.precompute() |
---|
374 | elif value_array == 'conserved_quantities': |
---|
375 | Volume.interpolate_conserved_quantities() |
---|
376 | |
---|
377 | |
---|
378 | #Method for outputting model results |
---|
379 | #FIXME: Split up into geometric and numeric stuff. |
---|
380 | #FIXME: Geometric (X,Y,V) should live in mesh.py |
---|
381 | #FIXME: STill remember to move XY to mesh |
---|
382 | def get_vertex_values(self, |
---|
383 | xy=True, |
---|
384 | smooth = None, |
---|
385 | precision = None, |
---|
386 | reduction = None): |
---|
387 | """Return vertex values like an OBJ format |
---|
388 | |
---|
389 | The vertex values are returned as one sequence in the 1D float array A. |
---|
390 | If requested the coordinates will be returned in 1D arrays X and Y. |
---|
391 | |
---|
392 | The connectivity is represented as an integer array, V, of dimension |
---|
393 | M x 3, where M is the number of volumes. Each row has three indices |
---|
394 | into the X, Y, A arrays defining the triangle. |
---|
395 | |
---|
396 | if smooth is True, vertex values corresponding to one common |
---|
397 | coordinate set will be smoothed according to the given |
---|
398 | reduction operator. In this case vertex coordinates will be |
---|
399 | de-duplicated. |
---|
400 | |
---|
401 | If no smoothings is required, vertex coordinates and values will |
---|
402 | be aggregated as a concatenation of values at |
---|
403 | vertices 0, vertices 1 and vertices 2 |
---|
404 | |
---|
405 | |
---|
406 | Calling convention |
---|
407 | if xy is True: |
---|
408 | X,Y,A,V = get_vertex_values |
---|
409 | else: |
---|
410 | A,V = get_vertex_values |
---|
411 | |
---|
412 | """ |
---|
413 | |
---|
414 | from Numeric import concatenate, zeros, Float, Int, array, reshape |
---|
415 | |
---|
416 | |
---|
417 | if smooth is None: |
---|
418 | smooth = self.domain.smooth |
---|
419 | |
---|
420 | if precision is None: |
---|
421 | precision = Float |
---|
422 | |
---|
423 | if reduction is None: |
---|
424 | reduction = self.domain.reduction |
---|
425 | |
---|
426 | #Create connectivity |
---|
427 | |
---|
428 | if smooth == True: |
---|
429 | |
---|
430 | V = self.domain.get_vertices() |
---|
431 | N = len(self.domain.vertexlist) |
---|
432 | A = zeros(N, precision) |
---|
433 | |
---|
434 | #Smoothing loop |
---|
435 | for k in range(N): |
---|
436 | L = self.domain.vertexlist[k] |
---|
437 | |
---|
438 | #Go through all triangle, vertex pairs |
---|
439 | #contributing to vertex k and register vertex value |
---|
440 | |
---|
441 | if L is None: continue #In case there are unused points |
---|
442 | |
---|
443 | contributions = [] |
---|
444 | for volume_id, vertex_id in L: |
---|
445 | v = self.vertex_values[volume_id, vertex_id] |
---|
446 | contributions.append(v) |
---|
447 | |
---|
448 | A[k] = reduction(contributions) |
---|
449 | |
---|
450 | |
---|
451 | if xy is True: |
---|
452 | X = self.domain.coordinates[:,0].astype(precision) |
---|
453 | Y = self.domain.coordinates[:,1].astype(precision) |
---|
454 | |
---|
455 | return X, Y, A, V |
---|
456 | else: |
---|
457 | return A, V |
---|
458 | else: |
---|
459 | #Don't smooth |
---|
460 | |
---|
461 | # Create a V like [[0 1 2], [3 4 5]....[3*m-2 3*m-1 3*m]] |
---|
462 | # These vert_id's will relate to the verts created bellow |
---|
463 | m = len(self.domain) #Number of volumes |
---|
464 | M = 3*m #Total number of unique vertices |
---|
465 | V = reshape(array(range(M)).astype(Int), (m,3)) |
---|
466 | |
---|
467 | A = self.vertex_values.flat |
---|
468 | |
---|
469 | #Do vertex coordinates |
---|
470 | if xy is True: |
---|
471 | C = self.domain.get_vertex_coordinates() |
---|
472 | |
---|
473 | X = C[:,0:6:2].copy() |
---|
474 | Y = C[:,1:6:2].copy() |
---|
475 | |
---|
476 | return X.flat, Y.flat, A, V |
---|
477 | else: |
---|
478 | return A, V |
---|
479 | |
---|
480 | |
---|
481 | |
---|
482 | |
---|
483 | |
---|
484 | class Conserved_quantity(Quantity): |
---|
485 | """Class conserved quantity adds to Quantity: |
---|
486 | |
---|
487 | boundary values, storage and method for updating, and |
---|
488 | methods for extrapolation from centropid to vertices inluding |
---|
489 | gradients and limiters |
---|
490 | """ |
---|
491 | |
---|
492 | def __init__(self, domain, vertex_values=None): |
---|
493 | Quantity.__init__(self, domain, vertex_values) |
---|
494 | |
---|
495 | from Numeric import zeros, Float |
---|
496 | |
---|
497 | #Allocate space for boundary values |
---|
498 | L = len(domain.boundary) |
---|
499 | self.boundary_values = zeros(L, Float) |
---|
500 | |
---|
501 | #Allocate space for updates of conserved quantities by |
---|
502 | #flux calculations and forcing functions |
---|
503 | |
---|
504 | N = domain.number_of_elements |
---|
505 | self.explicit_update = zeros(N, Float ) |
---|
506 | self.semi_implicit_update = zeros(N, Float ) |
---|
507 | |
---|
508 | |
---|
509 | def update(self, timestep): |
---|
510 | #Call correct module function |
---|
511 | #(either from this module or C-extension) |
---|
512 | return update(self, timestep) |
---|
513 | |
---|
514 | |
---|
515 | def compute_gradients(self): |
---|
516 | #Call correct module function |
---|
517 | #(either from this module or C-extension) |
---|
518 | return compute_gradients(self) |
---|
519 | |
---|
520 | |
---|
521 | def limit(self): |
---|
522 | #Call correct module function |
---|
523 | #(either from this module or C-extension) |
---|
524 | limit(self) |
---|
525 | |
---|
526 | |
---|
527 | def extrapolate_first_order(self): |
---|
528 | """Extrapolate conserved quantities from centroid to |
---|
529 | vertices for each volume using |
---|
530 | first order scheme. |
---|
531 | """ |
---|
532 | |
---|
533 | qc = self.centroid_values |
---|
534 | qv = self.vertex_values |
---|
535 | |
---|
536 | for i in range(3): |
---|
537 | qv[:,i] = qc |
---|
538 | |
---|
539 | |
---|
540 | def extrapolate_second_order(self): |
---|
541 | #Call correct module function |
---|
542 | #(either from this module or C-extension) |
---|
543 | extrapolate_second_order(self) |
---|
544 | |
---|
545 | |
---|
546 | def update(quantity, timestep): |
---|
547 | """Update centroid values based on values stored in |
---|
548 | explicit_update and semi_implicit_update as well as given timestep |
---|
549 | |
---|
550 | Function implementing forcing terms must take on argument |
---|
551 | which is the domain and they must update either explicit |
---|
552 | or implicit updates, e,g,: |
---|
553 | |
---|
554 | def gravity(domain): |
---|
555 | .... |
---|
556 | domain.quantities['xmomentum'].explicit_update = ... |
---|
557 | domain.quantities['ymomentum'].explicit_update = ... |
---|
558 | |
---|
559 | |
---|
560 | |
---|
561 | Explicit terms must have the form |
---|
562 | |
---|
563 | G(q, t) |
---|
564 | |
---|
565 | and explicit scheme is |
---|
566 | |
---|
567 | q^{(n+1}) = q^{(n)} + delta_t G(q^{n}, n delta_t) |
---|
568 | |
---|
569 | |
---|
570 | Semi implicit forcing terms are assumed to have the form |
---|
571 | |
---|
572 | G(q, t) = H(q, t) q |
---|
573 | |
---|
574 | and the semi implicit scheme will then be |
---|
575 | |
---|
576 | q^{(n+1}) = q^{(n)} + delta_t H(q^{n}, n delta_t) q^{(n+1}) |
---|
577 | |
---|
578 | |
---|
579 | """ |
---|
580 | |
---|
581 | from Numeric import sum, equal, ones, Float |
---|
582 | |
---|
583 | N = quantity.centroid_values.shape[0] |
---|
584 | |
---|
585 | |
---|
586 | #Divide H by conserved quantity to obtain G (see docstring above) |
---|
587 | |
---|
588 | |
---|
589 | for k in range(N): |
---|
590 | x = quantity.centroid_values[k] |
---|
591 | if x == 0.0: |
---|
592 | #FIXME: Is this right |
---|
593 | quantity.semi_implicit_update[k] = 0.0 |
---|
594 | else: |
---|
595 | quantity.semi_implicit_update[k] /= x |
---|
596 | |
---|
597 | #Explicit updates |
---|
598 | quantity.centroid_values += timestep*quantity.explicit_update |
---|
599 | |
---|
600 | #Semi implicit updates |
---|
601 | denominator = ones(N, Float)-timestep*quantity.semi_implicit_update |
---|
602 | |
---|
603 | if sum(equal(denominator, 0.0)) > 0.0: |
---|
604 | msg = 'Zero division in semi implicit update. Call Stephen :-)' |
---|
605 | raise msg |
---|
606 | else: |
---|
607 | #Update conserved_quantities from semi implicit updates |
---|
608 | quantity.centroid_values /= denominator |
---|
609 | |
---|
610 | |
---|
611 | def interpolate_from_vertices_to_edges(quantity): |
---|
612 | """Compute edge values from vertex values using linear interpolation |
---|
613 | """ |
---|
614 | |
---|
615 | for k in range(quantity.vertex_values.shape[0]): |
---|
616 | q0 = quantity.vertex_values[k, 0] |
---|
617 | q1 = quantity.vertex_values[k, 1] |
---|
618 | q2 = quantity.vertex_values[k, 2] |
---|
619 | |
---|
620 | quantity.edge_values[k, 0] = 0.5*(q1+q2) |
---|
621 | quantity.edge_values[k, 1] = 0.5*(q0+q2) |
---|
622 | quantity.edge_values[k, 2] = 0.5*(q0+q1) |
---|
623 | |
---|
624 | |
---|
625 | |
---|
626 | def extrapolate_second_order(quantity): |
---|
627 | """Extrapolate conserved quantities from centroid to |
---|
628 | vertices for each volume using |
---|
629 | second order scheme. |
---|
630 | """ |
---|
631 | |
---|
632 | a, b = quantity.compute_gradients() |
---|
633 | |
---|
634 | X = quantity.domain.get_vertex_coordinates() |
---|
635 | qc = quantity.centroid_values |
---|
636 | qv = quantity.vertex_values |
---|
637 | |
---|
638 | #Check each triangle |
---|
639 | for k in range(quantity.domain.number_of_elements): |
---|
640 | #Centroid coordinates |
---|
641 | x, y = quantity.domain.centroid_coordinates[k] |
---|
642 | |
---|
643 | #vertex coordinates |
---|
644 | x0, y0, x1, y1, x2, y2 = X[k,:] |
---|
645 | |
---|
646 | #Extrapolate |
---|
647 | qv[k,0] = qc[k] + a[k]*(x0-x) + b[k]*(y0-y) |
---|
648 | qv[k,1] = qc[k] + a[k]*(x1-x) + b[k]*(y1-y) |
---|
649 | qv[k,2] = qc[k] + a[k]*(x2-x) + b[k]*(y2-y) |
---|
650 | |
---|
651 | |
---|
652 | def compute_gradients(quantity): |
---|
653 | """Compute gradients of triangle surfaces defined by centroids of |
---|
654 | neighbouring volumes. |
---|
655 | If one edge is on the boundary, use own centroid as neighbour centroid. |
---|
656 | If two or more are on the boundary, fall back to first order scheme. |
---|
657 | """ |
---|
658 | |
---|
659 | from Numeric import zeros, Float |
---|
660 | from util import gradient |
---|
661 | |
---|
662 | centroid_coordinates = quantity.domain.centroid_coordinates |
---|
663 | surrogate_neighbours = quantity.domain.surrogate_neighbours |
---|
664 | centroid_values = quantity.centroid_values |
---|
665 | number_of_boundaries = quantity.domain.number_of_boundaries |
---|
666 | |
---|
667 | N = centroid_values.shape[0] |
---|
668 | |
---|
669 | a = zeros(N, Float) |
---|
670 | b = zeros(N, Float) |
---|
671 | |
---|
672 | for k in range(N): |
---|
673 | if number_of_boundaries[k] < 2: |
---|
674 | #Two or three true neighbours |
---|
675 | |
---|
676 | #Get indices of neighbours (or self when used as surrogate) |
---|
677 | k0, k1, k2 = surrogate_neighbours[k,:] |
---|
678 | |
---|
679 | #Get data |
---|
680 | q0 = centroid_values[k0] |
---|
681 | q1 = centroid_values[k1] |
---|
682 | q2 = centroid_values[k2] |
---|
683 | |
---|
684 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
685 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
686 | x2, y2 = centroid_coordinates[k2] #V2 centroid |
---|
687 | |
---|
688 | #Gradient |
---|
689 | a[k], b[k] = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
690 | |
---|
691 | elif number_of_boundaries[k] == 2: |
---|
692 | #One true neighbour |
---|
693 | |
---|
694 | #Get index of the one neighbour |
---|
695 | for k0 in surrogate_neighbours[k,:]: |
---|
696 | if k0 != k: break |
---|
697 | assert k0 != k |
---|
698 | |
---|
699 | k1 = k #self |
---|
700 | |
---|
701 | #Get data |
---|
702 | q0 = centroid_values[k0] |
---|
703 | q1 = centroid_values[k1] |
---|
704 | |
---|
705 | x0, y0 = centroid_coordinates[k0] #V0 centroid |
---|
706 | x1, y1 = centroid_coordinates[k1] #V1 centroid |
---|
707 | |
---|
708 | #Gradient |
---|
709 | det = x0*y1 - x1*y0 |
---|
710 | if det != 0.0: |
---|
711 | a[k] = (y1*q0 - y0*q1)/det |
---|
712 | b[k] = (x0*q1 - x1*q0)/det |
---|
713 | |
---|
714 | else: |
---|
715 | #No true neighbours - |
---|
716 | #Fall back to first order scheme |
---|
717 | pass |
---|
718 | |
---|
719 | |
---|
720 | return a, b |
---|
721 | |
---|
722 | |
---|
723 | |
---|
724 | def limit(quantity): |
---|
725 | """Limit slopes for each volume to eliminate artificial variance |
---|
726 | introduced by e.g. second order extrapolator |
---|
727 | |
---|
728 | This is an unsophisticated limiter as it does not take into |
---|
729 | account dependencies among quantities. |
---|
730 | |
---|
731 | precondition: |
---|
732 | vertex values are estimated from gradient |
---|
733 | postcondition: |
---|
734 | vertex values are updated |
---|
735 | """ |
---|
736 | |
---|
737 | from Numeric import zeros, Float |
---|
738 | |
---|
739 | N = quantity.domain.number_of_elements |
---|
740 | |
---|
741 | beta = quantity.domain.beta |
---|
742 | |
---|
743 | qc = quantity.centroid_values |
---|
744 | qv = quantity.vertex_values |
---|
745 | |
---|
746 | #Find min and max of this and neighbour's centroid values |
---|
747 | qmax = zeros(qc.shape, Float) |
---|
748 | qmin = zeros(qc.shape, Float) |
---|
749 | |
---|
750 | for k in range(N): |
---|
751 | qmax[k] = qmin[k] = qc[k] |
---|
752 | for i in range(3): |
---|
753 | n = quantity.domain.neighbours[k,i] |
---|
754 | if n >= 0: |
---|
755 | qn = qc[n] #Neighbour's centroid value |
---|
756 | |
---|
757 | qmin[k] = min(qmin[k], qn) |
---|
758 | qmax[k] = max(qmax[k], qn) |
---|
759 | |
---|
760 | |
---|
761 | #Diffences between centroids and maxima/minima |
---|
762 | dqmax = qmax - qc |
---|
763 | dqmin = qmin - qc |
---|
764 | |
---|
765 | #Deltas between vertex and centroid values |
---|
766 | dq = zeros(qv.shape, Float) |
---|
767 | for i in range(3): |
---|
768 | dq[:,i] = qv[:,i] - qc |
---|
769 | |
---|
770 | #Phi limiter |
---|
771 | for k in range(N): |
---|
772 | |
---|
773 | #Find the gradient limiter (phi) across vertices |
---|
774 | phi = 1.0 |
---|
775 | for i in range(3): |
---|
776 | r = 1.0 |
---|
777 | if (dq[k,i] > 0): r = dqmax[k]/dq[k,i] |
---|
778 | if (dq[k,i] < 0): r = dqmin[k]/dq[k,i] |
---|
779 | |
---|
780 | phi = min( min(r*beta, 1), phi ) |
---|
781 | |
---|
782 | #Then update using phi limiter |
---|
783 | for i in range(3): |
---|
784 | qv[k,i] = qc[k] + phi*dq[k,i] |
---|
785 | |
---|
786 | |
---|
787 | |
---|
788 | import compile |
---|
789 | if compile.can_use_C_extension('quantity_ext.c'): |
---|
790 | #Replace python version with c implementations |
---|
791 | |
---|
792 | from quantity_ext import limit, compute_gradients,\ |
---|
793 | extrapolate_second_order, interpolate_from_vertices_to_edges, update |
---|
794 | |
---|