1 | """Class Domain - |
---|
2 | 2D triangular domains for finite-volume computations of |
---|
3 | the shallow water wave equation. |
---|
4 | |
---|
5 | This module contains a specialisation of class Domain from module domain.py |
---|
6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
7 | |
---|
8 | |
---|
9 | U_t + E_x + G_y = S |
---|
10 | |
---|
11 | where |
---|
12 | |
---|
13 | U = [w, uh, vh] |
---|
14 | E = [uh, u^2h + gh^2/2, uvh] |
---|
15 | G = [vh, uvh, v^2h + gh^2/2] |
---|
16 | S represents source terms forcing the system |
---|
17 | (e.g. gravity, friction, wind stress, ...) |
---|
18 | |
---|
19 | and _t, _x, _y denote the derivative with respect to t, x and y respectively. |
---|
20 | |
---|
21 | The quantities are |
---|
22 | |
---|
23 | symbol variable name explanation |
---|
24 | x x horizontal distance from origin [m] |
---|
25 | y y vertical distance from origin [m] |
---|
26 | z elevation elevation of bed on which flow is modelled [m] |
---|
27 | h height water height above z [m] |
---|
28 | w stage absolute water level, w = z+h [m] |
---|
29 | u speed in the x direction [m/s] |
---|
30 | v speed in the y direction [m/s] |
---|
31 | uh xmomentum momentum in the x direction [m^2/s] |
---|
32 | vh ymomentum momentum in the y direction [m^2/s] |
---|
33 | |
---|
34 | eta mannings friction coefficient [to appear] |
---|
35 | nu wind stress coefficient [to appear] |
---|
36 | |
---|
37 | The conserved quantities are w, uh, vh |
---|
38 | |
---|
39 | |
---|
40 | For details see e.g. |
---|
41 | Christopher Zoppou and Stephen Roberts, |
---|
42 | Catastrophic Collapse of Water Supply Reservoirs in Urban Areas, |
---|
43 | Journal of Hydraulic Engineering, vol. 127, No. 7 July 1999 |
---|
44 | |
---|
45 | |
---|
46 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
47 | Geoscience Australia, 2004 |
---|
48 | """ |
---|
49 | |
---|
50 | #Subversion keywords: |
---|
51 | # |
---|
52 | #$LastChangedDate: 2005-06-09 04:49:17 +0000 (Thu, 09 Jun 2005) $ |
---|
53 | #$LastChangedRevision: 1507 $ |
---|
54 | #$LastChangedBy: matthew $ |
---|
55 | |
---|
56 | |
---|
57 | from domain import * |
---|
58 | from region import *# |
---|
59 | |
---|
60 | Generic_domain = Domain #Rename |
---|
61 | |
---|
62 | #Shalow water domain |
---|
63 | class Domain(Generic_domain): |
---|
64 | |
---|
65 | def __init__(self, coordinates, vertices, boundary = None, |
---|
66 | tagged_elements = None, geo_reference = None, |
---|
67 | use_inscribed_circle=False): |
---|
68 | |
---|
69 | conserved_quantities = ['stage', 'xmomentum', 'ymomentum'] |
---|
70 | other_quantities = ['elevation', 'friction'] |
---|
71 | Generic_domain.__init__(self, coordinates, vertices, boundary, |
---|
72 | conserved_quantities, other_quantities, |
---|
73 | tagged_elements, geo_reference, use_inscribed_circle) |
---|
74 | |
---|
75 | from config import minimum_allowed_height, g |
---|
76 | self.minimum_allowed_height = minimum_allowed_height |
---|
77 | self.g = g |
---|
78 | |
---|
79 | self.forcing_terms.append(gravity) |
---|
80 | self.forcing_terms.append(manning_friction) |
---|
81 | |
---|
82 | #Realtime visualisation |
---|
83 | self.visualiser = None |
---|
84 | self.visualise = False |
---|
85 | self.visualise_color_stage = False |
---|
86 | self.visualise_stage_range = 1.0 |
---|
87 | self.visualise_timer = True |
---|
88 | self.visualise_range_z = None |
---|
89 | |
---|
90 | #Stored output |
---|
91 | self.store = False |
---|
92 | self.format = 'sww' |
---|
93 | self.smooth = True |
---|
94 | |
---|
95 | #Reduction operation for get_vertex_values |
---|
96 | #from util import mean |
---|
97 | #self.reduction = mean |
---|
98 | self.reduction = min #Looks better near steep slopes |
---|
99 | |
---|
100 | self.quantities_to_be_stored = ['stage'] |
---|
101 | |
---|
102 | |
---|
103 | #Establish shortcuts to relevant quantities (for efficiency) |
---|
104 | #self.w = self.quantities['stage'] |
---|
105 | #self.uh = self.quantities['xmomentum'] |
---|
106 | #self.vh = self.quantities['ymomentum'] |
---|
107 | #self.z = self.quantities['elevation'] |
---|
108 | #self.eta = self.quantities['friction'] |
---|
109 | |
---|
110 | def initialise_visualiser(self,scale_z=1.0): |
---|
111 | #Realtime visualisation |
---|
112 | if self.visualiser is None: |
---|
113 | from realtime_visualisation_new import Visualiser |
---|
114 | self.visualiser = Visualiser(self,scale_z) |
---|
115 | self.visualise = True |
---|
116 | |
---|
117 | def check_integrity(self): |
---|
118 | Generic_domain.check_integrity(self) |
---|
119 | |
---|
120 | #Check that we are solving the shallow water wave equation |
---|
121 | |
---|
122 | msg = 'First conserved quantity must be "stage"' |
---|
123 | assert self.conserved_quantities[0] == 'stage', msg |
---|
124 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
125 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
126 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
127 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
128 | |
---|
129 | def extrapolate_second_order_sw(self): |
---|
130 | #Call correct module function |
---|
131 | #(either from this module or C-extension) |
---|
132 | extrapolate_second_order_sw(self) |
---|
133 | |
---|
134 | def compute_fluxes(self): |
---|
135 | #Call correct module function |
---|
136 | #(either from this module or C-extension) |
---|
137 | compute_fluxes(self) |
---|
138 | |
---|
139 | def distribute_to_vertices_and_edges(self): |
---|
140 | #Call correct module function |
---|
141 | #(either from this module or C-extension) |
---|
142 | distribute_to_vertices_and_edges(self) |
---|
143 | |
---|
144 | |
---|
145 | #FIXME: Under construction |
---|
146 | # def set_defaults(self): |
---|
147 | # """Set default values for uninitialised quantities. |
---|
148 | # This is specific to the shallow water wave equation |
---|
149 | # Defaults for 'elevation', 'friction', 'xmomentum' and 'ymomentum' |
---|
150 | # are 0.0. Default for 'stage' is whatever the value of 'elevation'. |
---|
151 | # """ |
---|
152 | |
---|
153 | # for name in self.other_quantities + self.conserved_quantities: |
---|
154 | # print name |
---|
155 | # print self.quantities.keys() |
---|
156 | # if not self.quantities.has_key(name): |
---|
157 | # if name == 'stage': |
---|
158 | |
---|
159 | # if self.quantities.has_key('elevation'): |
---|
160 | # z = self.quantities['elevation'].vertex_values |
---|
161 | # self.set_quantity(name, z) |
---|
162 | # else: |
---|
163 | # self.set_quantity(name, 0.0) |
---|
164 | # else: |
---|
165 | # self.set_quantity(name, 0.0) |
---|
166 | |
---|
167 | |
---|
168 | |
---|
169 | # #Lift negative heights up |
---|
170 | # #z = self.quantities['elevation'].vertex_values |
---|
171 | # #w = self.quantities['stage'].vertex_values |
---|
172 | |
---|
173 | # #h = w-z |
---|
174 | |
---|
175 | # #for k in range(h.shape[0]): |
---|
176 | # # for i in range(3): |
---|
177 | # # if h[k, i] < 0.0: |
---|
178 | # # w[k, i] = z[k, i] |
---|
179 | |
---|
180 | |
---|
181 | # #self.quantities['stage'].interpolate() |
---|
182 | |
---|
183 | |
---|
184 | |
---|
185 | def evolve(self, yieldstep = None, finaltime = None): |
---|
186 | """Specialisation of basic evolve method from parent class |
---|
187 | """ |
---|
188 | |
---|
189 | #Call check integrity here rather than from user scripts |
---|
190 | #self.check_integrity() |
---|
191 | |
---|
192 | msg = 'Parameter beta_h must be in the interval [0, 1[' |
---|
193 | assert 0 <= self.beta_h < 1.0, msg |
---|
194 | msg = 'Parameter beta_w must be in the interval [0, 1[' |
---|
195 | assert 0 <= self.beta_w < 1.0, msg |
---|
196 | |
---|
197 | |
---|
198 | #Initial update of vertex and edge values before any storage |
---|
199 | #and or visualisation |
---|
200 | self.distribute_to_vertices_and_edges() |
---|
201 | |
---|
202 | |
---|
203 | #Initialise real time viz if requested |
---|
204 | if self.visualise is True and self.time == 0.0: |
---|
205 | import realtime_visualisation_new as visualise |
---|
206 | #import realtime_visualisation as visualise |
---|
207 | visualise.create_surface(self) |
---|
208 | |
---|
209 | #Store model data, e.g. for visualisation |
---|
210 | if self.store is True and self.time == 0.0: |
---|
211 | self.initialise_storage() |
---|
212 | #print 'Storing results in ' + self.writer.filename |
---|
213 | else: |
---|
214 | #print 'Results will not be stored.' |
---|
215 | #print 'To store results set domain.store = True' |
---|
216 | pass |
---|
217 | #FIXME: Diagnostic output should be controlled by |
---|
218 | # a 'verbose' flag living in domain (or in a parent class) |
---|
219 | |
---|
220 | #Call basic machinery from parent class |
---|
221 | for t in Generic_domain.evolve(self, yieldstep, finaltime): |
---|
222 | #Real time viz |
---|
223 | if self.visualise is True: |
---|
224 | visualise.update(self) |
---|
225 | |
---|
226 | #Store model data, e.g. for subsequent visualisation |
---|
227 | if self.store is True: |
---|
228 | self.store_timestep(self.quantities_to_be_stored) |
---|
229 | |
---|
230 | #FIXME: Could maybe be taken from specified list |
---|
231 | #of 'store every step' quantities |
---|
232 | |
---|
233 | #Pass control on to outer loop for more specific actions |
---|
234 | yield(t) |
---|
235 | |
---|
236 | |
---|
237 | def initialise_storage(self): |
---|
238 | """Create and initialise self.writer object for storing data. |
---|
239 | Also, save x,y and bed elevation |
---|
240 | """ |
---|
241 | |
---|
242 | import data_manager |
---|
243 | |
---|
244 | #Initialise writer |
---|
245 | self.writer = data_manager.get_dataobject(self, mode = 'w') |
---|
246 | |
---|
247 | #Store vertices and connectivity |
---|
248 | self.writer.store_connectivity() |
---|
249 | |
---|
250 | |
---|
251 | def store_timestep(self, name): |
---|
252 | """Store named quantity and time. |
---|
253 | |
---|
254 | Precondition: |
---|
255 | self.write has been initialised |
---|
256 | """ |
---|
257 | self.writer.store_timestep(name) |
---|
258 | |
---|
259 | ####################MH 090605 new extrapolation function belonging to domain class |
---|
260 | def extrapolate_second_order_sw(domain): |
---|
261 | """extrapolate conserved quntities to the vertices of the triangles |
---|
262 | Python version to be written after the C version |
---|
263 | """ |
---|
264 | msg = 'Method extrapolate_second_order_sw should be implemented in C' |
---|
265 | raise msg |
---|
266 | ####################MH 090605 ########################################### |
---|
267 | |
---|
268 | #Rotation of momentum vector |
---|
269 | def rotate(q, normal, direction = 1): |
---|
270 | """Rotate the momentum component q (q[1], q[2]) |
---|
271 | from x,y coordinates to coordinates based on normal vector. |
---|
272 | |
---|
273 | If direction is negative the rotation is inverted. |
---|
274 | |
---|
275 | Input vector is preserved |
---|
276 | |
---|
277 | This function is specific to the shallow water wave equation |
---|
278 | """ |
---|
279 | |
---|
280 | from Numeric import zeros, Float |
---|
281 | |
---|
282 | assert len(q) == 3,\ |
---|
283 | 'Vector of conserved quantities must have length 3'\ |
---|
284 | 'for 2D shallow water equation' |
---|
285 | |
---|
286 | try: |
---|
287 | l = len(normal) |
---|
288 | except: |
---|
289 | raise 'Normal vector must be an Numeric array' |
---|
290 | |
---|
291 | assert l == 2, 'Normal vector must have 2 components' |
---|
292 | |
---|
293 | |
---|
294 | n1 = normal[0] |
---|
295 | n2 = normal[1] |
---|
296 | |
---|
297 | r = zeros(len(q), Float) #Rotated quantities |
---|
298 | r[0] = q[0] #First quantity, height, is not rotated |
---|
299 | |
---|
300 | if direction == -1: |
---|
301 | n2 = -n2 |
---|
302 | |
---|
303 | |
---|
304 | r[1] = n1*q[1] + n2*q[2] |
---|
305 | r[2] = -n2*q[1] + n1*q[2] |
---|
306 | |
---|
307 | return r |
---|
308 | |
---|
309 | |
---|
310 | |
---|
311 | #################################### |
---|
312 | # Flux computation |
---|
313 | def flux_function(normal, ql, qr, zl, zr): |
---|
314 | """Compute fluxes between volumes for the shallow water wave equation |
---|
315 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
316 | |
---|
317 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
318 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
319 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
320 | |
---|
321 | The implemented formula is given in equation (3.15) on page 714 |
---|
322 | |
---|
323 | Conserved quantities w, uh, vh are stored as elements 0, 1 and 2 |
---|
324 | in the numerical vectors ql an qr. |
---|
325 | |
---|
326 | Bed elevations zl and zr. |
---|
327 | """ |
---|
328 | |
---|
329 | from config import g, epsilon |
---|
330 | from math import sqrt |
---|
331 | from Numeric import array |
---|
332 | |
---|
333 | #Align momentums with x-axis |
---|
334 | q_left = rotate(ql, normal, direction = 1) |
---|
335 | q_right = rotate(qr, normal, direction = 1) |
---|
336 | |
---|
337 | z = (zl+zr)/2 #Take average of field values |
---|
338 | |
---|
339 | w_left = q_left[0] #w=h+z |
---|
340 | h_left = w_left-z |
---|
341 | uh_left = q_left[1] |
---|
342 | |
---|
343 | if h_left < epsilon: |
---|
344 | u_left = 0.0 #Could have been negative |
---|
345 | h_left = 0.0 |
---|
346 | else: |
---|
347 | u_left = uh_left/h_left |
---|
348 | |
---|
349 | |
---|
350 | w_right = q_right[0] #w=h+z |
---|
351 | h_right = w_right-z |
---|
352 | uh_right = q_right[1] |
---|
353 | |
---|
354 | |
---|
355 | if h_right < epsilon: |
---|
356 | u_right = 0.0 #Could have been negative |
---|
357 | h_right = 0.0 |
---|
358 | else: |
---|
359 | u_right = uh_right/h_right |
---|
360 | |
---|
361 | vh_left = q_left[2] |
---|
362 | vh_right = q_right[2] |
---|
363 | |
---|
364 | soundspeed_left = sqrt(g*h_left) |
---|
365 | soundspeed_right = sqrt(g*h_right) |
---|
366 | |
---|
367 | #Maximal wave speed |
---|
368 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
369 | |
---|
370 | #Minimal wave speed |
---|
371 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
372 | |
---|
373 | #Flux computation |
---|
374 | |
---|
375 | #FIXME(Ole): Why is it again that we don't |
---|
376 | #use uh_left and uh_right directly in the first entries? |
---|
377 | flux_left = array([u_left*h_left, |
---|
378 | u_left*uh_left + 0.5*g*h_left**2, |
---|
379 | u_left*vh_left]) |
---|
380 | flux_right = array([u_right*h_right, |
---|
381 | u_right*uh_right + 0.5*g*h_right**2, |
---|
382 | u_right*vh_right]) |
---|
383 | |
---|
384 | denom = s_max-s_min |
---|
385 | if denom == 0.0: |
---|
386 | edgeflux = array([0.0, 0.0, 0.0]) |
---|
387 | max_speed = 0.0 |
---|
388 | else: |
---|
389 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
390 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
391 | |
---|
392 | edgeflux = rotate(edgeflux, normal, direction=-1) |
---|
393 | max_speed = max(abs(s_max), abs(s_min)) |
---|
394 | |
---|
395 | return edgeflux, max_speed |
---|
396 | |
---|
397 | |
---|
398 | def compute_fluxes(domain): |
---|
399 | """Compute all fluxes and the timestep suitable for all volumes |
---|
400 | in domain. |
---|
401 | |
---|
402 | Compute total flux for each conserved quantity using "flux_function" |
---|
403 | |
---|
404 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
405 | Resulting flux is then scaled by area and stored in |
---|
406 | explicit_update for each of the three conserved quantities |
---|
407 | stage, xmomentum and ymomentum |
---|
408 | |
---|
409 | The maximal allowable speed computed by the flux_function for each volume |
---|
410 | is converted to a timestep that must not be exceeded. The minimum of |
---|
411 | those is computed as the next overall timestep. |
---|
412 | |
---|
413 | Post conditions: |
---|
414 | domain.explicit_update is reset to computed flux values |
---|
415 | domain.timestep is set to the largest step satisfying all volumes. |
---|
416 | """ |
---|
417 | |
---|
418 | import sys |
---|
419 | from Numeric import zeros, Float |
---|
420 | |
---|
421 | N = domain.number_of_elements |
---|
422 | |
---|
423 | #Shortcuts |
---|
424 | Stage = domain.quantities['stage'] |
---|
425 | Xmom = domain.quantities['xmomentum'] |
---|
426 | Ymom = domain.quantities['ymomentum'] |
---|
427 | Bed = domain.quantities['elevation'] |
---|
428 | |
---|
429 | #Arrays |
---|
430 | stage = Stage.edge_values |
---|
431 | xmom = Xmom.edge_values |
---|
432 | ymom = Ymom.edge_values |
---|
433 | bed = Bed.edge_values |
---|
434 | |
---|
435 | stage_bdry = Stage.boundary_values |
---|
436 | xmom_bdry = Xmom.boundary_values |
---|
437 | ymom_bdry = Ymom.boundary_values |
---|
438 | |
---|
439 | flux = zeros(3, Float) #Work array for summing up fluxes |
---|
440 | |
---|
441 | #Loop |
---|
442 | timestep = float(sys.maxint) |
---|
443 | for k in range(N): |
---|
444 | |
---|
445 | flux[:] = 0. #Reset work array |
---|
446 | for i in range(3): |
---|
447 | #Quantities inside volume facing neighbour i |
---|
448 | ql = [stage[k, i], xmom[k, i], ymom[k, i]] |
---|
449 | zl = bed[k, i] |
---|
450 | |
---|
451 | #Quantities at neighbour on nearest face |
---|
452 | n = domain.neighbours[k,i] |
---|
453 | if n < 0: |
---|
454 | m = -n-1 #Convert negative flag to index |
---|
455 | qr = [stage_bdry[m], xmom_bdry[m], ymom_bdry[m]] |
---|
456 | zr = zl #Extend bed elevation to boundary |
---|
457 | else: |
---|
458 | m = domain.neighbour_edges[k,i] |
---|
459 | qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
460 | zr = bed[n, m] |
---|
461 | |
---|
462 | |
---|
463 | #Outward pointing normal vector |
---|
464 | normal = domain.normals[k, 2*i:2*i+2] |
---|
465 | |
---|
466 | #Flux computation using provided function |
---|
467 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
468 | flux -= edgeflux * domain.edgelengths[k,i] |
---|
469 | |
---|
470 | #Update optimal_timestep |
---|
471 | try: |
---|
472 | timestep = min(timestep, 0.5*domain.radii[k]/max_speed) |
---|
473 | except ZeroDivisionError: |
---|
474 | pass |
---|
475 | |
---|
476 | #Normalise by area and store for when all conserved |
---|
477 | #quantities get updated |
---|
478 | flux /= domain.areas[k] |
---|
479 | Stage.explicit_update[k] = flux[0] |
---|
480 | Xmom.explicit_update[k] = flux[1] |
---|
481 | Ymom.explicit_update[k] = flux[2] |
---|
482 | |
---|
483 | |
---|
484 | domain.timestep = timestep |
---|
485 | |
---|
486 | #MH090605 The following method belongs to the shallow_water domain class |
---|
487 | #see comments in the corresponding method in shallow_water_ext.c |
---|
488 | def extrapolate_second_order_sw_c(domain): |
---|
489 | """Wrapper calling C version of extrapolate_second_order_sw |
---|
490 | """ |
---|
491 | import sys |
---|
492 | from Numeric import zeros, Float |
---|
493 | |
---|
494 | N = domain.number_of_elements |
---|
495 | |
---|
496 | #Shortcuts |
---|
497 | Stage = domain.quantities['stage'] |
---|
498 | Xmom = domain.quantities['xmomentum'] |
---|
499 | Ymom = domain.quantities['ymomentum'] |
---|
500 | from shallow_water_ext import extrapolate_second_order_sw |
---|
501 | extrapolate_second_order_sw(domain,domain.surrogate_neighbours, |
---|
502 | domain.number_of_boundaries, |
---|
503 | domain.centroid_coordinates, |
---|
504 | Stage.centroid_values, |
---|
505 | Xmom.centroid_values, |
---|
506 | Ymom.centroid_values, |
---|
507 | domain.vertex_coordinates, |
---|
508 | Stage.vertex_values, |
---|
509 | Xmom.vertex_values, |
---|
510 | Ymom.vertex_values) |
---|
511 | |
---|
512 | def compute_fluxes_c(domain): |
---|
513 | """Wrapper calling C version of compute fluxes |
---|
514 | """ |
---|
515 | |
---|
516 | import sys |
---|
517 | from Numeric import zeros, Float |
---|
518 | |
---|
519 | N = domain.number_of_elements |
---|
520 | |
---|
521 | #Shortcuts |
---|
522 | Stage = domain.quantities['stage'] |
---|
523 | Xmom = domain.quantities['xmomentum'] |
---|
524 | Ymom = domain.quantities['ymomentum'] |
---|
525 | Bed = domain.quantities['elevation'] |
---|
526 | |
---|
527 | timestep = float(sys.maxint) |
---|
528 | from shallow_water_ext import compute_fluxes |
---|
529 | domain.timestep = compute_fluxes(timestep, domain.epsilon, domain.g, |
---|
530 | domain.neighbours, |
---|
531 | domain.neighbour_edges, |
---|
532 | domain.normals, |
---|
533 | domain.edgelengths, |
---|
534 | domain.radii, |
---|
535 | domain.areas, |
---|
536 | Stage.edge_values, |
---|
537 | Xmom.edge_values, |
---|
538 | Ymom.edge_values, |
---|
539 | Bed.edge_values, |
---|
540 | Stage.boundary_values, |
---|
541 | Xmom.boundary_values, |
---|
542 | Ymom.boundary_values, |
---|
543 | Stage.explicit_update, |
---|
544 | Xmom.explicit_update, |
---|
545 | Ymom.explicit_update) |
---|
546 | |
---|
547 | |
---|
548 | #################################### |
---|
549 | # Module functions for gradient limiting (distribute_to_vertices_and_edges) |
---|
550 | |
---|
551 | def distribute_to_vertices_and_edges(domain): |
---|
552 | """Distribution from centroids to vertices specific to the |
---|
553 | shallow water wave |
---|
554 | equation. |
---|
555 | |
---|
556 | It will ensure that h (w-z) is always non-negative even in the |
---|
557 | presence of steep bed-slopes by taking a weighted average between shallow |
---|
558 | and deep cases. |
---|
559 | |
---|
560 | In addition, all conserved quantities get distributed as per either a |
---|
561 | constant (order==1) or a piecewise linear function (order==2). |
---|
562 | |
---|
563 | FIXME: more explanation about removal of artificial variability etc |
---|
564 | |
---|
565 | Precondition: |
---|
566 | All quantities defined at centroids and bed elevation defined at |
---|
567 | vertices. |
---|
568 | |
---|
569 | Postcondition |
---|
570 | Conserved quantities defined at vertices |
---|
571 | |
---|
572 | """ |
---|
573 | |
---|
574 | #Remove very thin layers of water |
---|
575 | protect_against_infinitesimal_and_negative_heights(domain) |
---|
576 | |
---|
577 | #Extrapolate all conserved quantities |
---|
578 | #MH090605 if second order, perform the extrapolation and limiting on all of the conserved quantities |
---|
579 | if (domain.order == 1): |
---|
580 | for name in domain.conserved_quantities: |
---|
581 | Q = domain.quantities[name] |
---|
582 | Q.extrapolate_first_order() |
---|
583 | elif domain.order == 2: |
---|
584 | domain.extrapolate_second_order_sw() |
---|
585 | else: |
---|
586 | raise 'Unknown order' |
---|
587 | |
---|
588 | #old code: |
---|
589 | #for name in domain.conserved_quantities: |
---|
590 | # Q = domain.quantities[name] |
---|
591 | # if domain.order == 1: |
---|
592 | # Q.extrapolate_first_order() |
---|
593 | # elif domain.order == 2: |
---|
594 | # #Q.extrapolate_second_order() |
---|
595 | # Q.limit() |
---|
596 | # else: |
---|
597 | # raise 'Unknown order' |
---|
598 | |
---|
599 | #Take bed elevation into account when water heights are small |
---|
600 | balance_deep_and_shallow(domain) |
---|
601 | |
---|
602 | #Compute edge values by interpolation |
---|
603 | for name in domain.conserved_quantities: |
---|
604 | Q = domain.quantities[name] |
---|
605 | Q.interpolate_from_vertices_to_edges() |
---|
606 | |
---|
607 | |
---|
608 | |
---|
609 | def dry(domain): |
---|
610 | """Protect against infinitesimal heights and associated high velocities |
---|
611 | at vertices |
---|
612 | """ |
---|
613 | |
---|
614 | #FIXME: Experimental (from old version). Not in use at the moment |
---|
615 | |
---|
616 | #Shortcuts |
---|
617 | wv = domain.quantities['stage'].vertex_values |
---|
618 | zv = domain.quantities['elevation'].vertex_values |
---|
619 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
620 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
621 | hv = wv - zv #Water depths at vertices |
---|
622 | |
---|
623 | #Update |
---|
624 | for k in range(domain.number_of_elements): |
---|
625 | hmax = max(hv[k, :]) |
---|
626 | |
---|
627 | if hmax < domain.minimum_allowed_height: |
---|
628 | #Control stage |
---|
629 | wv[k, :] = zv[k, :] |
---|
630 | |
---|
631 | #Control momentum |
---|
632 | xmomv[k,:] = ymomv[k,:] = 0.0 |
---|
633 | |
---|
634 | |
---|
635 | def protect_against_infinitesimal_and_negative_heights(domain): |
---|
636 | """Protect against infinitesimal heights and associated high velocities |
---|
637 | """ |
---|
638 | |
---|
639 | #FIXME: Look here for error |
---|
640 | |
---|
641 | #Shortcuts |
---|
642 | wc = domain.quantities['stage'].centroid_values |
---|
643 | zc = domain.quantities['elevation'].centroid_values |
---|
644 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
645 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
646 | hc = wc - zc #Water depths at centroids |
---|
647 | |
---|
648 | #print zc |
---|
649 | #print '1', wc |
---|
650 | #Update |
---|
651 | for k in range(domain.number_of_elements): |
---|
652 | |
---|
653 | if hc[k] < domain.minimum_allowed_height: |
---|
654 | #Control stage |
---|
655 | wc[k] = zc[k] |
---|
656 | |
---|
657 | #Control momentum |
---|
658 | xmomc[k] = ymomc[k] = 0.0 |
---|
659 | |
---|
660 | #print '2', wc |
---|
661 | |
---|
662 | |
---|
663 | def protect_against_infinitesimal_and_negative_heights_c(domain): |
---|
664 | """Protect against infinitesimal heights and associated high velocities |
---|
665 | """ |
---|
666 | |
---|
667 | #Shortcuts |
---|
668 | wc = domain.quantities['stage'].centroid_values |
---|
669 | zc = domain.quantities['elevation'].centroid_values |
---|
670 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
671 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
672 | |
---|
673 | from shallow_water_ext import protect |
---|
674 | |
---|
675 | protect(domain.minimum_allowed_height, wc, zc, xmomc, ymomc) |
---|
676 | |
---|
677 | |
---|
678 | |
---|
679 | def h_limiter(domain): |
---|
680 | """Limit slopes for each volume to eliminate artificial variance |
---|
681 | introduced by e.g. second order extrapolator |
---|
682 | |
---|
683 | limit on h = w-z |
---|
684 | |
---|
685 | This limiter depends on two quantities (w,z) so it resides within |
---|
686 | this module rather than within quantity.py |
---|
687 | """ |
---|
688 | |
---|
689 | from Numeric import zeros, Float |
---|
690 | |
---|
691 | N = domain.number_of_elements |
---|
692 | beta_h = domain.beta_h |
---|
693 | |
---|
694 | #Shortcuts |
---|
695 | wc = domain.quantities['stage'].centroid_values |
---|
696 | zc = domain.quantities['elevation'].centroid_values |
---|
697 | hc = wc - zc |
---|
698 | |
---|
699 | wv = domain.quantities['stage'].vertex_values |
---|
700 | zv = domain.quantities['elevation'].vertex_values |
---|
701 | hv = wv-zv |
---|
702 | |
---|
703 | hvbar = zeros(hv.shape, Float) #h-limited values |
---|
704 | |
---|
705 | #Find min and max of this and neighbour's centroid values |
---|
706 | hmax = zeros(hc.shape, Float) |
---|
707 | hmin = zeros(hc.shape, Float) |
---|
708 | |
---|
709 | for k in range(N): |
---|
710 | hmax[k] = hmin[k] = hc[k] |
---|
711 | for i in range(3): |
---|
712 | n = domain.neighbours[k,i] |
---|
713 | if n >= 0: |
---|
714 | hn = hc[n] #Neighbour's centroid value |
---|
715 | |
---|
716 | hmin[k] = min(hmin[k], hn) |
---|
717 | hmax[k] = max(hmax[k], hn) |
---|
718 | |
---|
719 | |
---|
720 | #Diffences between centroids and maxima/minima |
---|
721 | dhmax = hmax - hc |
---|
722 | dhmin = hmin - hc |
---|
723 | |
---|
724 | #Deltas between vertex and centroid values |
---|
725 | dh = zeros(hv.shape, Float) |
---|
726 | for i in range(3): |
---|
727 | dh[:,i] = hv[:,i] - hc |
---|
728 | |
---|
729 | #Phi limiter |
---|
730 | for k in range(N): |
---|
731 | |
---|
732 | #Find the gradient limiter (phi) across vertices |
---|
733 | phi = 1.0 |
---|
734 | for i in range(3): |
---|
735 | r = 1.0 |
---|
736 | if (dh[k,i] > 0): r = dhmax[k]/dh[k,i] |
---|
737 | if (dh[k,i] < 0): r = dhmin[k]/dh[k,i] |
---|
738 | |
---|
739 | phi = min( min(r*beta_h, 1), phi ) |
---|
740 | |
---|
741 | #Then update using phi limiter |
---|
742 | for i in range(3): |
---|
743 | hvbar[k,i] = hc[k] + phi*dh[k,i] |
---|
744 | |
---|
745 | return hvbar |
---|
746 | |
---|
747 | |
---|
748 | |
---|
749 | def h_limiter_c(domain): |
---|
750 | """Limit slopes for each volume to eliminate artificial variance |
---|
751 | introduced by e.g. second order extrapolator |
---|
752 | |
---|
753 | limit on h = w-z |
---|
754 | |
---|
755 | This limiter depends on two quantities (w,z) so it resides within |
---|
756 | this module rather than within quantity.py |
---|
757 | |
---|
758 | Wrapper for c-extension |
---|
759 | """ |
---|
760 | |
---|
761 | from Numeric import zeros, Float |
---|
762 | |
---|
763 | N = domain.number_of_elements |
---|
764 | beta_h = domain.beta_h |
---|
765 | |
---|
766 | #Shortcuts |
---|
767 | wc = domain.quantities['stage'].centroid_values |
---|
768 | zc = domain.quantities['elevation'].centroid_values |
---|
769 | hc = wc - zc |
---|
770 | |
---|
771 | wv = domain.quantities['stage'].vertex_values |
---|
772 | zv = domain.quantities['elevation'].vertex_values |
---|
773 | hv = wv - zv |
---|
774 | |
---|
775 | #Call C-extension |
---|
776 | from shallow_water_ext import h_limiter |
---|
777 | hvbar = h_limiter(domain, hc, hv) |
---|
778 | |
---|
779 | return hvbar |
---|
780 | |
---|
781 | |
---|
782 | def balance_deep_and_shallow(domain): |
---|
783 | """Compute linear combination between stage as computed by |
---|
784 | gradient-limiters limiting using w, and stage computed as |
---|
785 | constant height above bed and limited using h. |
---|
786 | The former takes precedence when heights are large compared to the |
---|
787 | bed slope while the latter takes precedence when heights are |
---|
788 | relatively small. Anything in between is computed as a balanced |
---|
789 | linear combination in order to avoid numerical disturbances which |
---|
790 | would otherwise appear as a result of hard switching between |
---|
791 | modes. |
---|
792 | |
---|
793 | The h-limiter is always applied irrespective of the order. |
---|
794 | """ |
---|
795 | |
---|
796 | #New idea. |
---|
797 | # |
---|
798 | # In the presence and near of bedslope it is necessary to |
---|
799 | # limit slopes based on differences in h rather than w |
---|
800 | # (which is what is needed away from the bed). |
---|
801 | # |
---|
802 | # So whether extrapolation was first order or second order, |
---|
803 | # it will need to be balanced with a h-limited gradient. |
---|
804 | # |
---|
805 | # For this we will use the quantity alpha as before |
---|
806 | # |
---|
807 | |
---|
808 | #Shortcuts |
---|
809 | wc = domain.quantities['stage'].centroid_values |
---|
810 | zc = domain.quantities['elevation'].centroid_values |
---|
811 | hc = wc - zc |
---|
812 | |
---|
813 | wv = domain.quantities['stage'].vertex_values |
---|
814 | zv = domain.quantities['elevation'].vertex_values |
---|
815 | hv = wv-zv |
---|
816 | |
---|
817 | #Limit h |
---|
818 | hvbar = h_limiter(domain) |
---|
819 | |
---|
820 | for k in range(domain.number_of_elements): |
---|
821 | #Compute maximal variation in bed elevation |
---|
822 | # This quantitiy is |
---|
823 | # dz = max_i abs(z_i - z_c) |
---|
824 | # and it is independent of dimension |
---|
825 | # In the 1d case zc = (z0+z1)/2 |
---|
826 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
827 | |
---|
828 | dz = max(abs(zv[k,0]-zc[k]), |
---|
829 | abs(zv[k,1]-zc[k]), |
---|
830 | abs(zv[k,2]-zc[k])) |
---|
831 | |
---|
832 | |
---|
833 | hmin = min( hv[k,:] ) |
---|
834 | |
---|
835 | #Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
836 | #stage and alpha==1 means using the w-limited stage as |
---|
837 | #computed by the gradient limiter (both 1st or 2nd order) |
---|
838 | |
---|
839 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
840 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
841 | |
---|
842 | if dz > 0.0: |
---|
843 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
844 | else: |
---|
845 | #Flat bed |
---|
846 | alpha = 1.0 |
---|
847 | |
---|
848 | #Let |
---|
849 | # |
---|
850 | # wvi be the w-limited stage (wvi = zvi + hvi) |
---|
851 | # wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
852 | # |
---|
853 | # |
---|
854 | #where i=0,1,2 denotes the vertex ids |
---|
855 | # |
---|
856 | #Weighted balance between w-limited and h-limited stage is |
---|
857 | # |
---|
858 | # wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
859 | # |
---|
860 | #It follows that the updated wvi is |
---|
861 | # wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
862 | # |
---|
863 | # Momentum is balanced between constant and limited |
---|
864 | |
---|
865 | |
---|
866 | #for i in range(3): |
---|
867 | # wv[k,i] = zv[k,i] + hvbar[k,i] |
---|
868 | |
---|
869 | #return |
---|
870 | |
---|
871 | if alpha < 1: |
---|
872 | |
---|
873 | for i in range(3): |
---|
874 | wv[k,i] = zv[k,i] + (1-alpha)*hvbar[k,i] + alpha*hv[k,i] |
---|
875 | |
---|
876 | #Momentums at centroids |
---|
877 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
878 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
879 | |
---|
880 | #Momentums at vertices |
---|
881 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
882 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
883 | |
---|
884 | # Update momentum as a linear combination of |
---|
885 | # xmomc and ymomc (shallow) and momentum |
---|
886 | # from extrapolator xmomv and ymomv (deep). |
---|
887 | xmomv[k,:] = (1-alpha)*xmomc[k] + alpha*xmomv[k,:] |
---|
888 | ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:] |
---|
889 | |
---|
890 | |
---|
891 | def balance_deep_and_shallow_c(domain): |
---|
892 | """Wrapper for C implementation |
---|
893 | """ |
---|
894 | |
---|
895 | #Shortcuts |
---|
896 | wc = domain.quantities['stage'].centroid_values |
---|
897 | zc = domain.quantities['elevation'].centroid_values |
---|
898 | hc = wc - zc |
---|
899 | |
---|
900 | wv = domain.quantities['stage'].vertex_values |
---|
901 | zv = domain.quantities['elevation'].vertex_values |
---|
902 | hv = wv - zv |
---|
903 | |
---|
904 | #Momentums at centroids |
---|
905 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
906 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
907 | |
---|
908 | #Momentums at vertices |
---|
909 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
910 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
911 | |
---|
912 | #Limit h |
---|
913 | hvbar = h_limiter(domain) |
---|
914 | |
---|
915 | #This is how one would make a first order h_limited value |
---|
916 | #as in the old balancer (pre 17 Feb 2005): |
---|
917 | #from Numeric import zeros, Float |
---|
918 | #hvbar = zeros( (len(hc), 3), Float) |
---|
919 | #for i in range(3): |
---|
920 | # hvbar[:,i] = hc[:] |
---|
921 | |
---|
922 | from shallow_water_ext import balance_deep_and_shallow |
---|
923 | balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, hvbar, |
---|
924 | xmomc, ymomc, xmomv, ymomv) |
---|
925 | |
---|
926 | |
---|
927 | |
---|
928 | |
---|
929 | ############################################### |
---|
930 | #Boundaries - specific to the shallow water wave equation |
---|
931 | class Reflective_boundary(Boundary): |
---|
932 | """Reflective boundary returns same conserved quantities as |
---|
933 | those present in its neighbour volume but reflected. |
---|
934 | |
---|
935 | This class is specific to the shallow water equation as it |
---|
936 | works with the momentum quantities assumed to be the second |
---|
937 | and third conserved quantities. |
---|
938 | """ |
---|
939 | |
---|
940 | def __init__(self, domain = None): |
---|
941 | Boundary.__init__(self) |
---|
942 | |
---|
943 | if domain is None: |
---|
944 | msg = 'Domain must be specified for reflective boundary' |
---|
945 | raise msg |
---|
946 | |
---|
947 | #Handy shorthands |
---|
948 | self.stage = domain.quantities['stage'].edge_values |
---|
949 | self.xmom = domain.quantities['xmomentum'].edge_values |
---|
950 | self.ymom = domain.quantities['ymomentum'].edge_values |
---|
951 | self.normals = domain.normals |
---|
952 | |
---|
953 | from Numeric import zeros, Float |
---|
954 | self.conserved_quantities = zeros(3, Float) |
---|
955 | |
---|
956 | def __repr__(self): |
---|
957 | return 'Reflective_boundary' |
---|
958 | |
---|
959 | |
---|
960 | def evaluate(self, vol_id, edge_id): |
---|
961 | """Reflective boundaries reverses the outward momentum |
---|
962 | of the volume they serve. |
---|
963 | """ |
---|
964 | |
---|
965 | q = self.conserved_quantities |
---|
966 | q[0] = self.stage[vol_id, edge_id] |
---|
967 | q[1] = self.xmom[vol_id, edge_id] |
---|
968 | q[2] = self.ymom[vol_id, edge_id] |
---|
969 | |
---|
970 | normal = self.normals[vol_id, 2*edge_id:2*edge_id+2] |
---|
971 | |
---|
972 | |
---|
973 | r = rotate(q, normal, direction = 1) |
---|
974 | r[1] = -r[1] |
---|
975 | q = rotate(r, normal, direction = -1) |
---|
976 | |
---|
977 | return q |
---|
978 | |
---|
979 | |
---|
980 | #class Spatio_temporal_boundary(Boundary): |
---|
981 | # """The spatio-temporal boundary, reads values for the conserved |
---|
982 | # quantities from an sww NetCDF file, and returns interpolated values |
---|
983 | # at the midpoints of each associated boundaty segment. |
---|
984 | # Time dependency is interpolated linearly as in util.File_function.# |
---|
985 | # |
---|
986 | # Example: |
---|
987 | # Bf = Spatio_temporal_boundary('source_file.sww', domain) |
---|
988 | # |
---|
989 | # """ |
---|
990 | Spatio_temporal_boundary = File_boundary |
---|
991 | |
---|
992 | |
---|
993 | |
---|
994 | |
---|
995 | ######################### |
---|
996 | #Standard forcing terms: |
---|
997 | # |
---|
998 | def gravity(domain): |
---|
999 | """Apply gravitational pull in the presence of bed slope |
---|
1000 | """ |
---|
1001 | |
---|
1002 | from util import gradient |
---|
1003 | from Numeric import zeros, Float, array, sum |
---|
1004 | |
---|
1005 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
1006 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
1007 | |
---|
1008 | Stage = domain.quantities['stage'] |
---|
1009 | Elevation = domain.quantities['elevation'] |
---|
1010 | h = Stage.edge_values - Elevation.edge_values |
---|
1011 | v = Elevation.vertex_values |
---|
1012 | |
---|
1013 | x = domain.get_vertex_coordinates() |
---|
1014 | g = domain.g |
---|
1015 | |
---|
1016 | for k in range(domain.number_of_elements): |
---|
1017 | avg_h = sum( h[k,:] )/3 |
---|
1018 | |
---|
1019 | #Compute bed slope |
---|
1020 | x0, y0, x1, y1, x2, y2 = x[k,:] |
---|
1021 | z0, z1, z2 = v[k,:] |
---|
1022 | |
---|
1023 | zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
1024 | |
---|
1025 | #Update momentum |
---|
1026 | xmom[k] += -g*zx*avg_h |
---|
1027 | ymom[k] += -g*zy*avg_h |
---|
1028 | |
---|
1029 | |
---|
1030 | def gravity_c(domain): |
---|
1031 | """Wrapper calling C version |
---|
1032 | """ |
---|
1033 | |
---|
1034 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
1035 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
1036 | |
---|
1037 | Stage = domain.quantities['stage'] |
---|
1038 | Elevation = domain.quantities['elevation'] |
---|
1039 | h = Stage.edge_values - Elevation.edge_values |
---|
1040 | v = Elevation.vertex_values |
---|
1041 | |
---|
1042 | x = domain.get_vertex_coordinates() |
---|
1043 | g = domain.g |
---|
1044 | |
---|
1045 | |
---|
1046 | from shallow_water_ext import gravity |
---|
1047 | gravity(g, h, v, x, xmom, ymom) |
---|
1048 | |
---|
1049 | |
---|
1050 | def manning_friction(domain): |
---|
1051 | """Apply (Manning) friction to water momentum |
---|
1052 | """ |
---|
1053 | |
---|
1054 | from math import sqrt |
---|
1055 | |
---|
1056 | w = domain.quantities['stage'].centroid_values |
---|
1057 | z = domain.quantities['elevation'].centroid_values |
---|
1058 | h = w-z |
---|
1059 | |
---|
1060 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1061 | vh = domain.quantities['ymomentum'].centroid_values |
---|
1062 | eta = domain.quantities['friction'].centroid_values |
---|
1063 | |
---|
1064 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1065 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1066 | |
---|
1067 | N = domain.number_of_elements |
---|
1068 | eps = domain.minimum_allowed_height |
---|
1069 | g = domain.g |
---|
1070 | |
---|
1071 | for k in range(N): |
---|
1072 | if eta[k] >= eps: |
---|
1073 | if h[k] >= eps: |
---|
1074 | S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
1075 | S /= h[k]**(7.0/3) |
---|
1076 | |
---|
1077 | #Update momentum |
---|
1078 | xmom_update[k] += S*uh[k] |
---|
1079 | ymom_update[k] += S*vh[k] |
---|
1080 | |
---|
1081 | |
---|
1082 | def manning_friction_c(domain): |
---|
1083 | """Wrapper for c version |
---|
1084 | """ |
---|
1085 | |
---|
1086 | |
---|
1087 | xmom = domain.quantities['xmomentum'] |
---|
1088 | ymom = domain.quantities['ymomentum'] |
---|
1089 | |
---|
1090 | w = domain.quantities['stage'].centroid_values |
---|
1091 | z = domain.quantities['elevation'].centroid_values |
---|
1092 | |
---|
1093 | uh = xmom.centroid_values |
---|
1094 | vh = ymom.centroid_values |
---|
1095 | eta = domain.quantities['friction'].centroid_values |
---|
1096 | |
---|
1097 | xmom_update = xmom.semi_implicit_update |
---|
1098 | ymom_update = ymom.semi_implicit_update |
---|
1099 | |
---|
1100 | N = domain.number_of_elements |
---|
1101 | eps = domain.minimum_allowed_height |
---|
1102 | g = domain.g |
---|
1103 | |
---|
1104 | from shallow_water_ext import manning_friction |
---|
1105 | manning_friction(g, eps, w, z, uh, vh, eta, xmom_update, ymom_update) |
---|
1106 | |
---|
1107 | |
---|
1108 | def linear_friction(domain): |
---|
1109 | """Apply linear friction to water momentum |
---|
1110 | |
---|
1111 | Assumes quantity: 'linear_friction' to be present |
---|
1112 | """ |
---|
1113 | |
---|
1114 | from math import sqrt |
---|
1115 | |
---|
1116 | w = domain.quantities['stage'].centroid_values |
---|
1117 | z = domain.quantities['elevation'].centroid_values |
---|
1118 | h = w-z |
---|
1119 | |
---|
1120 | uh = domain.quantities['xmomentum'].centroid_values |
---|
1121 | vh = domain.quantities['ymomentum'].centroid_values |
---|
1122 | tau = domain.quantities['linear_friction'].centroid_values |
---|
1123 | |
---|
1124 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
1125 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
1126 | |
---|
1127 | N = domain.number_of_elements |
---|
1128 | eps = domain.minimum_allowed_height |
---|
1129 | g = domain.g #Not necessary? Why was this added? |
---|
1130 | |
---|
1131 | for k in range(N): |
---|
1132 | if tau[k] >= eps: |
---|
1133 | if h[k] >= eps: |
---|
1134 | S = -tau[k]/h[k] |
---|
1135 | |
---|
1136 | #Update momentum |
---|
1137 | xmom_update[k] += S*uh[k] |
---|
1138 | ymom_update[k] += S*vh[k] |
---|
1139 | |
---|
1140 | |
---|
1141 | |
---|
1142 | def check_forcefield(f): |
---|
1143 | """Check that f is either |
---|
1144 | 1: a callable object f(t,x,y), where x and y are vectors |
---|
1145 | and that it returns an array or a list of same length |
---|
1146 | as x and y |
---|
1147 | 2: a scalar |
---|
1148 | """ |
---|
1149 | |
---|
1150 | from Numeric import ones, Float, array |
---|
1151 | |
---|
1152 | |
---|
1153 | if callable(f): |
---|
1154 | N = 3 |
---|
1155 | x = ones(3, Float) |
---|
1156 | y = ones(3, Float) |
---|
1157 | try: |
---|
1158 | q = f(1.0, x, y) |
---|
1159 | except Exception, e: |
---|
1160 | msg = 'Function %s could not be executed:\n%s' %(f, e) |
---|
1161 | #FIXME: Reconsider this semantics |
---|
1162 | raise msg |
---|
1163 | |
---|
1164 | try: |
---|
1165 | q = array(q).astype(Float) |
---|
1166 | except: |
---|
1167 | msg = 'Return value from vector function %s could ' %f |
---|
1168 | msg += 'not be converted into a Numeric array of floats.\n' |
---|
1169 | msg += 'Specified function should return either list or array.' |
---|
1170 | raise msg |
---|
1171 | |
---|
1172 | msg = 'Return vector from function %s' %f |
---|
1173 | msg += 'must have same lenght as input vectors' |
---|
1174 | assert len(q) == N, msg |
---|
1175 | |
---|
1176 | else: |
---|
1177 | try: |
---|
1178 | f = float(f) |
---|
1179 | except: |
---|
1180 | msg = 'Force field %s must be either a scalar' %f |
---|
1181 | msg += ' or a vector function' |
---|
1182 | raise msg |
---|
1183 | return f |
---|
1184 | |
---|
1185 | |
---|
1186 | class Wind_stress: |
---|
1187 | """Apply wind stress to water momentum in terms of |
---|
1188 | wind speed [m/s] and wind direction [degrees] |
---|
1189 | """ |
---|
1190 | |
---|
1191 | def __init__(self, *args, **kwargs): |
---|
1192 | """Initialise windfield from wind speed s [m/s] |
---|
1193 | and wind direction phi [degrees] |
---|
1194 | |
---|
1195 | Inputs v and phi can be either scalars or Python functions, e.g. |
---|
1196 | |
---|
1197 | W = Wind_stress(10, 178) |
---|
1198 | |
---|
1199 | #FIXME - 'normal' degrees are assumed for now, i.e. the |
---|
1200 | vector (1,0) has zero degrees. |
---|
1201 | We may need to convert from 'compass' degrees later on and also |
---|
1202 | map from True north to grid north. |
---|
1203 | |
---|
1204 | Arguments can also be Python functions of t,x,y as in |
---|
1205 | |
---|
1206 | def speed(t,x,y): |
---|
1207 | ... |
---|
1208 | return s |
---|
1209 | |
---|
1210 | def angle(t,x,y): |
---|
1211 | ... |
---|
1212 | return phi |
---|
1213 | |
---|
1214 | where x and y are vectors. |
---|
1215 | |
---|
1216 | and then pass the functions in |
---|
1217 | |
---|
1218 | W = Wind_stress(speed, angle) |
---|
1219 | |
---|
1220 | The instantiated object W can be appended to the list of |
---|
1221 | forcing_terms as in |
---|
1222 | |
---|
1223 | Alternatively, one vector valued function for (speed, angle) |
---|
1224 | can be applied, providing both quantities simultaneously. |
---|
1225 | As in |
---|
1226 | W = Wind_stress(F), where returns (speed, angle) for each t. |
---|
1227 | |
---|
1228 | domain.forcing_terms.append(W) |
---|
1229 | """ |
---|
1230 | |
---|
1231 | from config import rho_a, rho_w, eta_w |
---|
1232 | from Numeric import array, Float |
---|
1233 | |
---|
1234 | if len(args) == 2: |
---|
1235 | s = args[0] |
---|
1236 | phi = args[1] |
---|
1237 | elif len(args) == 1: |
---|
1238 | #Assume vector function returning (s, phi)(t,x,y) |
---|
1239 | vector_function = args[0] |
---|
1240 | s = lambda t,x,y: vector_function(t,x,y)[0] |
---|
1241 | phi = lambda t,x,y: vector_function(t,x,y)[1] |
---|
1242 | else: |
---|
1243 | #Assume info is in 2 keyword arguments |
---|
1244 | |
---|
1245 | if len(kwargs) == 2: |
---|
1246 | s = kwargs['s'] |
---|
1247 | phi = kwargs['phi'] |
---|
1248 | else: |
---|
1249 | raise 'Assumes two keyword arguments: s=..., phi=....' |
---|
1250 | |
---|
1251 | self.speed = check_forcefield(s) |
---|
1252 | self.phi = check_forcefield(phi) |
---|
1253 | |
---|
1254 | self.const = eta_w*rho_a/rho_w |
---|
1255 | |
---|
1256 | |
---|
1257 | def __call__(self, domain): |
---|
1258 | """Evaluate windfield based on values found in domain |
---|
1259 | """ |
---|
1260 | |
---|
1261 | from math import pi, cos, sin, sqrt |
---|
1262 | from Numeric import Float, ones, ArrayType |
---|
1263 | |
---|
1264 | xmom_update = domain.quantities['xmomentum'].explicit_update |
---|
1265 | ymom_update = domain.quantities['ymomentum'].explicit_update |
---|
1266 | |
---|
1267 | N = domain.number_of_elements |
---|
1268 | t = domain.time |
---|
1269 | |
---|
1270 | if callable(self.speed): |
---|
1271 | xc = domain.get_centroid_coordinates() |
---|
1272 | s_vec = self.speed(t, xc[:,0], xc[:,1]) |
---|
1273 | else: |
---|
1274 | #Assume s is a scalar |
---|
1275 | |
---|
1276 | try: |
---|
1277 | s_vec = self.speed * ones(N, Float) |
---|
1278 | except: |
---|
1279 | msg = 'Speed must be either callable or a scalar: %s' %self.s |
---|
1280 | raise msg |
---|
1281 | |
---|
1282 | |
---|
1283 | if callable(self.phi): |
---|
1284 | xc = domain.get_centroid_coordinates() |
---|
1285 | phi_vec = self.phi(t, xc[:,0], xc[:,1]) |
---|
1286 | else: |
---|
1287 | #Assume phi is a scalar |
---|
1288 | |
---|
1289 | try: |
---|
1290 | phi_vec = self.phi * ones(N, Float) |
---|
1291 | except: |
---|
1292 | msg = 'Angle must be either callable or a scalar: %s' %self.phi |
---|
1293 | raise msg |
---|
1294 | |
---|
1295 | assign_windfield_values(xmom_update, ymom_update, |
---|
1296 | s_vec, phi_vec, self.const) |
---|
1297 | |
---|
1298 | |
---|
1299 | def assign_windfield_values(xmom_update, ymom_update, |
---|
1300 | s_vec, phi_vec, const): |
---|
1301 | """Python version of assigning wind field to update vectors. |
---|
1302 | A c version also exists (for speed) |
---|
1303 | """ |
---|
1304 | from math import pi, cos, sin, sqrt |
---|
1305 | |
---|
1306 | N = len(s_vec) |
---|
1307 | for k in range(N): |
---|
1308 | s = s_vec[k] |
---|
1309 | phi = phi_vec[k] |
---|
1310 | |
---|
1311 | #Convert to radians |
---|
1312 | phi = phi*pi/180 |
---|
1313 | |
---|
1314 | #Compute velocity vector (u, v) |
---|
1315 | u = s*cos(phi) |
---|
1316 | v = s*sin(phi) |
---|
1317 | |
---|
1318 | #Compute wind stress |
---|
1319 | S = const * sqrt(u**2 + v**2) |
---|
1320 | xmom_update[k] += S*u |
---|
1321 | ymom_update[k] += S*v |
---|
1322 | |
---|
1323 | |
---|
1324 | |
---|
1325 | ############################## |
---|
1326 | #OBSOLETE STUFF |
---|
1327 | |
---|
1328 | def balance_deep_and_shallow_old(domain): |
---|
1329 | """Compute linear combination between stage as computed by |
---|
1330 | gradient-limiters and stage computed as constant height above bed. |
---|
1331 | The former takes precedence when heights are large compared to the |
---|
1332 | bed slope while the latter takes precedence when heights are |
---|
1333 | relatively small. Anything in between is computed as a balanced |
---|
1334 | linear combination in order to avoid numerical disturbances which |
---|
1335 | would otherwise appear as a result of hard switching between |
---|
1336 | modes. |
---|
1337 | """ |
---|
1338 | |
---|
1339 | #OBSOLETE |
---|
1340 | |
---|
1341 | #Shortcuts |
---|
1342 | wc = domain.quantities['stage'].centroid_values |
---|
1343 | zc = domain.quantities['elevation'].centroid_values |
---|
1344 | hc = wc - zc |
---|
1345 | |
---|
1346 | wv = domain.quantities['stage'].vertex_values |
---|
1347 | zv = domain.quantities['elevation'].vertex_values |
---|
1348 | hv = wv-zv |
---|
1349 | |
---|
1350 | |
---|
1351 | #Computed linear combination between constant stages and and |
---|
1352 | #stages parallel to the bed elevation. |
---|
1353 | for k in range(domain.number_of_elements): |
---|
1354 | #Compute maximal variation in bed elevation |
---|
1355 | # This quantitiy is |
---|
1356 | # dz = max_i abs(z_i - z_c) |
---|
1357 | # and it is independent of dimension |
---|
1358 | # In the 1d case zc = (z0+z1)/2 |
---|
1359 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
1360 | |
---|
1361 | dz = max(abs(zv[k,0]-zc[k]), |
---|
1362 | abs(zv[k,1]-zc[k]), |
---|
1363 | abs(zv[k,2]-zc[k])) |
---|
1364 | |
---|
1365 | |
---|
1366 | hmin = min( hv[k,:] ) |
---|
1367 | |
---|
1368 | #Create alpha in [0,1], where alpha==0 means using shallow |
---|
1369 | #first order scheme and alpha==1 means using the stage w as |
---|
1370 | #computed by the gradient limiter (1st or 2nd order) |
---|
1371 | # |
---|
1372 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
1373 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
1374 | |
---|
1375 | if dz > 0.0: |
---|
1376 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
1377 | else: |
---|
1378 | #Flat bed |
---|
1379 | alpha = 1.0 |
---|
1380 | |
---|
1381 | #Weighted balance between stage parallel to bed elevation |
---|
1382 | #(wvi = zvi + hc) and stage as computed by 1st or 2nd |
---|
1383 | #order gradient limiter |
---|
1384 | #(wvi = zvi + hvi) where i=0,1,2 denotes the vertex ids |
---|
1385 | # |
---|
1386 | #It follows that the updated wvi is |
---|
1387 | # wvi := (1-alpha)*(zvi+hc) + alpha*(zvi+hvi) = |
---|
1388 | # zvi + hc + alpha*(hvi - hc) |
---|
1389 | # |
---|
1390 | #Note that hvi = zc+hc-zvi in the first order case (constant). |
---|
1391 | |
---|
1392 | if alpha < 1: |
---|
1393 | for i in range(3): |
---|
1394 | wv[k,i] = zv[k,i] + hc[k] + alpha*(hv[k,i]-hc[k]) |
---|
1395 | |
---|
1396 | |
---|
1397 | #Momentums at centroids |
---|
1398 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
1399 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
1400 | |
---|
1401 | #Momentums at vertices |
---|
1402 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
1403 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
1404 | |
---|
1405 | # Update momentum as a linear combination of |
---|
1406 | # xmomc and ymomc (shallow) and momentum |
---|
1407 | # from extrapolator xmomv and ymomv (deep). |
---|
1408 | xmomv[k,:] = (1-alpha)*xmomc[k] + alpha*xmomv[k,:] |
---|
1409 | ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:] |
---|
1410 | |
---|
1411 | |
---|
1412 | |
---|
1413 | ########################### |
---|
1414 | ########################### |
---|
1415 | #Geometries |
---|
1416 | |
---|
1417 | |
---|
1418 | #FIXME: Rethink this way of creating values. |
---|
1419 | |
---|
1420 | |
---|
1421 | class Weir: |
---|
1422 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
1423 | x,y are assumed to be in the unit square |
---|
1424 | """ |
---|
1425 | |
---|
1426 | def __init__(self, stage): |
---|
1427 | self.inflow_stage = stage |
---|
1428 | |
---|
1429 | def __call__(self, x, y): |
---|
1430 | from Numeric import zeros, Float |
---|
1431 | from math import sqrt |
---|
1432 | |
---|
1433 | N = len(x) |
---|
1434 | assert N == len(y) |
---|
1435 | |
---|
1436 | z = zeros(N, Float) |
---|
1437 | for i in range(N): |
---|
1438 | z[i] = -x[i]/2 #General slope |
---|
1439 | |
---|
1440 | #Flattish bit to the left |
---|
1441 | if x[i] < 0.3: |
---|
1442 | z[i] = -x[i]/10 |
---|
1443 | |
---|
1444 | #Weir |
---|
1445 | if x[i] >= 0.3 and x[i] < 0.4: |
---|
1446 | z[i] = -x[i]+0.9 |
---|
1447 | |
---|
1448 | #Dip |
---|
1449 | x0 = 0.6 |
---|
1450 | #depth = -1.3 |
---|
1451 | depth = -1.0 |
---|
1452 | #plateaux = -0.9 |
---|
1453 | plateaux = -0.6 |
---|
1454 | if y[i] < 0.7: |
---|
1455 | if x[i] > x0 and x[i] < 0.9: |
---|
1456 | z[i] = depth |
---|
1457 | |
---|
1458 | #RHS plateaux |
---|
1459 | if x[i] >= 0.9: |
---|
1460 | z[i] = plateaux |
---|
1461 | |
---|
1462 | |
---|
1463 | elif y[i] >= 0.7 and y[i] < 1.5: |
---|
1464 | #Restrict and deepen |
---|
1465 | if x[i] >= x0 and x[i] < 0.8: |
---|
1466 | z[i] = depth-(y[i]/3-0.3) |
---|
1467 | #z[i] = depth-y[i]/5 |
---|
1468 | #z[i] = depth |
---|
1469 | elif x[i] >= 0.8: |
---|
1470 | #RHS plateaux |
---|
1471 | z[i] = plateaux |
---|
1472 | |
---|
1473 | elif y[i] >= 1.5: |
---|
1474 | if x[i] >= x0 and x[i] < 0.8 + (y[i]-1.5)/1.2: |
---|
1475 | #Widen up and stay at constant depth |
---|
1476 | z[i] = depth-1.5/5 |
---|
1477 | elif x[i] >= 0.8 + (y[i]-1.5)/1.2: |
---|
1478 | #RHS plateaux |
---|
1479 | z[i] = plateaux |
---|
1480 | |
---|
1481 | |
---|
1482 | #Hole in weir (slightly higher than inflow condition) |
---|
1483 | if x[i] >= 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
1484 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
1485 | |
---|
1486 | #Channel behind weir |
---|
1487 | x0 = 0.5 |
---|
1488 | if x[i] >= 0.4 and x[i] < x0 and y[i] > 0.2 and y[i] < 0.4: |
---|
1489 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
1490 | |
---|
1491 | if x[i] >= x0 and x[i] < 0.6 and y[i] > 0.2 and y[i] < 0.4: |
---|
1492 | #Flatten it out towards the end |
---|
1493 | z[i] = -x0+self.inflow_stage + 0.02 + (x0-x[i])/5 |
---|
1494 | |
---|
1495 | #Hole to the east |
---|
1496 | x0 = 1.1; y0 = 0.35 |
---|
1497 | #if x[i] < -0.2 and y < 0.5: |
---|
1498 | if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
1499 | z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-1.0 |
---|
1500 | |
---|
1501 | #Tiny channel draining hole |
---|
1502 | if x[i] >= 1.14 and x[i] < 1.2 and y[i] >= 0.4 and y[i] < 0.6: |
---|
1503 | z[i] = -0.9 #North south |
---|
1504 | |
---|
1505 | if x[i] >= 0.9 and x[i] < 1.18 and y[i] >= 0.58 and y[i] < 0.65: |
---|
1506 | z[i] = -1.0 + (x[i]-0.9)/3 #East west |
---|
1507 | |
---|
1508 | |
---|
1509 | |
---|
1510 | #Stuff not in use |
---|
1511 | |
---|
1512 | #Upward slope at inlet to the north west |
---|
1513 | #if x[i] < 0.0: # and y[i] > 0.5: |
---|
1514 | # #z[i] = -y[i]+0.5 #-x[i]/2 |
---|
1515 | # z[i] = x[i]/4 - y[i]**2 + 0.5 |
---|
1516 | |
---|
1517 | #Hole to the west |
---|
1518 | #x0 = -0.4; y0 = 0.35 # center |
---|
1519 | #if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
1520 | # z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-0.2 |
---|
1521 | |
---|
1522 | |
---|
1523 | |
---|
1524 | |
---|
1525 | |
---|
1526 | return z/2 |
---|
1527 | |
---|
1528 | class Weir_simple: |
---|
1529 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
1530 | x,y are assumed to be in the unit square |
---|
1531 | """ |
---|
1532 | |
---|
1533 | def __init__(self, stage): |
---|
1534 | self.inflow_stage = stage |
---|
1535 | |
---|
1536 | def __call__(self, x, y): |
---|
1537 | from Numeric import zeros, Float |
---|
1538 | |
---|
1539 | N = len(x) |
---|
1540 | assert N == len(y) |
---|
1541 | |
---|
1542 | z = zeros(N, Float) |
---|
1543 | for i in range(N): |
---|
1544 | z[i] = -x[i] #General slope |
---|
1545 | |
---|
1546 | #Flat bit to the left |
---|
1547 | if x[i] < 0.3: |
---|
1548 | z[i] = -x[i]/10 #General slope |
---|
1549 | |
---|
1550 | #Weir |
---|
1551 | if x[i] > 0.3 and x[i] < 0.4: |
---|
1552 | z[i] = -x[i]+0.9 |
---|
1553 | |
---|
1554 | #Dip |
---|
1555 | if x[i] > 0.6 and x[i] < 0.9: |
---|
1556 | z[i] = -x[i]-0.5 #-y[i]/5 |
---|
1557 | |
---|
1558 | #Hole in weir (slightly higher than inflow condition) |
---|
1559 | if x[i] > 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
1560 | z[i] = -x[i]+self.inflow_stage + 0.05 |
---|
1561 | |
---|
1562 | |
---|
1563 | return z/2 |
---|
1564 | |
---|
1565 | |
---|
1566 | |
---|
1567 | class Constant_stage: |
---|
1568 | """Set an initial condition with constant stage |
---|
1569 | """ |
---|
1570 | def __init__(self, s): |
---|
1571 | self.s = s |
---|
1572 | |
---|
1573 | def __call__(self, x, y): |
---|
1574 | return self.s |
---|
1575 | |
---|
1576 | class Constant_height: |
---|
1577 | """Set an initial condition with constant water height, e.g |
---|
1578 | stage s = z+h |
---|
1579 | """ |
---|
1580 | |
---|
1581 | def __init__(self, W, h): |
---|
1582 | self.W = W |
---|
1583 | self.h = h |
---|
1584 | |
---|
1585 | def __call__(self, x, y): |
---|
1586 | if self.W is None: |
---|
1587 | from Numeric import ones, Float |
---|
1588 | return self.h*ones(len(x), Float) |
---|
1589 | else: |
---|
1590 | return self.W(x,y) + self.h |
---|
1591 | |
---|
1592 | |
---|
1593 | |
---|
1594 | |
---|
1595 | def compute_fluxes_python(domain): |
---|
1596 | """Compute all fluxes and the timestep suitable for all volumes |
---|
1597 | in domain. |
---|
1598 | |
---|
1599 | Compute total flux for each conserved quantity using "flux_function" |
---|
1600 | |
---|
1601 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
1602 | Resulting flux is then scaled by area and stored in |
---|
1603 | explicit_update for each of the three conserved quantities |
---|
1604 | stage, xmomentum and ymomentum |
---|
1605 | |
---|
1606 | The maximal allowable speed computed by the flux_function for each volume |
---|
1607 | is converted to a timestep that must not be exceeded. The minimum of |
---|
1608 | those is computed as the next overall timestep. |
---|
1609 | |
---|
1610 | Post conditions: |
---|
1611 | domain.explicit_update is reset to computed flux values |
---|
1612 | domain.timestep is set to the largest step satisfying all volumes. |
---|
1613 | """ |
---|
1614 | |
---|
1615 | import sys |
---|
1616 | from Numeric import zeros, Float |
---|
1617 | |
---|
1618 | N = domain.number_of_elements |
---|
1619 | |
---|
1620 | #Shortcuts |
---|
1621 | Stage = domain.quantities['stage'] |
---|
1622 | Xmom = domain.quantities['xmomentum'] |
---|
1623 | Ymom = domain.quantities['ymomentum'] |
---|
1624 | Bed = domain.quantities['elevation'] |
---|
1625 | |
---|
1626 | #Arrays |
---|
1627 | stage = Stage.edge_values |
---|
1628 | xmom = Xmom.edge_values |
---|
1629 | ymom = Ymom.edge_values |
---|
1630 | bed = Bed.edge_values |
---|
1631 | |
---|
1632 | stage_bdry = Stage.boundary_values |
---|
1633 | xmom_bdry = Xmom.boundary_values |
---|
1634 | ymom_bdry = Ymom.boundary_values |
---|
1635 | |
---|
1636 | flux = zeros((N,3), Float) #Work array for summing up fluxes |
---|
1637 | |
---|
1638 | #Loop |
---|
1639 | timestep = float(sys.maxint) |
---|
1640 | for k in range(N): |
---|
1641 | |
---|
1642 | for i in range(3): |
---|
1643 | #Quantities inside volume facing neighbour i |
---|
1644 | ql = [stage[k, i], xmom[k, i], ymom[k, i]] |
---|
1645 | zl = bed[k, i] |
---|
1646 | |
---|
1647 | #Quantities at neighbour on nearest face |
---|
1648 | n = domain.neighbours[k,i] |
---|
1649 | if n < 0: |
---|
1650 | m = -n-1 #Convert negative flag to index |
---|
1651 | qr = [stage_bdry[m], xmom_bdry[m], ymom_bdry[m]] |
---|
1652 | zr = zl #Extend bed elevation to boundary |
---|
1653 | else: |
---|
1654 | m = domain.neighbour_edges[k,i] |
---|
1655 | qr = [stage[n, m], xmom[n, m], ymom[n, m]] |
---|
1656 | zr = bed[n, m] |
---|
1657 | |
---|
1658 | |
---|
1659 | #Outward pointing normal vector |
---|
1660 | normal = domain.normals[k, 2*i:2*i+2] |
---|
1661 | |
---|
1662 | #Flux computation using provided function |
---|
1663 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
1664 | |
---|
1665 | flux[k,:] = edgeflux |
---|
1666 | |
---|
1667 | return flux |
---|
1668 | |
---|
1669 | |
---|
1670 | |
---|
1671 | |
---|
1672 | |
---|
1673 | |
---|
1674 | |
---|
1675 | ############################################## |
---|
1676 | #Initialise module |
---|
1677 | |
---|
1678 | |
---|
1679 | import compile |
---|
1680 | if compile.can_use_C_extension('shallow_water_ext.c'): |
---|
1681 | #Replace python version with c implementations |
---|
1682 | |
---|
1683 | from shallow_water_ext import rotate, assign_windfield_values |
---|
1684 | compute_fluxes = compute_fluxes_c |
---|
1685 | extrapolate_second_order_sw=extrapolate_second_order_sw_c |
---|
1686 | gravity = gravity_c |
---|
1687 | manning_friction = manning_friction_c |
---|
1688 | h_limiter = h_limiter_c |
---|
1689 | balance_deep_and_shallow = balance_deep_and_shallow_c |
---|
1690 | protect_against_infinitesimal_and_negative_heights = protect_against_infinitesimal_and_negative_heights_c |
---|
1691 | |
---|
1692 | |
---|
1693 | #distribute_to_vertices_and_edges = distribute_to_vertices_and_edges_c |
---|
1694 | |
---|
1695 | |
---|
1696 | |
---|
1697 | #Optimisation with psyco |
---|
1698 | from config import use_psyco |
---|
1699 | if use_psyco: |
---|
1700 | try: |
---|
1701 | import psyco |
---|
1702 | except: |
---|
1703 | import os |
---|
1704 | if os.name == 'posix' and os.uname()[4] == 'x86_64': |
---|
1705 | pass |
---|
1706 | #Psyco isn't supported on 64 bit systems, but it doesn't matter |
---|
1707 | else: |
---|
1708 | msg = 'WARNING: psyco (speedup) could not import'+\ |
---|
1709 | ', you may want to consider installing it' |
---|
1710 | print msg |
---|
1711 | else: |
---|
1712 | psyco.bind(Domain.distribute_to_vertices_and_edges) |
---|
1713 | psyco.bind(Domain.compute_fluxes) |
---|
1714 | |
---|
1715 | if __name__ == "__main__": |
---|
1716 | pass |
---|