1 | """Class Domain - |
---|
2 | 2D triangular domains for finite-volume computations of |
---|
3 | the shallow water wave equation. |
---|
4 | |
---|
5 | This module contains a specialisation of class Domain from module domain.py |
---|
6 | consisting of methods specific to the Shallow Water Wave Equation |
---|
7 | |
---|
8 | FIXME: Write equations here! |
---|
9 | |
---|
10 | |
---|
11 | Conserved quantities are w (water level or stage), uh (x momentum) |
---|
12 | and vh (y momentum). |
---|
13 | |
---|
14 | |
---|
15 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
16 | Geoscience Australia, 2004 |
---|
17 | """ |
---|
18 | |
---|
19 | from domain import * |
---|
20 | Generic_domain = Domain #Rename |
---|
21 | |
---|
22 | class Domain(Generic_domain): |
---|
23 | |
---|
24 | def __init__(self, coordinates, vertices, boundary = None): |
---|
25 | |
---|
26 | conserved_quantities = ['level', 'xmomentum', 'ymomentum'] |
---|
27 | other_quantities = ['elevation', 'friction'] |
---|
28 | |
---|
29 | Generic_domain.__init__(self, coordinates, vertices, boundary, |
---|
30 | conserved_quantities, other_quantities) |
---|
31 | |
---|
32 | from config import minimum_allowed_height, g |
---|
33 | self.minimum_allowed_height = minimum_allowed_height |
---|
34 | self.g = g |
---|
35 | |
---|
36 | self.forcing_terms.append(gravity) |
---|
37 | self.forcing_terms.append(manning_friction) |
---|
38 | |
---|
39 | #Fixme: Perhaps establish shortcuts tp relevant quantities |
---|
40 | #once and for all (for efficiency) |
---|
41 | |
---|
42 | def check_integrity(self): |
---|
43 | Generic_domain.check_integrity(self) |
---|
44 | |
---|
45 | #Check that we are solving the shallow water wave equation |
---|
46 | |
---|
47 | msg = 'First conserved quantity must be "level"' |
---|
48 | assert self.conserved_quantities[0] == 'level', msg |
---|
49 | msg = 'Second conserved quantity must be "xmomentum"' |
---|
50 | assert self.conserved_quantities[1] == 'xmomentum', msg |
---|
51 | msg = 'Third conserved quantity must be "ymomentum"' |
---|
52 | assert self.conserved_quantities[2] == 'ymomentum', msg |
---|
53 | |
---|
54 | |
---|
55 | #Check that levels are >= bed elevation |
---|
56 | from Numeric import alltrue, greater_equal |
---|
57 | |
---|
58 | level = self.quantities['level'] |
---|
59 | bed = self.quantities['elevation'] |
---|
60 | |
---|
61 | msg = 'All water levels must be greater than the bed elevation' |
---|
62 | assert alltrue( greater_equal( |
---|
63 | level.vertex_values, bed.vertex_values )), msg |
---|
64 | |
---|
65 | assert alltrue( greater_equal( |
---|
66 | level.edge_values, bed.edge_values )), msg |
---|
67 | |
---|
68 | assert alltrue( greater_equal( |
---|
69 | level.centroid_values, bed.centroid_values )), msg |
---|
70 | |
---|
71 | |
---|
72 | def compute_fluxes(self): |
---|
73 | #Call correct module function |
---|
74 | #(either from this module or C-extension) |
---|
75 | compute_fluxes(self) |
---|
76 | |
---|
77 | def distribute_to_vertices_and_edges(self): |
---|
78 | #Call correct module function |
---|
79 | #(either from this module or C-extension) |
---|
80 | distribute_to_vertices_and_edges(self) |
---|
81 | |
---|
82 | |
---|
83 | |
---|
84 | #Rotation of momentum vector |
---|
85 | def rotate(q, normal, direction = 1): |
---|
86 | """Rotate the momentum component q (q[1], q[2]) |
---|
87 | from x,y coordinates to coordinates based on normal vector. |
---|
88 | |
---|
89 | If direction is negative the rotation is inverted. |
---|
90 | |
---|
91 | Input vector is preserved |
---|
92 | |
---|
93 | This function is specific to the shallow water wave equation |
---|
94 | """ |
---|
95 | |
---|
96 | #FIXME: Needs to be tested |
---|
97 | |
---|
98 | from Numeric import zeros, Float |
---|
99 | |
---|
100 | assert len(q) == 3,\ |
---|
101 | 'Vector of conserved quantities must have length 3'\ |
---|
102 | 'for 2D shallow water equation' |
---|
103 | |
---|
104 | try: |
---|
105 | l = len(normal) |
---|
106 | except: |
---|
107 | raise 'Normal vector must be an Numeric array' |
---|
108 | |
---|
109 | #FIXME: Put this test into C-extension as well |
---|
110 | assert l == 2, 'Normal vector must have 2 components' |
---|
111 | |
---|
112 | |
---|
113 | n1 = normal[0] |
---|
114 | n2 = normal[1] |
---|
115 | |
---|
116 | r = zeros(len(q), Float) #Rotated quantities |
---|
117 | r[0] = q[0] #First quantity, height, is not rotated |
---|
118 | |
---|
119 | if direction == -1: |
---|
120 | n2 = -n2 |
---|
121 | |
---|
122 | |
---|
123 | r[1] = n1*q[1] + n2*q[2] |
---|
124 | r[2] = -n2*q[1] + n1*q[2] |
---|
125 | |
---|
126 | return r |
---|
127 | |
---|
128 | |
---|
129 | |
---|
130 | #################################### |
---|
131 | # Flux computation |
---|
132 | def flux_function(normal, ql, qr, zl, zr): |
---|
133 | """Compute fluxes between volumes for the shallow water wave equation |
---|
134 | cast in terms of w = h+z using the 'central scheme' as described in |
---|
135 | |
---|
136 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
137 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
138 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
139 | |
---|
140 | The implemented formula is given in equation (3.15) on page 714 |
---|
141 | |
---|
142 | Conserved quantities w, uh, vh are stored as elements 0, 1 and 2 |
---|
143 | in the numerical vectors ql an qr. |
---|
144 | |
---|
145 | Bed elevations zl and zr. |
---|
146 | """ |
---|
147 | |
---|
148 | from config import g, epsilon |
---|
149 | from math import sqrt |
---|
150 | from Numeric import array |
---|
151 | |
---|
152 | #Align momentums with x-axis |
---|
153 | q_left = rotate(ql, normal, direction = 1) |
---|
154 | q_right = rotate(qr, normal, direction = 1) |
---|
155 | |
---|
156 | z = (zl+zr)/2 #Take average of field values |
---|
157 | |
---|
158 | w_left = q_left[0] #w=h+z |
---|
159 | h_left = w_left-z |
---|
160 | uh_left = q_left[1] |
---|
161 | |
---|
162 | if h_left < epsilon: |
---|
163 | u_left = 0.0 #Could have been negative |
---|
164 | h_left = 0.0 |
---|
165 | else: |
---|
166 | u_left = uh_left/h_left |
---|
167 | |
---|
168 | |
---|
169 | w_right = q_right[0] #w=h+z |
---|
170 | h_right = w_right-z |
---|
171 | uh_right = q_right[1] |
---|
172 | |
---|
173 | |
---|
174 | if h_right < epsilon: |
---|
175 | u_right = 0.0 #Could have been negative |
---|
176 | h_right = 0.0 |
---|
177 | else: |
---|
178 | u_right = uh_right/h_right |
---|
179 | |
---|
180 | vh_left = q_left[2] |
---|
181 | vh_right = q_right[2] |
---|
182 | |
---|
183 | soundspeed_left = sqrt(g*h_left) |
---|
184 | soundspeed_right = sqrt(g*h_right) |
---|
185 | |
---|
186 | #Maximal wave speed |
---|
187 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right, 0) |
---|
188 | |
---|
189 | #Minimal wave speed |
---|
190 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right, 0) |
---|
191 | |
---|
192 | #Flux computation |
---|
193 | flux_left = array([u_left*h_left, |
---|
194 | u_left*uh_left + 0.5*g*h_left**2, |
---|
195 | u_left*vh_left]) |
---|
196 | flux_right = array([u_right*h_right, |
---|
197 | u_right*uh_right + 0.5*g*h_right**2, |
---|
198 | u_right*vh_right]) |
---|
199 | |
---|
200 | denom = s_max-s_min |
---|
201 | if denom == 0.0: |
---|
202 | edgeflux = array([0.0, 0.0, 0.0]) |
---|
203 | max_speed = 0.0 |
---|
204 | else: |
---|
205 | edgeflux = (s_max*flux_left - s_min*flux_right)/denom |
---|
206 | edgeflux += s_max*s_min*(q_right-q_left)/denom |
---|
207 | |
---|
208 | edgeflux = rotate(edgeflux, normal, direction=-1) |
---|
209 | max_speed = max(abs(s_max), abs(s_min)) |
---|
210 | |
---|
211 | return edgeflux, max_speed |
---|
212 | |
---|
213 | |
---|
214 | def compute_fluxes(domain): |
---|
215 | """Compute all fluxes and the timestep suitable for all volumes |
---|
216 | in domain. |
---|
217 | |
---|
218 | Compute total flux for each conserved quantity using "flux_function" |
---|
219 | |
---|
220 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
221 | Resulting flux is then scaled by area and stored in |
---|
222 | explicit_update for each of the three conserved quantities |
---|
223 | level, xmomentum and ymomentum |
---|
224 | |
---|
225 | The maximal allowable speed computed by the flux_function for each volume |
---|
226 | is converted to a timestep that must not be exceeded. The minimum of |
---|
227 | those is computed as the next overall timestep. |
---|
228 | |
---|
229 | Post conditions: |
---|
230 | domain.explicit_update is reset to computed flux values |
---|
231 | domain.timestep is set to the largest step satisfying all volumes. |
---|
232 | """ |
---|
233 | |
---|
234 | import sys |
---|
235 | from Numeric import zeros, Float |
---|
236 | |
---|
237 | N = domain.number_of_elements |
---|
238 | |
---|
239 | #Shortcuts |
---|
240 | Level = domain.quantities['level'] |
---|
241 | Xmom = domain.quantities['xmomentum'] |
---|
242 | Ymom = domain.quantities['ymomentum'] |
---|
243 | Bed = domain.quantities['elevation'] |
---|
244 | |
---|
245 | #Arrays |
---|
246 | level = Level.edge_values |
---|
247 | xmom = Xmom.edge_values |
---|
248 | ymom = Ymom.edge_values |
---|
249 | bed = Bed.edge_values |
---|
250 | |
---|
251 | level_bdry = Level.boundary_values |
---|
252 | xmom_bdry = Xmom.boundary_values |
---|
253 | ymom_bdry = Ymom.boundary_values |
---|
254 | |
---|
255 | flux = zeros(3, Float) #Work array for summing up fluxes |
---|
256 | |
---|
257 | #Loop |
---|
258 | timestep = float(sys.maxint) |
---|
259 | for k in range(N): |
---|
260 | |
---|
261 | flux[:] = 0. #Reset work array |
---|
262 | for i in range(3): |
---|
263 | #Quantities inside volume facing neighbour i |
---|
264 | ql = [level[k, i], xmom[k, i], ymom[k, i]] |
---|
265 | zl = bed[k, i] |
---|
266 | |
---|
267 | #Quantities at neighbour on nearest face |
---|
268 | n = domain.neighbours[k,i] |
---|
269 | if n < 0: |
---|
270 | m = -n-1 #Convert negative flag to index |
---|
271 | qr = [level_bdry[m], xmom_bdry[m], ymom_bdry[m]] |
---|
272 | zr = zl #Extend bed elevation to boundary |
---|
273 | else: |
---|
274 | m = domain.neighbour_edges[k,i] |
---|
275 | qr = [level[n, m], xmom[n, m], ymom[n, m]] |
---|
276 | zr = bed[n, m] |
---|
277 | |
---|
278 | |
---|
279 | #Outward pointing normal vector |
---|
280 | normal = domain.normals[k, 2*i:2*i+2] |
---|
281 | |
---|
282 | #Flux computation using provided function |
---|
283 | edgeflux, max_speed = flux_function(normal, ql, qr, zl, zr) |
---|
284 | flux -= edgeflux * domain.edgelengths[k,i] |
---|
285 | |
---|
286 | #Update optimal_timestep |
---|
287 | try: |
---|
288 | timestep = min(timestep, domain.radii[k]/max_speed) |
---|
289 | except ZeroDivisionError: |
---|
290 | pass |
---|
291 | |
---|
292 | #Normalise by area and store for when all conserved |
---|
293 | #quantities get updated |
---|
294 | flux /= domain.areas[k] |
---|
295 | Level.explicit_update[k] = flux[0] |
---|
296 | Xmom.explicit_update[k] = flux[1] |
---|
297 | Ymom.explicit_update[k] = flux[2] |
---|
298 | |
---|
299 | domain.timestep = timestep |
---|
300 | |
---|
301 | |
---|
302 | def compute_fluxes_c(domain): |
---|
303 | """Wrapper calling C version of compute fluxes |
---|
304 | """ |
---|
305 | |
---|
306 | import sys |
---|
307 | from Numeric import zeros, Float |
---|
308 | |
---|
309 | N = domain.number_of_elements |
---|
310 | |
---|
311 | #Shortcuts |
---|
312 | Level = domain.quantities['level'] |
---|
313 | Xmom = domain.quantities['xmomentum'] |
---|
314 | Ymom = domain.quantities['ymomentum'] |
---|
315 | Bed = domain.quantities['elevation'] |
---|
316 | |
---|
317 | timestep = float(sys.maxint) |
---|
318 | from shallow_water_ext import compute_fluxes |
---|
319 | domain.timestep = compute_fluxes(timestep, domain.epsilon, domain.g, |
---|
320 | domain.neighbours, |
---|
321 | domain.neighbour_edges, |
---|
322 | domain.normals, |
---|
323 | domain.edgelengths, |
---|
324 | domain.radii, |
---|
325 | domain.areas, |
---|
326 | Level.edge_values, |
---|
327 | Xmom.edge_values, |
---|
328 | Ymom.edge_values, |
---|
329 | Bed.edge_values, |
---|
330 | Level.boundary_values, |
---|
331 | Xmom.boundary_values, |
---|
332 | Ymom.boundary_values, |
---|
333 | Level.explicit_update, |
---|
334 | Xmom.explicit_update, |
---|
335 | Ymom.explicit_update) |
---|
336 | |
---|
337 | |
---|
338 | #################################### |
---|
339 | # Module functions for gradient limiting (distribute_to_vertices_and_edges) |
---|
340 | |
---|
341 | def distribute_to_vertices_and_edges(domain): |
---|
342 | |
---|
343 | protect_against_infintesimal_and_negative_heights(domain) |
---|
344 | if domain.order == 1: |
---|
345 | extrapolate_first_order(domain) |
---|
346 | elif domain.order == 2: |
---|
347 | extrapolate_second_order(domain) |
---|
348 | else: |
---|
349 | raise 'Unknown order' |
---|
350 | |
---|
351 | #Compute edge values |
---|
352 | for name in domain.conserved_quantities: |
---|
353 | Q = domain.quantities[name] |
---|
354 | Q.interpolate_from_vertices_to_edges() |
---|
355 | |
---|
356 | |
---|
357 | |
---|
358 | def protect_against_infintesimal_and_negative_heights(domain): |
---|
359 | """Protect against infinitesimal heights and associated high velocities |
---|
360 | """ |
---|
361 | |
---|
362 | #Shortcuts |
---|
363 | wc = domain.quantities['level'].centroid_values |
---|
364 | zc = domain.quantities['elevation'].centroid_values |
---|
365 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
366 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
367 | hc = wc - zc #Water depths at centroids |
---|
368 | |
---|
369 | #Update |
---|
370 | for k in range(domain.number_of_elements): |
---|
371 | if domain.newstyle: |
---|
372 | if hc[k] < domain.minimum_allowed_height: |
---|
373 | if hc[k] < 0.0: |
---|
374 | #Control level and height |
---|
375 | wc[k] = zc[k]; hc[k] = 0.0 |
---|
376 | |
---|
377 | #Control momentum |
---|
378 | xmomc[k] = ymomc[k] = 0.0 |
---|
379 | else: |
---|
380 | if hc[k] < 0.0: |
---|
381 | #Control level and height |
---|
382 | wc[k] = zc[k]; hc[k] = 0.0 |
---|
383 | |
---|
384 | #Control momentum |
---|
385 | xmomc[k] = ymomc[k] = 0.0 |
---|
386 | |
---|
387 | |
---|
388 | def extrapolate_first_order(domain): |
---|
389 | """First order extrapolator function, specific |
---|
390 | to the shallow water wave equation. |
---|
391 | |
---|
392 | It will ensure that h (w-z) is always non-negative even in the |
---|
393 | presence of steep bed-slopes (see comment in code) |
---|
394 | In addition, momemtums get distributed as constant values. |
---|
395 | |
---|
396 | Precondition: |
---|
397 | All quantities defined at centroids and bed elevation defined at |
---|
398 | vertices. |
---|
399 | |
---|
400 | Postcondition |
---|
401 | Conserved quantities defined at vertices |
---|
402 | """ |
---|
403 | |
---|
404 | #Shortcuts |
---|
405 | wc = domain.quantities['level'].centroid_values |
---|
406 | zc = domain.quantities['elevation'].centroid_values |
---|
407 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
408 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
409 | hc = wc - zc #Water depths at centroids |
---|
410 | |
---|
411 | |
---|
412 | if not domain.newstyle: |
---|
413 | #Protect against infinitesimal heights and high speeds at_centroid |
---|
414 | #FIXME: To be phased out |
---|
415 | |
---|
416 | for k in range(domain.number_of_elements): |
---|
417 | #Protect against infinitesimal heights and high velocities |
---|
418 | if hc[k] < domain.minimum_allowed_height: |
---|
419 | #Control level and height |
---|
420 | if hc[k] < 0.0: |
---|
421 | wc[k] = zc[k]; hc[k] = 0.0# |
---|
422 | |
---|
423 | #Control momentum |
---|
424 | xmomc[k] = ymomc[k] = 0.0 |
---|
425 | |
---|
426 | |
---|
427 | #Update conserved quantities using straight first order |
---|
428 | for name in domain.conserved_quantities: |
---|
429 | Q = domain.quantities[name] |
---|
430 | Q.extrapolate_first_order() |
---|
431 | |
---|
432 | |
---|
433 | |
---|
434 | if domain.newstyle: |
---|
435 | balance_deep_and_shallow(domain) #This will be better |
---|
436 | else: |
---|
437 | old_first_order_balancing_of_deep_and_shallow(domain) #Tests will pass |
---|
438 | |
---|
439 | |
---|
440 | |
---|
441 | |
---|
442 | def extrapolate_second_order(domain): |
---|
443 | """Second order limiter function, specific to the shallow water wave |
---|
444 | equation. |
---|
445 | |
---|
446 | It will ensure that h (w-z) is always non-negative even in the |
---|
447 | presence of steep bed-slopes (see comment in code) |
---|
448 | |
---|
449 | A weighted average between shallow |
---|
450 | and deep cases is as in the first order case. |
---|
451 | |
---|
452 | In addition, all conserved quantities get distributed as per a |
---|
453 | piecewise linear function. |
---|
454 | FIXME: more explanation about removal of artificial variability etc |
---|
455 | |
---|
456 | Precondition: |
---|
457 | All quantities defined at centroids and bed elevation defined at |
---|
458 | vertices. |
---|
459 | |
---|
460 | Postcondition |
---|
461 | Conserved quantities defined at vertices |
---|
462 | |
---|
463 | """ |
---|
464 | |
---|
465 | |
---|
466 | #Update conserved quantities using straight second order with limiter |
---|
467 | for name in domain.conserved_quantities: |
---|
468 | Q = domain.quantities[name] |
---|
469 | Q.extrapolate_second_order() |
---|
470 | Q.limit() |
---|
471 | |
---|
472 | balance_deep_and_shallow(domain) |
---|
473 | |
---|
474 | |
---|
475 | def balance_deep_and_shallow(domain): |
---|
476 | """Compute linear combination between stage as computed by gradient-limiters and |
---|
477 | stage computed as constant height above bed. |
---|
478 | The former takes precedence when heights are large compared to the bed slope while the latter |
---|
479 | takes precedence when heights are relatively small. |
---|
480 | Anything in between is computed as a balanced linear combination in order to avoid numerical |
---|
481 | disturbances which would otherwise appear as a result of hard switching between modes. |
---|
482 | """ |
---|
483 | |
---|
484 | #Shortcuts |
---|
485 | wc = domain.quantities['level'].centroid_values |
---|
486 | zc = domain.quantities['elevation'].centroid_values |
---|
487 | hc = wc - zc |
---|
488 | |
---|
489 | wv = domain.quantities['level'].vertex_values |
---|
490 | zv = domain.quantities['elevation'].vertex_values |
---|
491 | hv = wv-zv |
---|
492 | |
---|
493 | |
---|
494 | #Computed linear combination between constant levels and and |
---|
495 | #levels parallel to the bed elevation. |
---|
496 | for k in range(domain.number_of_elements): |
---|
497 | #Compute maximal variation in bed elevation |
---|
498 | # This quantitiy is |
---|
499 | # dz = max_i abs(z_i - z_c) |
---|
500 | # and it is independent of dimension |
---|
501 | # In the 1d case zc = (z0+z1)/2 |
---|
502 | # In the 2d case zc = (z0+z1+z2)/3 |
---|
503 | |
---|
504 | dz = max(abs(zv[k,0]-zc[k]), |
---|
505 | abs(zv[k,1]-zc[k]), |
---|
506 | abs(zv[k,2]-zc[k])) |
---|
507 | |
---|
508 | |
---|
509 | hmin = min( hv[k,:] ) |
---|
510 | |
---|
511 | #Create alpha in [0,1], where alpha==0 means using shallow |
---|
512 | #first order scheme and alpha==1 means using the stage w as |
---|
513 | #computed by the gradient limiter (1st or 2nd order) |
---|
514 | # |
---|
515 | #If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
516 | #If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
517 | |
---|
518 | if dz > 0.0: |
---|
519 | alpha = max( min( 2*hmin/dz, 1.0), 0.0 ) |
---|
520 | else: |
---|
521 | #Flat bed |
---|
522 | alpha = 1.0 |
---|
523 | |
---|
524 | |
---|
525 | #Weighted balance between stage parallel to bed elevation |
---|
526 | #(wvi = zvi + hc) and stage as computed by 1st or 2nd |
---|
527 | #order gradient limiter |
---|
528 | #(wvi = zvi + hvi) where i=0,1,2 denotes the vertex ids |
---|
529 | # |
---|
530 | #It follows that the updated wvi is |
---|
531 | # wvi := (1-alpha)*(zvi+hc) + alpha*(zvi+hvi) = |
---|
532 | # zvi + hc + alpha*(hvi - hc) |
---|
533 | # |
---|
534 | #Note that hvi = zc+hc-zvi in the first order case (constant). |
---|
535 | |
---|
536 | if alpha < 1: |
---|
537 | for i in range(3): |
---|
538 | wv[k,i] = zv[k,i] + hc[k] + alpha*(hv[k,i]-hc[k]) |
---|
539 | |
---|
540 | |
---|
541 | #Momentums at centroids |
---|
542 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
543 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
544 | |
---|
545 | #Momentums at vertices |
---|
546 | xmomv = domain.quantities['xmomentum'].vertex_values |
---|
547 | ymomv = domain.quantities['ymomentum'].vertex_values |
---|
548 | |
---|
549 | # Update momentum as a linear combination of |
---|
550 | # xmomc and ymomc (shallow) and momentum |
---|
551 | # from extrapolator xmomv and ymomv (deep). |
---|
552 | xmomv[k,:] = (1-alpha)*xmomc[k] + alpha*xmomv[k,:]; |
---|
553 | ymomv[k,:] = (1-alpha)*ymomc[k] + alpha*ymomv[k,:]; |
---|
554 | |
---|
555 | |
---|
556 | |
---|
557 | |
---|
558 | ############################################### |
---|
559 | #Boundary - specific to the shallow water wave equation |
---|
560 | class Reflective_boundary(Boundary): |
---|
561 | """Reflective boundary returns same conserved quantities as |
---|
562 | those present in its neighbour volume but reflected. |
---|
563 | |
---|
564 | This class is specific to the shallow water equation as it |
---|
565 | works with the momentum quantities assumed to be the second |
---|
566 | and third conserved quantities. |
---|
567 | """ |
---|
568 | |
---|
569 | def __init__(self, domain = None): |
---|
570 | Boundary.__init__(self) |
---|
571 | |
---|
572 | if domain is None: |
---|
573 | msg = 'Domain must be specified for reflective boundary' |
---|
574 | raise msg |
---|
575 | |
---|
576 | self.domain = domain |
---|
577 | |
---|
578 | |
---|
579 | def __repr__(self): |
---|
580 | return 'Reflective_boundary' |
---|
581 | |
---|
582 | |
---|
583 | def evaluate(self, vol_id, edge_id): |
---|
584 | """Reflective boundaries reverses the outward momentum |
---|
585 | of the volume they serve. |
---|
586 | """ |
---|
587 | |
---|
588 | q = self.domain.get_conserved_quantities(vol_id, edge = edge_id) |
---|
589 | normal = self.domain.get_normal(vol_id, edge_id) |
---|
590 | |
---|
591 | r = rotate(q, normal, direction = 1) |
---|
592 | r[1] = -r[1] |
---|
593 | q = rotate(r, normal, direction = -1) |
---|
594 | |
---|
595 | return q |
---|
596 | |
---|
597 | |
---|
598 | ######################### |
---|
599 | #Standard forcing terms: |
---|
600 | # |
---|
601 | def gravity(domain): |
---|
602 | """Implement forcing function for bed slope working with |
---|
603 | consecutive data structures of class Volume |
---|
604 | """ |
---|
605 | |
---|
606 | from util import gradient |
---|
607 | from Numeric import zeros, Float, array, sum |
---|
608 | |
---|
609 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
610 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
611 | |
---|
612 | Level = domain.quantities['level'] |
---|
613 | Elevation = domain.quantities['elevation'] |
---|
614 | h = Level.edge_values - Elevation.edge_values |
---|
615 | v = Elevation.vertex_values |
---|
616 | |
---|
617 | x = domain.get_vertex_coordinates() |
---|
618 | g = domain.g |
---|
619 | |
---|
620 | for k in range(domain.number_of_elements): |
---|
621 | avg_h = sum( h[k,:] )/3 |
---|
622 | |
---|
623 | #Compute bed slope |
---|
624 | x0, y0, x1, y1, x2, y2 = x[k,:] |
---|
625 | z0, z1, z2 = v[k,:] |
---|
626 | |
---|
627 | zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
628 | |
---|
629 | #Update momentum |
---|
630 | xmom[k] += -g*zx*avg_h |
---|
631 | ymom[k] += -g*zy*avg_h |
---|
632 | |
---|
633 | |
---|
634 | def gravity_c(domain): |
---|
635 | """Wrapper calling C version |
---|
636 | """ |
---|
637 | |
---|
638 | xmom = domain.quantities['xmomentum'].explicit_update |
---|
639 | ymom = domain.quantities['ymomentum'].explicit_update |
---|
640 | |
---|
641 | Level = domain.quantities['level'] |
---|
642 | Elevation = domain.quantities['elevation'] |
---|
643 | h = Level.edge_values - Elevation.edge_values |
---|
644 | v = Elevation.vertex_values |
---|
645 | |
---|
646 | x = domain.get_vertex_coordinates() |
---|
647 | g = domain.g |
---|
648 | |
---|
649 | |
---|
650 | from shallow_water_ext import gravity |
---|
651 | gravity(g, h, v, x, xmom, ymom) |
---|
652 | |
---|
653 | |
---|
654 | def manning_friction(domain): |
---|
655 | """Apply (Manning) friction to water momentum |
---|
656 | """ |
---|
657 | |
---|
658 | from math import sqrt |
---|
659 | |
---|
660 | w = domain.quantities['level'].centroid_values |
---|
661 | uh = domain.quantities['xmomentum'].centroid_values |
---|
662 | vh = domain.quantities['ymomentum'].centroid_values |
---|
663 | eta = domain.quantities['friction'].centroid_values |
---|
664 | |
---|
665 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
666 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
667 | |
---|
668 | N = domain.number_of_elements |
---|
669 | eps = domain.minimum_allowed_height |
---|
670 | g = domain.g |
---|
671 | |
---|
672 | for k in range(N): |
---|
673 | if w[k] >= eps: |
---|
674 | S = -g * eta[k]**2 * sqrt((uh[k]**2 + vh[k]**2)) |
---|
675 | S /= w[k]**(7.0/3) |
---|
676 | |
---|
677 | #Update momentum |
---|
678 | xmom_update[k] += S*uh[k] |
---|
679 | ymom_update[k] += S*vh[k] |
---|
680 | |
---|
681 | |
---|
682 | def manning_friction_c(domain): |
---|
683 | """Wrapper for c version |
---|
684 | """ |
---|
685 | |
---|
686 | |
---|
687 | w = domain.quantities['level'].centroid_values |
---|
688 | uh = domain.quantities['xmomentum'].centroid_values |
---|
689 | vh = domain.quantities['ymomentum'].centroid_values |
---|
690 | eta = domain.quantities['friction'].centroid_values |
---|
691 | |
---|
692 | xmom_update = domain.quantities['xmomentum'].semi_implicit_update |
---|
693 | ymom_update = domain.quantities['ymomentum'].semi_implicit_update |
---|
694 | |
---|
695 | N = domain.number_of_elements |
---|
696 | eps = domain.minimum_allowed_height |
---|
697 | g = domain.g |
---|
698 | |
---|
699 | from shallow_water_ext import manning_friction |
---|
700 | manning_friction(g, eps, w, uh, vh, eta, xmom_update, ymom_update) |
---|
701 | |
---|
702 | |
---|
703 | ########################### |
---|
704 | ########################### |
---|
705 | #Geometries |
---|
706 | |
---|
707 | |
---|
708 | #FIXME: Rethink this way of creating values. |
---|
709 | |
---|
710 | |
---|
711 | class Weir: |
---|
712 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
713 | x,y are assumed to be in the unit square |
---|
714 | """ |
---|
715 | |
---|
716 | def __init__(self, stage): |
---|
717 | self.inflow_stage = stage |
---|
718 | |
---|
719 | def __call__(self, x, y): |
---|
720 | from Numeric import zeros, Float |
---|
721 | from math import sqrt |
---|
722 | |
---|
723 | N = len(x) |
---|
724 | assert N == len(y) |
---|
725 | |
---|
726 | z = zeros(N, Float) |
---|
727 | for i in range(N): |
---|
728 | z[i] = -x[i]/2 #General slope |
---|
729 | |
---|
730 | #Flattish bit to the left |
---|
731 | if x[i] < 0.3: |
---|
732 | z[i] = -x[i]/10 |
---|
733 | |
---|
734 | #Weir |
---|
735 | if x[i] >= 0.3 and x[i] < 0.4: |
---|
736 | z[i] = -x[i]+0.9 |
---|
737 | |
---|
738 | #Dip |
---|
739 | x0 = 0.6 |
---|
740 | #depth = -1.3 |
---|
741 | depth = -1.0 |
---|
742 | #plateaux = -0.9 |
---|
743 | plateaux = -0.6 |
---|
744 | if y[i] < 0.7: |
---|
745 | if x[i] > x0 and x[i] < 0.9: |
---|
746 | z[i] = depth |
---|
747 | |
---|
748 | #RHS plateaux |
---|
749 | if x[i] >= 0.9: |
---|
750 | z[i] = plateaux |
---|
751 | |
---|
752 | |
---|
753 | elif y[i] >= 0.7 and y[i] < 1.5: |
---|
754 | #Restrict and deepen |
---|
755 | if x[i] >= x0 and x[i] < 0.8: |
---|
756 | z[i] = depth-(y[i]/3-0.3) |
---|
757 | #z[i] = depth-y[i]/5 |
---|
758 | #z[i] = depth |
---|
759 | elif x[i] >= 0.8: |
---|
760 | #RHS plateaux |
---|
761 | z[i] = plateaux |
---|
762 | |
---|
763 | elif y[i] >= 1.5: |
---|
764 | if x[i] >= x0 and x[i] < 0.8 + (y[i]-1.5)/1.2: |
---|
765 | #Widen up and stay at constant depth |
---|
766 | z[i] = depth-1.5/5 |
---|
767 | elif x[i] >= 0.8 + (y[i]-1.5)/1.2: |
---|
768 | #RHS plateaux |
---|
769 | z[i] = plateaux |
---|
770 | |
---|
771 | |
---|
772 | #Hole in weir (slightly higher than inflow condition) |
---|
773 | if x[i] >= 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
774 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
775 | |
---|
776 | #Channel behind weir |
---|
777 | x0 = 0.5 |
---|
778 | if x[i] >= 0.4 and x[i] < x0 and y[i] > 0.2 and y[i] < 0.4: |
---|
779 | z[i] = -x[i]+self.inflow_stage + 0.02 |
---|
780 | |
---|
781 | if x[i] >= x0 and x[i] < 0.6 and y[i] > 0.2 and y[i] < 0.4: |
---|
782 | #Flatten it out towards the end |
---|
783 | z[i] = -x0+self.inflow_stage + 0.02 + (x0-x[i])/5 |
---|
784 | |
---|
785 | #Hole to the east |
---|
786 | x0 = 1.1; y0 = 0.35 |
---|
787 | #if x[i] < -0.2 and y < 0.5: |
---|
788 | if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
789 | z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-1.0 |
---|
790 | |
---|
791 | #Tiny channel draining hole |
---|
792 | if x[i] >= 1.14 and x[i] < 1.2 and y[i] >= 0.4 and y[i] < 0.6: |
---|
793 | z[i] = -0.9 #North south |
---|
794 | |
---|
795 | if x[i] >= 0.9 and x[i] < 1.18 and y[i] >= 0.58 and y[i] < 0.65: |
---|
796 | z[i] = -1.0 + (x[i]-0.9)/3 #East west |
---|
797 | |
---|
798 | |
---|
799 | |
---|
800 | #Stuff not in use |
---|
801 | |
---|
802 | #Upward slope at inlet to the north west |
---|
803 | #if x[i] < 0.0: # and y[i] > 0.5: |
---|
804 | # #z[i] = -y[i]+0.5 #-x[i]/2 |
---|
805 | # z[i] = x[i]/4 - y[i]**2 + 0.5 |
---|
806 | |
---|
807 | #Hole to the west |
---|
808 | #x0 = -0.4; y0 = 0.35 # center |
---|
809 | #if sqrt((2*(x[i]-x0))**2 + (2*(y[i]-y0))**2) < 0.2: |
---|
810 | # z[i] = sqrt(((x[i]-x0))**2 + ((y[i]-y0))**2)-0.2 |
---|
811 | |
---|
812 | |
---|
813 | |
---|
814 | |
---|
815 | |
---|
816 | return z/2 |
---|
817 | |
---|
818 | class Weir_simple: |
---|
819 | """Set a bathymetry for weir with a hole and a downstream gutter |
---|
820 | x,y are assumed to be in the unit square |
---|
821 | """ |
---|
822 | |
---|
823 | def __init__(self, stage): |
---|
824 | self.inflow_stage = stage |
---|
825 | |
---|
826 | def __call__(self, x, y): |
---|
827 | from Numeric import zeros, Float |
---|
828 | |
---|
829 | N = len(x) |
---|
830 | assert N == len(y) |
---|
831 | |
---|
832 | z = zeros(N, Float) |
---|
833 | for i in range(N): |
---|
834 | z[i] = -x[i] #General slope |
---|
835 | |
---|
836 | #Flat bit to the left |
---|
837 | if x[i] < 0.3: |
---|
838 | z[i] = -x[i]/10 #General slope |
---|
839 | |
---|
840 | #Weir |
---|
841 | if x[i] > 0.3 and x[i] < 0.4: |
---|
842 | z[i] = -x[i]+0.9 |
---|
843 | |
---|
844 | #Dip |
---|
845 | if x[i] > 0.6 and x[i] < 0.9: |
---|
846 | z[i] = -x[i]-0.5 #-y[i]/5 |
---|
847 | |
---|
848 | #Hole in weir (slightly higher than inflow condition) |
---|
849 | if x[i] > 0.3 and x[i] < 0.4 and y[i] > 0.2 and y[i] < 0.4: |
---|
850 | z[i] = -x[i]+self.inflow_stage + 0.05 |
---|
851 | |
---|
852 | |
---|
853 | return z/2 |
---|
854 | |
---|
855 | |
---|
856 | |
---|
857 | class Constant_height: |
---|
858 | """Set an initial condition with constant water height, e.g |
---|
859 | stage s = z+h |
---|
860 | """ |
---|
861 | def __init__(self, W, h): |
---|
862 | self.W = W |
---|
863 | self.h = h |
---|
864 | |
---|
865 | def __call__(self, x, y): |
---|
866 | if self.W is None: |
---|
867 | from Numeric import ones, Float |
---|
868 | return self.h*ones(len(x), Float) |
---|
869 | else: |
---|
870 | return self.W(x,y) + self.h |
---|
871 | |
---|
872 | #STUFF |
---|
873 | |
---|
874 | |
---|
875 | def old_first_order_balancing_of_deep_and_shallow(domain): |
---|
876 | #FIXME: Will be obsolete, but keep comments from this one. |
---|
877 | |
---|
878 | #Computed weighted balance between constant levels and and |
---|
879 | #levels parallel to the bed elevation. |
---|
880 | wc = domain.quantities['level'].centroid_values |
---|
881 | zc = domain.quantities['elevation'].centroid_values |
---|
882 | xmomc = domain.quantities['xmomentum'].centroid_values |
---|
883 | ymomc = domain.quantities['ymomentum'].centroid_values |
---|
884 | hc = wc - zc #Water depths at centroids |
---|
885 | |
---|
886 | wv = domain.quantities['level'].vertex_values |
---|
887 | zv = domain.quantities['elevation'].vertex_values |
---|
888 | |
---|
889 | for k in range(domain.number_of_elements): |
---|
890 | |
---|
891 | #Compute maximal variation in bed elevation |
---|
892 | z_range = max(abs(zv[k,0]-zc[k]), |
---|
893 | abs(zv[k,1]-zc[k]), |
---|
894 | abs(zv[k,2]-zc[k])) |
---|
895 | |
---|
896 | |
---|
897 | #Weighted balance between stage parallel to bed elevation |
---|
898 | #(wvi = zvi + hc) and constant stage (wvi = wc = zc+hc) |
---|
899 | #where i=0,1,2 denotes the vertex ids |
---|
900 | # |
---|
901 | #It follows that |
---|
902 | # wvi = (1-alpha)*(zvi+hc) + alpha*(zc+hc) = |
---|
903 | # (1-alpha)*zvi + alpha*zc + hc = |
---|
904 | # zvi + hc + alpha*(zc-zvi) |
---|
905 | # |
---|
906 | #where alpha in [0,1] and defined as the ratio between hc and |
---|
907 | #the maximal difference from zc to zv0, zv1 and zv2 |
---|
908 | # |
---|
909 | #Mathematically the following could be continued on using hc as |
---|
910 | # wvi = |
---|
911 | # zvi + hc + alpha*(zc+hc-zvi-hc) = |
---|
912 | # zvi + hc + alpha*(hvi-hc) |
---|
913 | #since hvi = zc+hc-zvi in the constant case |
---|
914 | |
---|
915 | |
---|
916 | if z_range > 0.0: |
---|
917 | alpha = min(hc[k]/z_range, 1.0) |
---|
918 | else: |
---|
919 | alpha = 1.0 |
---|
920 | |
---|
921 | #Update water levels |
---|
922 | for i in range(3): |
---|
923 | #FIXME: Use the original first-order one first, then switch |
---|
924 | wv[k,i] = zv[k,i] + hc[k] + alpha*(zc[k]-zv[k,i]) |
---|
925 | #wv[k,i] = zv[k,i] + hc[k] + alpha*(hv[k,i]-hc[k]) #Requires updated hv!! |
---|
926 | |
---|
927 | #FIXME: What about alpha weighting of momentum?? |
---|
928 | |
---|
929 | |
---|
930 | ############################################## |
---|
931 | #Initialise module |
---|
932 | |
---|
933 | |
---|
934 | import compile |
---|
935 | if compile.can_use_C_extension('shallow_water_ext.c'): |
---|
936 | #Replace python version with c implementations |
---|
937 | |
---|
938 | from shallow_water_ext import rotate |
---|
939 | compute_fluxes = compute_fluxes_c |
---|
940 | gravity = gravity_c |
---|
941 | manning_friction = manning_friction_c |
---|
942 | |
---|
943 | |
---|
944 | #distribute_to_vertices_and_edges = distribute_to_vertices_and_edges_c |
---|
945 | #update_conserved_quantities = update_conserved_quantities_c |
---|
946 | |
---|
947 | |
---|
948 | #Optimisation with psyco |
---|
949 | from config import use_psyco |
---|
950 | if use_psyco: |
---|
951 | try: |
---|
952 | import psyco |
---|
953 | except: |
---|
954 | msg = 'WARNING: psyco (speedup) could not import'+\ |
---|
955 | ', you may want to consider installing it' |
---|
956 | print msg |
---|
957 | else: |
---|
958 | psyco.bind(distribute_to_vertices_and_edges) |
---|
959 | psyco.bind(compute_fluxes_c) |
---|
960 | ##psyco.bind(gravity_c) |
---|
961 | ##psyco.bind(manning_friction_c) |
---|
962 | #psyco.bind(update_boundary_values) |
---|
963 | #psyco.bind(Domain.update_timestep) #Not worth it |
---|
964 | #psyco.bind(update_conserved_quantities) |
---|
965 | |
---|
966 | if __name__ == "__main__": |
---|
967 | pass |
---|