[1387] | 1 | // Python - C extension module for shallow_water.py |
---|
| 2 | // |
---|
| 3 | // To compile (Python2.3): |
---|
| 4 | // gcc -c domain_ext.c -I/usr/include/python2.3 -o domain_ext.o -Wall -O |
---|
| 5 | // gcc -shared domain_ext.o -o domain_ext.so |
---|
| 6 | // |
---|
| 7 | // or use python compile.py |
---|
| 8 | // |
---|
| 9 | // See the module shallow_water.py |
---|
| 10 | // |
---|
| 11 | // |
---|
| 12 | // Ole Nielsen, GA 2004 |
---|
| 13 | |
---|
| 14 | |
---|
| 15 | #include "Python.h" |
---|
| 16 | #include "Numeric/arrayobject.h" |
---|
| 17 | #include "math.h" |
---|
| 18 | #include <stdio.h> |
---|
| 19 | |
---|
| 20 | //Shared code snippets |
---|
| 21 | #include "util_ext.h" |
---|
| 22 | |
---|
| 23 | const double pi = 3.14159265358979; |
---|
| 24 | |
---|
| 25 | // Computational function for rotation |
---|
| 26 | int _rotate(double *q, double n1, double n2) { |
---|
| 27 | /*Rotate the momentum component q (q[1], q[2]) |
---|
| 28 | from x,y coordinates to coordinates based on normal vector (n1, n2). |
---|
| 29 | |
---|
| 30 | Result is returned in array 3x1 r |
---|
| 31 | To rotate in opposite direction, call rotate with (q, n1, -n2) |
---|
| 32 | |
---|
| 33 | Contents of q are changed by this function */ |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | double q1, q2; |
---|
| 37 | |
---|
| 38 | //Shorthands |
---|
| 39 | q1 = q[1]; //uh momentum |
---|
| 40 | q2 = q[2]; //vh momentum |
---|
| 41 | |
---|
| 42 | //Rotate |
---|
| 43 | q[1] = n1*q1 + n2*q2; |
---|
| 44 | q[2] = -n2*q1 + n1*q2; |
---|
| 45 | |
---|
| 46 | return 0; |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | |
---|
| 50 | |
---|
| 51 | // Computational function for flux computation (using stage w=z+h) |
---|
| 52 | int flux_function(double *q_left, double *q_right, |
---|
| 53 | double z_left, double z_right, |
---|
| 54 | double n1, double n2, |
---|
| 55 | double epsilon, double g, |
---|
| 56 | double *edgeflux, double *max_speed) { |
---|
| 57 | |
---|
| 58 | /*Compute fluxes between volumes for the shallow water wave equation |
---|
| 59 | cast in terms of the 'stage', w = h+z using |
---|
| 60 | the 'central scheme' as described in |
---|
| 61 | |
---|
| 62 | Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For |
---|
| 63 | Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. |
---|
| 64 | Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. |
---|
| 65 | |
---|
| 66 | The implemented formula is given in equation (3.15) on page 714 |
---|
| 67 | */ |
---|
| 68 | |
---|
| 69 | int i; |
---|
| 70 | |
---|
| 71 | double w_left, h_left, uh_left, vh_left, u_left; |
---|
| 72 | double w_right, h_right, uh_right, vh_right, u_right; |
---|
| 73 | double s_min, s_max, soundspeed_left, soundspeed_right; |
---|
| 74 | double denom, z; |
---|
| 75 | double q_left_copy[3], q_right_copy[3]; |
---|
| 76 | double flux_right[3], flux_left[3]; |
---|
| 77 | |
---|
| 78 | //Copy conserved quantities to protect from modification |
---|
| 79 | for (i=0; i<3; i++) { |
---|
| 80 | q_left_copy[i] = q_left[i]; |
---|
| 81 | q_right_copy[i] = q_right[i]; |
---|
| 82 | } |
---|
| 83 | |
---|
| 84 | //Align x- and y-momentum with x-axis |
---|
| 85 | _rotate(q_left_copy, n1, n2); |
---|
| 86 | _rotate(q_right_copy, n1, n2); |
---|
| 87 | |
---|
| 88 | z = (z_left+z_right)/2; //Take average of field values |
---|
| 89 | |
---|
| 90 | //Compute speeds in x-direction |
---|
| 91 | w_left = q_left_copy[0]; // h+z |
---|
| 92 | h_left = w_left-z; |
---|
| 93 | uh_left = q_left_copy[1]; |
---|
| 94 | |
---|
| 95 | if (h_left < epsilon) { |
---|
| 96 | h_left = 0.0; //Could have been negative |
---|
| 97 | u_left = 0.0; |
---|
| 98 | } else { |
---|
| 99 | u_left = uh_left/h_left; |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | w_right = q_right_copy[0]; |
---|
| 103 | h_right = w_right-z; |
---|
| 104 | uh_right = q_right_copy[1]; |
---|
| 105 | |
---|
| 106 | if (h_right < epsilon) { |
---|
| 107 | h_right = 0.0; //Could have been negative |
---|
| 108 | u_right = 0.0; |
---|
| 109 | } else { |
---|
| 110 | u_right = uh_right/h_right; |
---|
| 111 | } |
---|
| 112 | |
---|
| 113 | //Momentum in y-direction |
---|
| 114 | vh_left = q_left_copy[2]; |
---|
| 115 | vh_right = q_right_copy[2]; |
---|
| 116 | |
---|
| 117 | |
---|
| 118 | //Maximal and minimal wave speeds |
---|
| 119 | soundspeed_left = sqrt(g*h_left); |
---|
| 120 | soundspeed_right = sqrt(g*h_right); |
---|
| 121 | |
---|
| 122 | s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); |
---|
| 123 | if (s_max < 0.0) s_max = 0.0; |
---|
| 124 | |
---|
| 125 | s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); |
---|
| 126 | if (s_min > 0.0) s_min = 0.0; |
---|
| 127 | |
---|
| 128 | //Flux formulas |
---|
| 129 | flux_left[0] = u_left*h_left; |
---|
| 130 | flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; |
---|
| 131 | flux_left[2] = u_left*vh_left; |
---|
| 132 | |
---|
| 133 | flux_right[0] = u_right*h_right; |
---|
| 134 | flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; |
---|
| 135 | flux_right[2] = u_right*vh_right; |
---|
| 136 | |
---|
| 137 | |
---|
| 138 | //Flux computation |
---|
| 139 | denom = s_max-s_min; |
---|
| 140 | if (denom == 0.0) { |
---|
| 141 | for (i=0; i<3; i++) edgeflux[i] = 0.0; |
---|
| 142 | *max_speed = 0.0; |
---|
| 143 | } else { |
---|
| 144 | for (i=0; i<3; i++) { |
---|
| 145 | edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; |
---|
| 146 | edgeflux[i] += s_max*s_min*(q_right_copy[i]-q_left_copy[i]); |
---|
| 147 | edgeflux[i] /= denom; |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | //Maximal wavespeed |
---|
| 151 | *max_speed = max(fabs(s_max), fabs(s_min)); |
---|
| 152 | |
---|
| 153 | //Rotate back |
---|
| 154 | _rotate(edgeflux, n1, -n2); |
---|
| 155 | } |
---|
| 156 | return 0; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | void _manning_friction(double g, double eps, int N, |
---|
| 160 | double* w, double* z, |
---|
| 161 | double* uh, double* vh, |
---|
| 162 | double* eta, double* xmom, double* ymom) { |
---|
| 163 | |
---|
| 164 | int k; |
---|
| 165 | double S, h; |
---|
| 166 | |
---|
| 167 | for (k=0; k<N; k++) { |
---|
| 168 | if (eta[k] > eps) { |
---|
| 169 | h = w[k]-z[k]; |
---|
| 170 | if (h >= eps) { |
---|
| 171 | S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); |
---|
| 172 | S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) |
---|
| 173 | //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion |
---|
| 174 | |
---|
| 175 | |
---|
| 176 | //Update momentum |
---|
| 177 | xmom[k] += S*uh[k]; |
---|
| 178 | ymom[k] += S*vh[k]; |
---|
| 179 | } |
---|
| 180 | } |
---|
| 181 | } |
---|
| 182 | } |
---|
| 183 | |
---|
| 184 | |
---|
| 185 | |
---|
| 186 | int _balance_deep_and_shallow(int N, |
---|
| 187 | double* wc, |
---|
| 188 | double* zc, |
---|
| 189 | double* hc, |
---|
| 190 | double* wv, |
---|
| 191 | double* zv, |
---|
| 192 | double* hv, |
---|
| 193 | double* hvbar, |
---|
| 194 | double* xmomc, |
---|
| 195 | double* ymomc, |
---|
| 196 | double* xmomv, |
---|
| 197 | double* ymomv) { |
---|
| 198 | |
---|
| 199 | int k, k3, i; |
---|
| 200 | double dz, hmin, alpha; |
---|
| 201 | |
---|
| 202 | //Compute linear combination between w-limited stages and |
---|
| 203 | //h-limited stages close to the bed elevation. |
---|
| 204 | |
---|
| 205 | for (k=0; k<N; k++) { |
---|
| 206 | // Compute maximal variation in bed elevation |
---|
| 207 | // This quantitiy is |
---|
| 208 | // dz = max_i abs(z_i - z_c) |
---|
| 209 | // and it is independent of dimension |
---|
| 210 | // In the 1d case zc = (z0+z1)/2 |
---|
| 211 | // In the 2d case zc = (z0+z1+z2)/3 |
---|
| 212 | |
---|
| 213 | k3 = 3*k; |
---|
| 214 | |
---|
| 215 | //FIXME: Try with this one precomputed |
---|
| 216 | dz = 0.0; |
---|
| 217 | hmin = hv[k3]; |
---|
| 218 | for (i=0; i<3; i++) { |
---|
| 219 | dz = max(dz, fabs(zv[k3+i]-zc[k])); |
---|
| 220 | hmin = min(hmin, hv[k3+i]); |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | //Create alpha in [0,1], where alpha==0 means using the h-limited |
---|
| 225 | //stage and alpha==1 means using the w-limited stage as |
---|
| 226 | //computed by the gradient limiter (both 1st or 2nd order) |
---|
| 227 | // |
---|
| 228 | //If hmin > dz/2 then alpha = 1 and the bed will have no effect |
---|
| 229 | //If hmin < 0 then alpha = 0 reverting to constant height above bed. |
---|
| 230 | |
---|
| 231 | |
---|
| 232 | if (dz > 0.0) |
---|
| 233 | //if (hmin<0.0) |
---|
| 234 | // alpha = 0.0; |
---|
| 235 | //else |
---|
| 236 | // alpha = max( min( hc[k]/dz, 1.0), 0.0 ); |
---|
| 237 | alpha = max( min( 2.0*hmin/dz, 1.0), 0.0 ); |
---|
| 238 | else |
---|
| 239 | alpha = 1.0; //Flat bed |
---|
| 240 | |
---|
| 241 | //alpha = 1.0; |
---|
| 242 | |
---|
| 243 | //printf("dz = %.3f, alpha = %.8f\n", dz, alpha); |
---|
| 244 | |
---|
| 245 | // Let |
---|
| 246 | // |
---|
| 247 | // wvi be the w-limited stage (wvi = zvi + hvi) |
---|
| 248 | // wvi- be the h-limited state (wvi- = zvi + hvi-) |
---|
| 249 | // |
---|
| 250 | // |
---|
| 251 | // where i=0,1,2 denotes the vertex ids |
---|
| 252 | // |
---|
| 253 | // Weighted balance between w-limited and h-limited stage is |
---|
| 254 | // |
---|
| 255 | // wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) |
---|
| 256 | // |
---|
| 257 | // It follows that the updated wvi is |
---|
| 258 | // wvi := zvi + (1-alpha)*hvi- + alpha*hvi |
---|
| 259 | // |
---|
| 260 | // Momentum is balanced between constant and limited |
---|
| 261 | |
---|
| 262 | if (alpha < 1) { |
---|
| 263 | for (i=0; i<3; i++) { |
---|
| 264 | wv[k3+i] = zv[k3+i] + (1-alpha)*hvbar[k3+i] + alpha*hv[k3+i]; |
---|
| 265 | |
---|
| 266 | //Update momentum as a linear combination of |
---|
| 267 | //xmomc and ymomc (shallow) and momentum |
---|
| 268 | //from extrapolator xmomv and ymomv (deep). |
---|
| 269 | xmomv[k3+i] = (1-alpha)*xmomc[k] + alpha*xmomv[k3+i]; |
---|
| 270 | ymomv[k3+i] = (1-alpha)*ymomc[k] + alpha*ymomv[k3+i]; |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | } |
---|
| 274 | return 0; |
---|
| 275 | } |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | |
---|
| 279 | int _protect(int N, |
---|
| 280 | double minimum_allowed_height, |
---|
| 281 | double* wc, |
---|
| 282 | double* zc, |
---|
| 283 | double* xmomc, |
---|
| 284 | double* ymomc) { |
---|
| 285 | |
---|
| 286 | int k; |
---|
| 287 | double hc; |
---|
| 288 | |
---|
| 289 | //Protect against initesimal and negative heights |
---|
| 290 | |
---|
| 291 | for (k=0; k<N; k++) { |
---|
| 292 | hc = wc[k] - zc[k]; |
---|
| 293 | |
---|
| 294 | if (hc < minimum_allowed_height) { |
---|
| 295 | wc[k] = zc[k]; |
---|
| 296 | xmomc[k] = 0.0; |
---|
| 297 | ymomc[k] = 0.0; |
---|
| 298 | } |
---|
| 299 | |
---|
| 300 | } |
---|
| 301 | return 0; |
---|
| 302 | } |
---|
| 303 | |
---|
| 304 | |
---|
| 305 | |
---|
| 306 | |
---|
| 307 | |
---|
| 308 | |
---|
| 309 | |
---|
| 310 | |
---|
| 311 | int _assign_wind_field_values(int N, |
---|
| 312 | double* xmom_update, |
---|
| 313 | double* ymom_update, |
---|
| 314 | double* s_vec, |
---|
| 315 | double* phi_vec, |
---|
| 316 | double cw) { |
---|
| 317 | |
---|
| 318 | //Assign windfield values to momentum updates |
---|
| 319 | |
---|
| 320 | int k; |
---|
| 321 | double S, s, phi, u, v; |
---|
| 322 | |
---|
| 323 | for (k=0; k<N; k++) { |
---|
| 324 | |
---|
| 325 | s = s_vec[k]; |
---|
| 326 | phi = phi_vec[k]; |
---|
| 327 | |
---|
| 328 | //Convert to radians |
---|
| 329 | phi = phi*pi/180; |
---|
| 330 | |
---|
| 331 | //Compute velocity vector (u, v) |
---|
| 332 | u = s*cos(phi); |
---|
| 333 | v = s*sin(phi); |
---|
| 334 | |
---|
| 335 | //Compute wind stress |
---|
| 336 | S = cw * sqrt(u*u + v*v); |
---|
| 337 | xmom_update[k] += S*u; |
---|
| 338 | ymom_update[k] += S*v; |
---|
| 339 | } |
---|
| 340 | return 0; |
---|
| 341 | } |
---|
| 342 | |
---|
| 343 | |
---|
| 344 | |
---|
| 345 | /////////////////////////////////////////////////////////////////// |
---|
| 346 | // Gateways to Python |
---|
| 347 | |
---|
| 348 | PyObject *gravity(PyObject *self, PyObject *args) { |
---|
| 349 | // |
---|
| 350 | // gravity(g, h, v, x, xmom, ymom) |
---|
| 351 | // |
---|
| 352 | |
---|
| 353 | |
---|
| 354 | PyArrayObject *h, *v, *x, *xmom, *ymom; |
---|
| 355 | int k, i, N, k3, k6; |
---|
| 356 | double g, avg_h, zx, zy; |
---|
| 357 | double x0, y0, x1, y1, x2, y2, z0, z1, z2; |
---|
| 358 | |
---|
| 359 | if (!PyArg_ParseTuple(args, "dOOOOO", |
---|
| 360 | &g, &h, &v, &x, |
---|
| 361 | &xmom, &ymom)) |
---|
| 362 | return NULL; |
---|
| 363 | |
---|
| 364 | N = h -> dimensions[0]; |
---|
| 365 | for (k=0; k<N; k++) { |
---|
| 366 | k3 = 3*k; // base index |
---|
| 367 | k6 = 6*k; // base index |
---|
| 368 | |
---|
| 369 | avg_h = 0.0; |
---|
| 370 | for (i=0; i<3; i++) { |
---|
| 371 | avg_h += ((double *) h -> data)[k3+i]; |
---|
| 372 | } |
---|
| 373 | avg_h /= 3; |
---|
| 374 | |
---|
| 375 | |
---|
| 376 | //Compute bed slope |
---|
| 377 | x0 = ((double*) x -> data)[k6 + 0]; |
---|
| 378 | y0 = ((double*) x -> data)[k6 + 1]; |
---|
| 379 | x1 = ((double*) x -> data)[k6 + 2]; |
---|
| 380 | y1 = ((double*) x -> data)[k6 + 3]; |
---|
| 381 | x2 = ((double*) x -> data)[k6 + 4]; |
---|
| 382 | y2 = ((double*) x -> data)[k6 + 5]; |
---|
| 383 | |
---|
| 384 | |
---|
| 385 | z0 = ((double*) v -> data)[k3 + 0]; |
---|
| 386 | z1 = ((double*) v -> data)[k3 + 1]; |
---|
| 387 | z2 = ((double*) v -> data)[k3 + 2]; |
---|
| 388 | |
---|
| 389 | _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); |
---|
| 390 | |
---|
| 391 | //Update momentum |
---|
| 392 | ((double*) xmom -> data)[k] += -g*zx*avg_h; |
---|
| 393 | ((double*) ymom -> data)[k] += -g*zy*avg_h; |
---|
| 394 | } |
---|
| 395 | |
---|
| 396 | return Py_BuildValue(""); |
---|
| 397 | } |
---|
| 398 | |
---|
| 399 | |
---|
| 400 | PyObject *manning_friction(PyObject *self, PyObject *args) { |
---|
| 401 | // |
---|
| 402 | // manning_friction(g, eps, h, uh, vh, eta, xmom_update, ymom_update) |
---|
| 403 | // |
---|
| 404 | |
---|
| 405 | |
---|
| 406 | PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; |
---|
| 407 | int N; |
---|
| 408 | double g, eps; |
---|
| 409 | |
---|
| 410 | if (!PyArg_ParseTuple(args, "ddOOOOOOO", |
---|
| 411 | &g, &eps, &w, &z, &uh, &vh, &eta, |
---|
| 412 | &xmom, &ymom)) |
---|
| 413 | return NULL; |
---|
| 414 | |
---|
| 415 | N = w -> dimensions[0]; |
---|
| 416 | _manning_friction(g, eps, N, |
---|
| 417 | (double*) w -> data, |
---|
| 418 | (double*) z -> data, |
---|
| 419 | (double*) uh -> data, |
---|
| 420 | (double*) vh -> data, |
---|
| 421 | (double*) eta -> data, |
---|
| 422 | (double*) xmom -> data, |
---|
| 423 | (double*) ymom -> data); |
---|
| 424 | |
---|
| 425 | return Py_BuildValue(""); |
---|
| 426 | } |
---|
| 427 | |
---|
| 428 | PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) { |
---|
| 429 | // |
---|
| 430 | // r = rotate(q, normal, direction=1) |
---|
| 431 | // |
---|
| 432 | // Where q is assumed to be a Float numeric array of length 3 and |
---|
| 433 | // normal a Float numeric array of length 2. |
---|
| 434 | |
---|
| 435 | |
---|
| 436 | PyObject *Q, *Normal; |
---|
| 437 | PyArrayObject *q, *r, *normal; |
---|
| 438 | |
---|
| 439 | static char *argnames[] = {"q", "normal", "direction", NULL}; |
---|
| 440 | int dimensions[1], i, direction=1; |
---|
| 441 | double n1, n2; |
---|
| 442 | |
---|
| 443 | // Convert Python arguments to C |
---|
| 444 | if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|i", argnames, |
---|
| 445 | &Q, &Normal, &direction)) |
---|
| 446 | return NULL; |
---|
| 447 | |
---|
| 448 | //Input checks (convert sequences into numeric arrays) |
---|
| 449 | q = (PyArrayObject *) |
---|
| 450 | PyArray_ContiguousFromObject(Q, PyArray_DOUBLE, 0, 0); |
---|
| 451 | normal = (PyArrayObject *) |
---|
| 452 | PyArray_ContiguousFromObject(Normal, PyArray_DOUBLE, 0, 0); |
---|
| 453 | |
---|
| 454 | |
---|
| 455 | if (normal -> dimensions[0] != 2) { |
---|
| 456 | PyErr_SetString(PyExc_RuntimeError, "Normal vector must have 2 components"); |
---|
| 457 | return NULL; |
---|
| 458 | } |
---|
| 459 | |
---|
| 460 | //Allocate space for return vector r (don't DECREF) |
---|
| 461 | dimensions[0] = 3; |
---|
| 462 | r = (PyArrayObject *) PyArray_FromDims(1, dimensions, PyArray_DOUBLE); |
---|
| 463 | |
---|
| 464 | //Copy |
---|
| 465 | for (i=0; i<3; i++) { |
---|
| 466 | ((double *) (r -> data))[i] = ((double *) (q -> data))[i]; |
---|
| 467 | } |
---|
| 468 | |
---|
| 469 | //Get normal and direction |
---|
| 470 | n1 = ((double *) normal -> data)[0]; |
---|
| 471 | n2 = ((double *) normal -> data)[1]; |
---|
| 472 | if (direction == -1) n2 = -n2; |
---|
| 473 | |
---|
| 474 | //Rotate |
---|
| 475 | _rotate((double *) r -> data, n1, n2); |
---|
| 476 | |
---|
| 477 | //Release numeric arrays |
---|
| 478 | Py_DECREF(q); |
---|
| 479 | Py_DECREF(normal); |
---|
| 480 | |
---|
| 481 | //return result using PyArray to avoid memory leak |
---|
| 482 | return PyArray_Return(r); |
---|
| 483 | } |
---|
| 484 | |
---|
| 485 | |
---|
| 486 | PyObject *compute_fluxes(PyObject *self, PyObject *args) { |
---|
| 487 | /*Compute all fluxes and the timestep suitable for all volumes |
---|
| 488 | in domain. |
---|
| 489 | |
---|
| 490 | Compute total flux for each conserved quantity using "flux_function" |
---|
| 491 | |
---|
| 492 | Fluxes across each edge are scaled by edgelengths and summed up |
---|
| 493 | Resulting flux is then scaled by area and stored in |
---|
| 494 | explicit_update for each of the three conserved quantities |
---|
| 495 | stage, xmomentum and ymomentum |
---|
| 496 | |
---|
| 497 | The maximal allowable speed computed by the flux_function for each volume |
---|
| 498 | is converted to a timestep that must not be exceeded. The minimum of |
---|
| 499 | those is computed as the next overall timestep. |
---|
| 500 | |
---|
| 501 | Python call: |
---|
| 502 | domain.timestep = compute_fluxes(timestep, |
---|
| 503 | domain.epsilon, |
---|
| 504 | domain.g, |
---|
| 505 | domain.neighbours, |
---|
| 506 | domain.neighbour_edges, |
---|
| 507 | domain.normals, |
---|
| 508 | domain.edgelengths, |
---|
| 509 | domain.radii, |
---|
| 510 | domain.areas, |
---|
| 511 | Stage.edge_values, |
---|
| 512 | Xmom.edge_values, |
---|
| 513 | Ymom.edge_values, |
---|
| 514 | Bed.edge_values, |
---|
| 515 | Stage.boundary_values, |
---|
| 516 | Xmom.boundary_values, |
---|
| 517 | Ymom.boundary_values, |
---|
| 518 | Stage.explicit_update, |
---|
| 519 | Xmom.explicit_update, |
---|
| 520 | Ymom.explicit_update) |
---|
| 521 | |
---|
| 522 | |
---|
| 523 | Post conditions: |
---|
| 524 | domain.explicit_update is reset to computed flux values |
---|
| 525 | domain.timestep is set to the largest step satisfying all volumes. |
---|
| 526 | |
---|
| 527 | |
---|
| 528 | */ |
---|
| 529 | |
---|
| 530 | |
---|
| 531 | PyArrayObject *neighbours, *neighbour_edges, |
---|
| 532 | *normals, *edgelengths, *radii, *areas, |
---|
| 533 | *stage_edge_values, |
---|
| 534 | *xmom_edge_values, |
---|
| 535 | *ymom_edge_values, |
---|
| 536 | *bed_edge_values, |
---|
| 537 | *stage_boundary_values, |
---|
| 538 | *xmom_boundary_values, |
---|
| 539 | *ymom_boundary_values, |
---|
| 540 | *stage_explicit_update, |
---|
| 541 | *xmom_explicit_update, |
---|
| 542 | *ymom_explicit_update; |
---|
| 543 | |
---|
| 544 | |
---|
| 545 | //Local variables |
---|
| 546 | double timestep, max_speed, epsilon, g; |
---|
| 547 | double normal[2], ql[3], qr[3], zl, zr; |
---|
| 548 | double flux[3], edgeflux[3]; //Work arrays for summing up fluxes |
---|
| 549 | |
---|
| 550 | int number_of_elements, k, i, j, m, n; |
---|
| 551 | int ki, nm, ki2; //Index shorthands |
---|
| 552 | |
---|
| 553 | |
---|
| 554 | // Convert Python arguments to C |
---|
| 555 | if (!PyArg_ParseTuple(args, "dddOOOOOOOOOOOOOOOO", |
---|
| 556 | ×tep, |
---|
| 557 | &epsilon, |
---|
| 558 | &g, |
---|
| 559 | &neighbours, |
---|
| 560 | &neighbour_edges, |
---|
| 561 | &normals, |
---|
| 562 | &edgelengths, &radii, &areas, |
---|
| 563 | &stage_edge_values, |
---|
| 564 | &xmom_edge_values, |
---|
| 565 | &ymom_edge_values, |
---|
| 566 | &bed_edge_values, |
---|
| 567 | &stage_boundary_values, |
---|
| 568 | &xmom_boundary_values, |
---|
| 569 | &ymom_boundary_values, |
---|
| 570 | &stage_explicit_update, |
---|
| 571 | &xmom_explicit_update, |
---|
| 572 | &ymom_explicit_update)) { |
---|
| 573 | PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); |
---|
| 574 | return NULL; |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | number_of_elements = stage_edge_values -> dimensions[0]; |
---|
| 578 | |
---|
| 579 | |
---|
| 580 | for (k=0; k<number_of_elements; k++) { |
---|
| 581 | |
---|
| 582 | //Reset work array |
---|
| 583 | for (j=0; j<3; j++) flux[j] = 0.0; |
---|
| 584 | |
---|
| 585 | //Loop through neighbours and compute edge flux for each |
---|
| 586 | for (i=0; i<3; i++) { |
---|
| 587 | ki = k*3+i; |
---|
| 588 | ql[0] = ((double *) stage_edge_values -> data)[ki]; |
---|
| 589 | ql[1] = ((double *) xmom_edge_values -> data)[ki]; |
---|
| 590 | ql[2] = ((double *) ymom_edge_values -> data)[ki]; |
---|
| 591 | zl = ((double *) bed_edge_values -> data)[ki]; |
---|
| 592 | |
---|
| 593 | //Quantities at neighbour on nearest face |
---|
| 594 | n = ((long *) neighbours -> data)[ki]; |
---|
| 595 | if (n < 0) { |
---|
| 596 | m = -n-1; //Convert negative flag to index |
---|
| 597 | qr[0] = ((double *) stage_boundary_values -> data)[m]; |
---|
| 598 | qr[1] = ((double *) xmom_boundary_values -> data)[m]; |
---|
| 599 | qr[2] = ((double *) ymom_boundary_values -> data)[m]; |
---|
| 600 | zr = zl; //Extend bed elevation to boundary |
---|
| 601 | } else { |
---|
| 602 | m = ((long *) neighbour_edges -> data)[ki]; |
---|
| 603 | |
---|
| 604 | nm = n*3+m; |
---|
| 605 | qr[0] = ((double *) stage_edge_values -> data)[nm]; |
---|
| 606 | qr[1] = ((double *) xmom_edge_values -> data)[nm]; |
---|
| 607 | qr[2] = ((double *) ymom_edge_values -> data)[nm]; |
---|
| 608 | zr = ((double *) bed_edge_values -> data)[nm]; |
---|
| 609 | } |
---|
| 610 | |
---|
| 611 | //printf("%d %d [%d] (%d, %d): %.2f %.2f %.2f\n", k, i, ki, n, m, |
---|
| 612 | // ql[0], ql[1], ql[2]); |
---|
| 613 | |
---|
| 614 | |
---|
| 615 | // Outward pointing normal vector |
---|
| 616 | // normal = domain.normals[k, 2*i:2*i+2] |
---|
| 617 | ki2 = 2*ki; //k*6 + i*2 |
---|
| 618 | normal[0] = ((double *) normals -> data)[ki2]; |
---|
| 619 | normal[1] = ((double *) normals -> data)[ki2+1]; |
---|
| 620 | |
---|
| 621 | //Edge flux computation |
---|
| 622 | flux_function(ql, qr, zl, zr, |
---|
| 623 | normal[0], normal[1], |
---|
| 624 | epsilon, g, |
---|
| 625 | edgeflux, &max_speed); |
---|
| 626 | |
---|
| 627 | |
---|
| 628 | //flux -= edgeflux * edgelengths[k,i] |
---|
| 629 | for (j=0; j<3; j++) { |
---|
| 630 | flux[j] -= edgeflux[j]*((double *) edgelengths -> data)[ki]; |
---|
| 631 | } |
---|
| 632 | |
---|
| 633 | //Update timestep |
---|
| 634 | //timestep = min(timestep, domain.radii[k]/max_speed) |
---|
| 635 | //FIXME: SR Add parameter for CFL condition |
---|
| 636 | if (max_speed > epsilon) { |
---|
| 637 | timestep = min(timestep, ((double *) radii -> data)[k]/max_speed); |
---|
| 638 | } |
---|
| 639 | } // end for i |
---|
| 640 | |
---|
| 641 | //Normalise by area and store for when all conserved |
---|
| 642 | //quantities get updated |
---|
| 643 | // flux /= areas[k] |
---|
| 644 | for (j=0; j<3; j++) { |
---|
| 645 | flux[j] /= ((double *) areas -> data)[k]; |
---|
| 646 | } |
---|
| 647 | |
---|
| 648 | ((double *) stage_explicit_update -> data)[k] = flux[0]; |
---|
| 649 | ((double *) xmom_explicit_update -> data)[k] = flux[1]; |
---|
| 650 | ((double *) ymom_explicit_update -> data)[k] = flux[2]; |
---|
| 651 | |
---|
| 652 | } //end for k |
---|
| 653 | |
---|
| 654 | return Py_BuildValue("d", timestep); |
---|
| 655 | } |
---|
| 656 | |
---|
| 657 | |
---|
| 658 | |
---|
| 659 | PyObject *protect(PyObject *self, PyObject *args) { |
---|
| 660 | // |
---|
| 661 | // protect(minimum_allowed_height, wc, zc, xmomc, ymomc) |
---|
| 662 | |
---|
| 663 | |
---|
| 664 | PyArrayObject |
---|
| 665 | *wc, //Stage at centroids |
---|
| 666 | *zc, //Elevation at centroids |
---|
| 667 | *xmomc, //Momentums at centroids |
---|
| 668 | *ymomc; |
---|
| 669 | |
---|
| 670 | |
---|
| 671 | int N; |
---|
| 672 | double minimum_allowed_height; |
---|
| 673 | |
---|
| 674 | // Convert Python arguments to C |
---|
| 675 | if (!PyArg_ParseTuple(args, "dOOOO", |
---|
| 676 | &minimum_allowed_height, |
---|
| 677 | &wc, &zc, &xmomc, &ymomc)) |
---|
| 678 | return NULL; |
---|
| 679 | |
---|
| 680 | N = wc -> dimensions[0]; |
---|
| 681 | |
---|
| 682 | _protect(N, |
---|
| 683 | minimum_allowed_height, |
---|
| 684 | (double*) wc -> data, |
---|
| 685 | (double*) zc -> data, |
---|
| 686 | (double*) xmomc -> data, |
---|
| 687 | (double*) ymomc -> data); |
---|
| 688 | |
---|
| 689 | return Py_BuildValue(""); |
---|
| 690 | } |
---|
| 691 | |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | PyObject *balance_deep_and_shallow(PyObject *self, PyObject *args) { |
---|
| 695 | // |
---|
| 696 | // balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, |
---|
| 697 | // xmomc, ymomc, xmomv, ymomv) |
---|
| 698 | |
---|
| 699 | |
---|
| 700 | PyArrayObject |
---|
| 701 | *wc, //Stage at centroids |
---|
| 702 | *zc, //Elevation at centroids |
---|
| 703 | *hc, //Height at centroids |
---|
| 704 | *wv, //Stage at vertices |
---|
| 705 | *zv, //Elevation at vertices |
---|
| 706 | *hv, //Depths at vertices |
---|
| 707 | *hvbar, //h-Limited depths at vertices |
---|
| 708 | *xmomc, //Momentums at centroids and vertices |
---|
| 709 | *ymomc, |
---|
| 710 | *xmomv, |
---|
| 711 | *ymomv; |
---|
| 712 | |
---|
| 713 | int N; //, err; |
---|
| 714 | |
---|
| 715 | // Convert Python arguments to C |
---|
| 716 | if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", |
---|
| 717 | &wc, &zc, &hc, |
---|
| 718 | &wv, &zv, &hv, &hvbar, |
---|
| 719 | &xmomc, &ymomc, &xmomv, &ymomv)) |
---|
| 720 | return NULL; |
---|
| 721 | |
---|
| 722 | N = wc -> dimensions[0]; |
---|
| 723 | |
---|
| 724 | _balance_deep_and_shallow(N, |
---|
| 725 | (double*) wc -> data, |
---|
| 726 | (double*) zc -> data, |
---|
| 727 | (double*) hc -> data, |
---|
| 728 | (double*) wv -> data, |
---|
| 729 | (double*) zv -> data, |
---|
| 730 | (double*) hv -> data, |
---|
| 731 | (double*) hvbar -> data, |
---|
| 732 | (double*) xmomc -> data, |
---|
| 733 | (double*) ymomc -> data, |
---|
| 734 | (double*) xmomv -> data, |
---|
| 735 | (double*) ymomv -> data); |
---|
| 736 | |
---|
| 737 | |
---|
| 738 | return Py_BuildValue(""); |
---|
| 739 | } |
---|
| 740 | |
---|
| 741 | |
---|
| 742 | |
---|
| 743 | PyObject *h_limiter(PyObject *self, PyObject *args) { |
---|
| 744 | |
---|
| 745 | PyObject *domain, *Tmp; |
---|
| 746 | PyArrayObject |
---|
| 747 | *hv, *hc, //Depth at vertices and centroids |
---|
| 748 | *hvbar, //Limited depth at vertices (return values) |
---|
| 749 | *neighbours; |
---|
| 750 | |
---|
| 751 | int k, i, n, N, k3; |
---|
| 752 | int dimensions[2]; |
---|
| 753 | double beta_h; //Safety factor (see config.py) |
---|
| 754 | double *hmin, *hmax, hn; |
---|
| 755 | |
---|
| 756 | // Convert Python arguments to C |
---|
| 757 | if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) |
---|
| 758 | return NULL; |
---|
| 759 | |
---|
| 760 | neighbours = get_consecutive_array(domain, "neighbours"); |
---|
| 761 | |
---|
| 762 | //Get safety factor beta_h |
---|
| 763 | Tmp = PyObject_GetAttrString(domain, "beta_h"); |
---|
| 764 | if (!Tmp) |
---|
| 765 | return NULL; |
---|
| 766 | |
---|
| 767 | beta_h = PyFloat_AsDouble(Tmp); |
---|
| 768 | |
---|
| 769 | Py_DECREF(Tmp); |
---|
| 770 | |
---|
| 771 | N = hc -> dimensions[0]; |
---|
| 772 | |
---|
| 773 | //Create hvbar |
---|
| 774 | dimensions[0] = N; |
---|
| 775 | dimensions[1] = 3; |
---|
| 776 | hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); |
---|
| 777 | |
---|
| 778 | |
---|
| 779 | //Find min and max of this and neighbour's centroid values |
---|
| 780 | hmin = malloc(N * sizeof(double)); |
---|
| 781 | hmax = malloc(N * sizeof(double)); |
---|
| 782 | for (k=0; k<N; k++) { |
---|
| 783 | k3=k*3; |
---|
| 784 | |
---|
| 785 | hmin[k] = ((double*) hc -> data)[k]; |
---|
| 786 | hmax[k] = hmin[k]; |
---|
| 787 | |
---|
| 788 | for (i=0; i<3; i++) { |
---|
| 789 | n = ((long*) neighbours -> data)[k3+i]; |
---|
| 790 | |
---|
| 791 | //Initialise hvbar with values from hv |
---|
| 792 | ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; |
---|
| 793 | |
---|
| 794 | if (n >= 0) { |
---|
| 795 | hn = ((double*) hc -> data)[n]; //Neighbour's centroid value |
---|
| 796 | |
---|
| 797 | hmin[k] = min(hmin[k], hn); |
---|
| 798 | hmax[k] = max(hmax[k], hn); |
---|
| 799 | } |
---|
| 800 | } |
---|
| 801 | } |
---|
| 802 | |
---|
| 803 | // Call underlying standard routine |
---|
| 804 | _limit(N, beta_h, (double*) hc -> data, (double*) hvbar -> data, hmin, hmax); |
---|
| 805 | |
---|
| 806 | // // //Py_DECREF(domain); //FIXME: NEcessary? |
---|
| 807 | free(hmin); |
---|
| 808 | free(hmax); |
---|
| 809 | |
---|
| 810 | //return result using PyArray to avoid memory leak |
---|
| 811 | return PyArray_Return(hvbar); |
---|
| 812 | //return Py_BuildValue(""); |
---|
| 813 | } |
---|
| 814 | |
---|
| 815 | |
---|
| 816 | |
---|
| 817 | |
---|
| 818 | PyObject *assign_windfield_values(PyObject *self, PyObject *args) { |
---|
| 819 | // |
---|
| 820 | // assign_windfield_values(xmom_update, ymom_update, |
---|
| 821 | // s_vec, phi_vec, self.const) |
---|
| 822 | |
---|
| 823 | |
---|
| 824 | |
---|
| 825 | PyArrayObject //(one element per triangle) |
---|
| 826 | *s_vec, //Speeds |
---|
| 827 | *phi_vec, //Bearings |
---|
| 828 | *xmom_update, //Momentum updates |
---|
| 829 | *ymom_update; |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | int N; |
---|
| 833 | double cw; |
---|
| 834 | |
---|
| 835 | // Convert Python arguments to C |
---|
| 836 | if (!PyArg_ParseTuple(args, "OOOOd", |
---|
| 837 | &xmom_update, |
---|
| 838 | &ymom_update, |
---|
| 839 | &s_vec, &phi_vec, |
---|
| 840 | &cw)) |
---|
| 841 | return NULL; |
---|
| 842 | |
---|
| 843 | N = xmom_update -> dimensions[0]; |
---|
| 844 | |
---|
| 845 | _assign_wind_field_values(N, |
---|
| 846 | (double*) xmom_update -> data, |
---|
| 847 | (double*) ymom_update -> data, |
---|
| 848 | (double*) s_vec -> data, |
---|
| 849 | (double*) phi_vec -> data, |
---|
| 850 | cw); |
---|
| 851 | |
---|
| 852 | return Py_BuildValue(""); |
---|
| 853 | } |
---|
| 854 | |
---|
| 855 | |
---|
| 856 | |
---|
| 857 | |
---|
| 858 | ////////////////////////////////////////// |
---|
| 859 | // Method table for python module |
---|
| 860 | static struct PyMethodDef MethodTable[] = { |
---|
| 861 | /* The cast of the function is necessary since PyCFunction values |
---|
| 862 | * only take two PyObject* parameters, and rotate() takes |
---|
| 863 | * three. |
---|
| 864 | */ |
---|
| 865 | |
---|
| 866 | {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 867 | {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"}, |
---|
| 868 | {"gravity", gravity, METH_VARARGS, "Print out"}, |
---|
| 869 | {"manning_friction", manning_friction, METH_VARARGS, "Print out"}, |
---|
| 870 | {"balance_deep_and_shallow", balance_deep_and_shallow, |
---|
| 871 | METH_VARARGS, "Print out"}, |
---|
| 872 | {"h_limiter", h_limiter, |
---|
| 873 | METH_VARARGS, "Print out"}, |
---|
| 874 | {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 875 | {"assign_windfield_values", assign_windfield_values, |
---|
| 876 | METH_VARARGS | METH_KEYWORDS, "Print out"}, |
---|
| 877 | //{"distribute_to_vertices_and_edges", |
---|
| 878 | // distribute_to_vertices_and_edges, METH_VARARGS}, |
---|
| 879 | //{"update_conserved_quantities", |
---|
| 880 | // update_conserved_quantities, METH_VARARGS}, |
---|
| 881 | //{"set_initialcondition", |
---|
| 882 | // set_initialcondition, METH_VARARGS}, |
---|
| 883 | {NULL, NULL} |
---|
| 884 | }; |
---|
| 885 | |
---|
| 886 | // Module initialisation |
---|
| 887 | void initshallow_water_ext(void){ |
---|
| 888 | Py_InitModule("shallow_water_ext", MethodTable); |
---|
| 889 | |
---|
| 890 | import_array(); //Necessary for handling of NumPY structures |
---|
| 891 | } |
---|