// Python - C extension module for shallow_water.py // // To compile (Python2.3): // gcc -c domain_ext.c -I/usr/include/python2.3 -o domain_ext.o -Wall -O // gcc -shared domain_ext.o -o domain_ext.so // // or use python compile.py // // See the module shallow_water.py // // // Ole Nielsen, GA 2004 #include "Python.h" #include "Numeric/arrayobject.h" #include "math.h" #include //Shared code snippets #include "util_ext.h" const double pi = 3.14159265358979; // Computational function for rotation int _rotate(double *q, double n1, double n2) { /*Rotate the momentum component q (q[1], q[2]) from x,y coordinates to coordinates based on normal vector (n1, n2). Result is returned in array 3x1 r To rotate in opposite direction, call rotate with (q, n1, -n2) Contents of q are changed by this function */ double q1, q2; //Shorthands q1 = q[1]; //uh momentum q2 = q[2]; //vh momentum //Rotate q[1] = n1*q1 + n2*q2; q[2] = -n2*q1 + n1*q2; return 0; } int find_qmin_and_qmax(double dq0, double dq1, double dq2, double *qmin, double *qmax){ //Considering the centroid of an FV triangle and the vertices of its auxiliary triangle, find //qmin=min(q)-qc and qmax=max(q)-qc, where min(q) and max(q) are respectively min and max over the //four values (at the centroid of the FV triangle and the auxiliary triangle vertices), //and qc is the centroid //dq0=q(vertex0)-q(centroid of FV triangle) //dq1=q(vertex1)-q(vertex0) //dq2=q(vertex2)-q(vertex0) if (dq0>=0.0){ if (dq1>=dq2){ if (dq1>=0.0) *qmax=dq0+dq1; else *qmax=dq0; if ((*qmin=dq0+dq2)<0) ;//qmin is already set to correct value else *qmin=0.0; } else{//dq10) *qmax=dq0+dq2; else *qmax=dq0; if ((*qmin=dq0+dq1)<0) ;//qmin is the correct value else *qmin=0.0; } } else{//dq0<0 if (dq1<=dq2){ if (dq1<0.0) *qmin=dq0+dq1; else *qmin=dq0; if ((*qmax=dq0+dq2)>0.0) ;//qmax is already set to the correct value else *qmax=0.0; } else{//dq1>dq2 if (dq2<0.0) *qmin=dq0+dq2; else *qmin=dq0; if ((*qmax=dq0+dq1)>0.0) ;//qmax is already set to the correct value else *qmax=0.0; } } return 0; } int limit_gradient(double *dqv, double qmin, double qmax, double beta_w){ //given provisional jumps dqv from the FV triangle centroid to its vertices and //jumps qmin (qmax) between the centroid of the FV triangle and the //minimum (maximum) of the values at the centroid of the FV triangle and the auxiliary triangle vertices, //calculate a multiplicative factor phi by which the provisional vertex jumps are to be limited int i; double r=1000.0, r0=1.0, phi=1.0; static double TINY = 1.0e-100;//to avoid machine accuracy problems. //Any provisional jump with magnitude < TINY does not contribute to the limiting process. for (i=0;i<3;i++){ if (dqv[i]<-TINY) r0=qmin/dqv[i]; if (dqv[i]>TINY) r0=qmax/dqv[i]; r=min(r0,r); // } phi=min(r*beta_w,1.0); for (i=0;i<3;i++) dqv[i]=dqv[i]*phi; return 0; } // Computational function for flux computation (using stage w=z+h) int flux_function(double *q_left, double *q_right, double z_left, double z_right, double n1, double n2, double epsilon, double g, double *edgeflux, double *max_speed) { /*Compute fluxes between volumes for the shallow water wave equation cast in terms of the 'stage', w = h+z using the 'central scheme' as described in Kurganov, Noelle, Petrova. 'Semidiscrete Central-Upwind Schemes For Hyperbolic Conservation Laws and Hamilton-Jacobi Equations'. Siam J. Sci. Comput. Vol. 23, No. 3, pp. 707-740. The implemented formula is given in equation (3.15) on page 714 */ int i; double w_left, h_left, uh_left, vh_left, u_left; double w_right, h_right, uh_right, vh_right, u_right; double s_min, s_max, soundspeed_left, soundspeed_right; double denom, z; double q_left_copy[3], q_right_copy[3]; double flux_right[3], flux_left[3]; //Copy conserved quantities to protect from modification for (i=0; i<3; i++) { q_left_copy[i] = q_left[i]; q_right_copy[i] = q_right[i]; } //Align x- and y-momentum with x-axis _rotate(q_left_copy, n1, n2); _rotate(q_right_copy, n1, n2); z = (z_left+z_right)/2; //Take average of field values //Compute speeds in x-direction w_left = q_left_copy[0]; // h+z h_left = w_left-z; uh_left = q_left_copy[1]; if (h_left < epsilon) { h_left = 0.0; //Could have been negative u_left = 0.0; } else { u_left = uh_left/h_left; } w_right = q_right_copy[0]; h_right = w_right-z; uh_right = q_right_copy[1]; if (h_right < epsilon) { h_right = 0.0; //Could have been negative u_right = 0.0; } else { u_right = uh_right/h_right; } //Momentum in y-direction vh_left = q_left_copy[2]; vh_right = q_right_copy[2]; //Maximal and minimal wave speeds soundspeed_left = sqrt(g*h_left); soundspeed_right = sqrt(g*h_right); s_max = max(u_left+soundspeed_left, u_right+soundspeed_right); if (s_max < 0.0) s_max = 0.0; s_min = min(u_left-soundspeed_left, u_right-soundspeed_right); if (s_min > 0.0) s_min = 0.0; //Flux formulas flux_left[0] = u_left*h_left; flux_left[1] = u_left*uh_left + 0.5*g*h_left*h_left; flux_left[2] = u_left*vh_left; flux_right[0] = u_right*h_right; flux_right[1] = u_right*uh_right + 0.5*g*h_right*h_right; flux_right[2] = u_right*vh_right; //Flux computation denom = s_max-s_min; if (denom == 0.0) { for (i=0; i<3; i++) edgeflux[i] = 0.0; *max_speed = 0.0; } else { for (i=0; i<3; i++) { edgeflux[i] = s_max*flux_left[i] - s_min*flux_right[i]; edgeflux[i] += s_max*s_min*(q_right_copy[i]-q_left_copy[i]); edgeflux[i] /= denom; } //Maximal wavespeed *max_speed = max(fabs(s_max), fabs(s_min)); //Rotate back _rotate(edgeflux, n1, -n2); } return 0; } void _manning_friction(double g, double eps, int N, double* w, double* z, double* uh, double* vh, double* eta, double* xmom, double* ymom) { int k; double S, h; for (k=0; k eps) { h = w[k]-z[k]; if (h >= eps) { S = -g * eta[k]*eta[k] * sqrt((uh[k]*uh[k] + vh[k]*vh[k])); //S /= pow(h, 7.0/3); //Expensive (on Ole's home computer) S /= exp(7.0/3.0*log(h)); //seems to save about 15% over manning_friction //S /= h*h*(1 + h/3.0 - h*h/9.0); //FIXME: Could use a Taylor expansion //Update momentum xmom[k] += S*uh[k]; ymom[k] += S*vh[k]; } } } } int _balance_deep_and_shallow(int N, double* wc, double* zc, double* hc, double* wv, double* zv, double* hv, double* hvbar, double* xmomc, double* ymomc, double* xmomv, double* ymomv) { int k, k3, i; double dz, hmin, alpha; //Compute linear combination between w-limited stages and //h-limited stages close to the bed elevation. for (k=0; k dz/2 then alpha = 1 and the bed will have no effect //If hmin < 0 then alpha = 0 reverting to constant height above bed. if (dz > 0.0) //if (hmin<0.0) // alpha = 0.0; //else // alpha = max( min( hc[k]/dz, 1.0), 0.0 ); alpha = max( min( 2.0*hmin/dz, 1.0), 0.0 ); else alpha = 1.0; //Flat bed //alpha = 1.0; //printf("dz = %.3f, alpha = %.8f\n", dz, alpha); // Let // // wvi be the w-limited stage (wvi = zvi + hvi) // wvi- be the h-limited state (wvi- = zvi + hvi-) // // // where i=0,1,2 denotes the vertex ids // // Weighted balance between w-limited and h-limited stage is // // wvi := (1-alpha)*(zvi+hvi-) + alpha*(zvi+hvi) // // It follows that the updated wvi is // wvi := zvi + (1-alpha)*hvi- + alpha*hvi // // Momentum is balanced between constant and limited if (alpha < 1) { for (i=0; i<3; i++) { wv[k3+i] = zv[k3+i] + (1-alpha)*hvbar[k3+i] + alpha*hv[k3+i]; //Update momentum as a linear combination of //xmomc and ymomc (shallow) and momentum //from extrapolator xmomv and ymomv (deep). xmomv[k3+i] = (1-alpha)*xmomc[k] + alpha*xmomv[k3+i]; ymomv[k3+i] = (1-alpha)*ymomc[k] + alpha*ymomv[k3+i]; } } } return 0; } int _protect(int N, double minimum_allowed_height, double* wc, double* zc, double* xmomc, double* ymomc) { int k; double hc; //Protect against initesimal and negative heights for (k=0; k dimensions[0]; for (k=0; k data)[k3+i]; } avg_h /= 3; //Compute bed slope x0 = ((double*) x -> data)[k6 + 0]; y0 = ((double*) x -> data)[k6 + 1]; x1 = ((double*) x -> data)[k6 + 2]; y1 = ((double*) x -> data)[k6 + 3]; x2 = ((double*) x -> data)[k6 + 4]; y2 = ((double*) x -> data)[k6 + 5]; z0 = ((double*) v -> data)[k3 + 0]; z1 = ((double*) v -> data)[k3 + 1]; z2 = ((double*) v -> data)[k3 + 2]; _gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2, &zx, &zy); //Update momentum ((double*) xmom -> data)[k] += -g*zx*avg_h; ((double*) ymom -> data)[k] += -g*zy*avg_h; } return Py_BuildValue(""); } PyObject *manning_friction(PyObject *self, PyObject *args) { // // manning_friction(g, eps, h, uh, vh, eta, xmom_update, ymom_update) // PyArrayObject *w, *z, *uh, *vh, *eta, *xmom, *ymom; int N; double g, eps; if (!PyArg_ParseTuple(args, "ddOOOOOOO", &g, &eps, &w, &z, &uh, &vh, &eta, &xmom, &ymom)) return NULL; N = w -> dimensions[0]; _manning_friction(g, eps, N, (double*) w -> data, (double*) z -> data, (double*) uh -> data, (double*) vh -> data, (double*) eta -> data, (double*) xmom -> data, (double*) ymom -> data); return Py_BuildValue(""); } PyObject *extrapolate_second_order_sw(PyObject *self, PyObject *args) { /*Compute the vertex values based on a linear reconstruction on each triangle These values are calculated as follows: 1) For each triangle not adjacent to a boundary, we consider the auxiliary triangle formed by the centroids of its three neighbours. 2) For each conserved quantity, we integrate around the auxiliary triangle's boundary the product of the quantity and the outward normal vector. Dividing by the triangle area gives (a,b), the average of the vector (q_x,q_y) on the auxiliary triangle. We suppose that the linear reconstruction on the original triangle has gradient (a,b). 3) Provisional vertex junmps dqv[0,1,2] are computed and these are then limited by calling the functions find_qmin_and_qmax and limit_gradient Python call: extrapolate_second_order_sw(domain.surrogate_neighbours, domain.number_of_boundaries domain.centroid_coordinates, Stage.centroid_values Xmom.centroid_values Ymom.centroid_values domain.vertex_coordinates, Stage.vertex_values, Xmom.vertex_values, Ymom.vertex_values) Post conditions: The vertices of each triangle have values from a limited linear reconstruction based on centroid values */ PyArrayObject *surrogate_neighbours, *number_of_boundaries, *centroid_coordinates, *stage_centroid_values, *xmom_centroid_values, *ymom_centroid_values, *vertex_coordinates, *stage_vertex_values, *xmom_vertex_values, *ymom_vertex_values; PyObject *domain, *Tmp; //Local variables double a, b;//gradient vector, not stored but used to calculate vertex values from centroids int number_of_elements,k,k0,k1,k2,k3,k6,coord_index,i; double x,y,x0,y0,x1,y1,x2,y2,xv0,yv0,xv1,yv1,xv2,yv2;//vertices of the auxiliary triangle double dx1,dx2,dy1,dy2,dxv0,dxv1,dxv2,dyv0,dyv1,dyv2,dq0,dq1,dq2,area2; double dqv[3], qmin, qmax, beta_w;//provisional jumps from centroids to v'tices and safety factor re limiting //by which these jumps are limited // Convert Python arguments to C if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", &domain, &surrogate_neighbours, &number_of_boundaries, ¢roid_coordinates, &stage_centroid_values, &xmom_centroid_values, &ymom_centroid_values, &vertex_coordinates, &stage_vertex_values, &xmom_vertex_values, &ymom_vertex_values)) { PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); return NULL; } //get the safety factor beta_w, set in the config.py file. This is used in the limiting process Tmp = PyObject_GetAttrString(domain, "beta_w"); if (!Tmp) return NULL; beta_w = PyFloat_AsDouble(Tmp); Py_DECREF(Tmp); number_of_elements = stage_centroid_values -> dimensions[0]; for (k=0; kdata)[k]==3){/*no neighbours, set gradient on the triangle to zero*/ ((double *) stage_vertex_values->data)[k3]=((double *)stage_centroid_values->data)[k]; ((double *) stage_vertex_values->data)[k3+1]=((double *)stage_centroid_values->data)[k]; ((double *) stage_vertex_values->data)[k3+2]=((double *)stage_centroid_values->data)[k]; ((double *) xmom_vertex_values->data)[k3]=((double *)xmom_centroid_values->data)[k]; ((double *) xmom_vertex_values->data)[k3+1]=((double *)xmom_centroid_values->data)[k]; ((double *) xmom_vertex_values->data)[k3+2]=((double *)xmom_centroid_values->data)[k]; ((double *) ymom_vertex_values->data)[k3]=((double *)ymom_centroid_values->data)[k]; ((double *) ymom_vertex_values->data)[k3+1]=((double *)ymom_centroid_values->data)[k]; ((double *) ymom_vertex_values->data)[k3+2]=((double *)ymom_centroid_values->data)[k]; continue; } else {//we will need centroid coordinates and vertex coordinates of the triangle //get the vertex coordinates of the FV triangle xv0=((double *)vertex_coordinates->data)[k6]; yv0=((double *)vertex_coordinates->data)[k6+1]; xv1=((double *)vertex_coordinates->data)[k6+2]; yv1=((double *)vertex_coordinates->data)[k6+3]; xv2=((double *)vertex_coordinates->data)[k6+4]; yv2=((double *)vertex_coordinates->data)[k6+5]; //get the centroid coordinates of the FV triangle coord_index=2*k; x=((double *)centroid_coordinates->data)[coord_index]; y=((double *)centroid_coordinates->data)[coord_index+1]; //store x- and y- differentials for the vertices of the FV triangle relative to the centroid dxv0=xv0-x; dxv1=xv1-x; dxv2=xv2-x; dyv0=yv0-y; dyv1=yv1-y; dyv2=yv2-y; } if (((long *)number_of_boundaries->data)[k]<=1){ //if no boundaries, auxiliary triangle is formed from the centroids of the three neighbours //if one boundary, auxiliary triangle is formed from this centroid and its two neighbours k0=((long *)surrogate_neighbours->data)[k3]; k1=((long *)surrogate_neighbours->data)[k3+1]; k2=((long *)surrogate_neighbours->data)[k3+2]; //get the auxiliary triangle's vertex coordinates (really the centroids of neighbouring triangles) coord_index=2*k0; x0=((double *)centroid_coordinates->data)[coord_index]; y0=((double *)centroid_coordinates->data)[coord_index+1]; coord_index=2*k1; x1=((double *)centroid_coordinates->data)[coord_index]; y1=((double *)centroid_coordinates->data)[coord_index+1]; coord_index=2*k2; x2=((double *)centroid_coordinates->data)[coord_index]; y2=((double *)centroid_coordinates->data)[coord_index+1]; //store x- and y- differentials for the vertices of the auxiliary triangle dx1=x1-x0; dx2=x2-x0; dy1=y1-y0; dy2=y2-y0; //calculate 2*area of the auxiliary triangle area2 = dy2*dx1 - dy1*dx2;//the triangle is guaranteed to be counter-clockwise //If the mesh is 'weird' near the boundary, the trianlge might be flat or clockwise: if (area2<=0) return NULL; //### stage ### //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid dq0=((double *)stage_centroid_values->data)[k0]-((double *)stage_centroid_values->data)[k]; //calculate differentials between the vertices of the auxiliary triangle dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k0]; dq2=((double *)stage_centroid_values->data)[k2]-((double *)stage_centroid_values->data)[k0]; //calculate the gradient of stage on the auxiliary triangle a = dy2*dq1 - dy1*dq2; a /= area2; b = dx1*dq2 - dx2*dq1; b /= area2; //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now we want to find min and max of the centroid and the vertices of the auxiliary triangle //and compute jumps from the centroid to the min and max find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; //### xmom ### //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid dq0=((double *)xmom_centroid_values->data)[k0]-((double *)xmom_centroid_values->data)[k]; //calculate differentials between the vertices of the auxiliary triangle dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k0]; dq2=((double *)xmom_centroid_values->data)[k2]-((double *)xmom_centroid_values->data)[k0]; //calculate the gradient of xmom on the auxiliary triangle a = dy2*dq1 - dy1*dq2; a /= area2; b = dx1*dq2 - dx2*dq1; b /= area2; //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now we want to find min and max of the centroid and the vertices of the auxiliary triangle //and compute jumps from the centroid to the min and max find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; //### ymom ### //calculate the difference between vertex 0 of the auxiliary triangle and the FV triangle centroid dq0=((double *)ymom_centroid_values->data)[k0]-((double *)ymom_centroid_values->data)[k]; //calculate differentials between the vertices of the auxiliary triangle dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k0]; dq2=((double *)ymom_centroid_values->data)[k2]-((double *)ymom_centroid_values->data)[k0]; //calculate the gradient of xmom on the auxiliary triangle a = dy2*dq1 - dy1*dq2; a /= area2; b = dx1*dq2 - dx2*dq1; b /= area2; //calculate provisional jumps in stage from the centroid of the FV tri to its vertices, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now we want to find min and max of the centroid and the vertices of the auxiliary triangle //and compute jumps from the centroid to the min and max find_qmin_and_qmax(dq0,dq1,dq2,&qmin,&qmax); limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; }//if (number_of_boundaries[k]<=1) else{//number_of_boundaries==2 //one internal neighbour and gradient is in direction of the neighbour's centroid //find the only internal neighbour for (k2=k3;k2data)[k2]!=k)//find internal neighbour of triabngle k break; } if ((k2==k3+3))//if we didn't find an internal neighbour return NULL;//error k1=((long *)surrogate_neighbours->data)[k2]; //the coordinates of the triangle are already (x,y). Get centroid of the neighbour (x1,y1) coord_index=2*k1; x1=((double *)centroid_coordinates->data)[coord_index]; y1=((double *)centroid_coordinates->data)[coord_index+1]; //compute x- and y- distances between the centroid of the FV triangle and that of its neighbour dx1=x1-x; dy1=y1-y; //set area2 as the square of the distance area2=dx1*dx1+dy1*dy1; //set dx2=(x1-x0)/((x1-x0)^2+(y1-y0)^2) and dy2=(y1-y0)/((x1-x0)^2+(y1-y0)^2) which //respectively correspond to the x- and y- gradients of the conserved quantities dx2=1.0/area2; dy2=dx2*dy1; dx2*=dx1; //## stage ### //compute differentials dq1=((double *)stage_centroid_values->data)[k1]-((double *)stage_centroid_values->data)[k]; //calculate the gradient between the centroid of the FV triangle and that of its neighbour a=dq1*dx2; b=dq1*dy2; //calculate provisional vertex jumps, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now limit the jumps if (dq1>=0.0){ qmin=0.0; qmax=dq1; } else{ qmin=dq1; qmax=0.0; } limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)stage_vertex_values->data)[k3+i]=((double *)stage_centroid_values->data)[k]+dqv[i]; //## xmom ### //compute differentials dq1=((double *)xmom_centroid_values->data)[k1]-((double *)xmom_centroid_values->data)[k]; //calculate the gradient between the centroid of the FV triangle and that of its neighbour a=dq1*dx2; b=dq1*dy2; //calculate provisional vertex jumps, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now limit the jumps if (dq1>=0.0){ qmin=0.0; qmax=dq1; } else{ qmin=dq1; qmax=0.0; } limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)xmom_vertex_values->data)[k3+i]=((double *)xmom_centroid_values->data)[k]+dqv[i]; //## ymom ### //compute differentials dq1=((double *)ymom_centroid_values->data)[k1]-((double *)ymom_centroid_values->data)[k]; //calculate the gradient between the centroid of the FV triangle and that of its neighbour a=dq1*dx2; b=dq1*dy2; //calculate provisional vertex jumps, to be limited dqv[0]=a*dxv0+b*dyv0; dqv[1]=a*dxv1+b*dyv1; dqv[2]=a*dxv2+b*dyv2; //now limit the jumps if (dq1>=0.0){ qmin=0.0; qmax=dq1; } else{ qmin=dq1; qmax=0.0; } limit_gradient(dqv,qmin,qmax,beta_w);//the gradient will be limited for (i=0;i<3;i++) ((double *)ymom_vertex_values->data)[k3+i]=((double *)ymom_centroid_values->data)[k]+dqv[i]; }//else [number_of_boudaries==2] }//for k=0 to number_of_elements-1 return Py_BuildValue(""); }//extrapolate_second-order_sw PyObject *rotate(PyObject *self, PyObject *args, PyObject *kwargs) { // // r = rotate(q, normal, direction=1) // // Where q is assumed to be a Float numeric array of length 3 and // normal a Float numeric array of length 2. PyObject *Q, *Normal; PyArrayObject *q, *r, *normal; static char *argnames[] = {"q", "normal", "direction", NULL}; int dimensions[1], i, direction=1; double n1, n2; // Convert Python arguments to C if (!PyArg_ParseTupleAndKeywords(args, kwargs, "OO|i", argnames, &Q, &Normal, &direction)) return NULL; //Input checks (convert sequences into numeric arrays) q = (PyArrayObject *) PyArray_ContiguousFromObject(Q, PyArray_DOUBLE, 0, 0); normal = (PyArrayObject *) PyArray_ContiguousFromObject(Normal, PyArray_DOUBLE, 0, 0); if (normal -> dimensions[0] != 2) { PyErr_SetString(PyExc_RuntimeError, "Normal vector must have 2 components"); return NULL; } //Allocate space for return vector r (don't DECREF) dimensions[0] = 3; r = (PyArrayObject *) PyArray_FromDims(1, dimensions, PyArray_DOUBLE); //Copy for (i=0; i<3; i++) { ((double *) (r -> data))[i] = ((double *) (q -> data))[i]; } //Get normal and direction n1 = ((double *) normal -> data)[0]; n2 = ((double *) normal -> data)[1]; if (direction == -1) n2 = -n2; //Rotate _rotate((double *) r -> data, n1, n2); //Release numeric arrays Py_DECREF(q); Py_DECREF(normal); //return result using PyArray to avoid memory leak return PyArray_Return(r); } PyObject *compute_fluxes(PyObject *self, PyObject *args) { /*Compute all fluxes and the timestep suitable for all volumes in domain. Compute total flux for each conserved quantity using "flux_function" Fluxes across each edge are scaled by edgelengths and summed up Resulting flux is then scaled by area and stored in explicit_update for each of the three conserved quantities stage, xmomentum and ymomentum The maximal allowable speed computed by the flux_function for each volume is converted to a timestep that must not be exceeded. The minimum of those is computed as the next overall timestep. Python call: domain.timestep = compute_fluxes(timestep, domain.epsilon, domain.g, domain.neighbours, domain.neighbour_edges, domain.normals, domain.edgelengths, domain.radii, domain.areas, Stage.edge_values, Xmom.edge_values, Ymom.edge_values, Bed.edge_values, Stage.boundary_values, Xmom.boundary_values, Ymom.boundary_values, Stage.explicit_update, Xmom.explicit_update, Ymom.explicit_update, already_computed_flux) Post conditions: domain.explicit_update is reset to computed flux values domain.timestep is set to the largest step satisfying all volumes. */ PyArrayObject *neighbours, *neighbour_edges, *normals, *edgelengths, *radii, *areas, *stage_edge_values, *xmom_edge_values, *ymom_edge_values, *bed_edge_values, *stage_boundary_values, *xmom_boundary_values, *ymom_boundary_values, *stage_explicit_update, *xmom_explicit_update, *ymom_explicit_update, *already_computed_flux;//tracks whether the flux across an edge has already been computed //Local variables double timestep, max_speed, epsilon, g; double normal[2], ql[3], qr[3], zl, zr; double edgeflux[3]; //Work arrays for summing up fluxes int number_of_elements, k, i, m, n; int ki, nm, ki2; //Index shorthands static long call=1; // Convert Python arguments to C if (!PyArg_ParseTuple(args, "dddOOOOOOOOOOOOOOOOO", ×tep, &epsilon, &g, &neighbours, &neighbour_edges, &normals, &edgelengths, &radii, &areas, &stage_edge_values, &xmom_edge_values, &ymom_edge_values, &bed_edge_values, &stage_boundary_values, &xmom_boundary_values, &ymom_boundary_values, &stage_explicit_update, &xmom_explicit_update, &ymom_explicit_update, &already_computed_flux)) { PyErr_SetString(PyExc_RuntimeError, "Input arguments failed"); return NULL; } number_of_elements = stage_edge_values -> dimensions[0]; call++;//a static local variable to which already_computed_flux is compared //set explicit_update to zero for all conserved_quantities. //This assumes compute_fluxes called before forcing terms for (k=0; k data)[k]=0.0; ((double *) xmom_explicit_update -> data)[k]=0.0; ((double *) ymom_explicit_update -> data)[k]=0.0; } //Loop through neighbours and compute edge flux for each for (k=0; kdata)[ki]==call)//we've already computed the flux across this edge continue; ql[0] = ((double *) stage_edge_values -> data)[ki]; ql[1] = ((double *) xmom_edge_values -> data)[ki]; ql[2] = ((double *) ymom_edge_values -> data)[ki]; zl = ((double *) bed_edge_values -> data)[ki]; //Quantities at neighbour on nearest face n = ((long *) neighbours -> data)[ki]; if (n < 0) { m = -n-1; //Convert negative flag to index qr[0] = ((double *) stage_boundary_values -> data)[m]; qr[1] = ((double *) xmom_boundary_values -> data)[m]; qr[2] = ((double *) ymom_boundary_values -> data)[m]; zr = zl; //Extend bed elevation to boundary } else { m = ((long *) neighbour_edges -> data)[ki]; nm = n*3+m; qr[0] = ((double *) stage_edge_values -> data)[nm]; qr[1] = ((double *) xmom_edge_values -> data)[nm]; qr[2] = ((double *) ymom_edge_values -> data)[nm]; zr = ((double *) bed_edge_values -> data)[nm]; } // Outward pointing normal vector // normal = domain.normals[k, 2*i:2*i+2] ki2 = 2*ki; //k*6 + i*2 normal[0] = ((double *) normals -> data)[ki2]; normal[1] = ((double *) normals -> data)[ki2+1]; //Edge flux computation flux_function(ql, qr, zl, zr, normal[0], normal[1], epsilon, g, edgeflux, &max_speed); //update triangle k ((long *) already_computed_flux->data)[ki]=call; ((double *) stage_explicit_update -> data)[k] -= edgeflux[0]*((double *) edgelengths -> data)[ki]; ((double *) xmom_explicit_update -> data)[k] -= edgeflux[1]*((double *) edgelengths -> data)[ki]; ((double *) ymom_explicit_update -> data)[k] -= edgeflux[2]*((double *) edgelengths -> data)[ki]; //update the neighbour n if (n>=0){ ((long *) already_computed_flux->data)[nm]=call; ((double *) stage_explicit_update -> data)[n] += edgeflux[0]*((double *) edgelengths -> data)[nm]; ((double *) xmom_explicit_update -> data)[n] += edgeflux[1]*((double *) edgelengths -> data)[nm]; ((double *) ymom_explicit_update -> data)[n] += edgeflux[2]*((double *) edgelengths -> data)[nm]; } ///for (j=0; j<3; j++) { ///flux[j] -= edgeflux[j]*((double *) edgelengths -> data)[ki]; ///} //Update timestep //timestep = min(timestep, domain.radii[k]/max_speed) //FIXME: SR Add parameter for CFL condition if (max_speed > epsilon) { timestep = min(timestep, ((double *) radii -> data)[k]/max_speed); //maxspeed in flux_function is calculated as max(|u+a|,|u-a|) if (n>=0) timestep = min(timestep, ((double *) radii -> data)[n]/max_speed); } } // end for i //Normalise by area and store for when all conserved //quantities get updated ((double *) stage_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; ((double *) xmom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; ((double *) ymom_explicit_update -> data)[k] /= ((double *) areas -> data)[k]; } //end for k return Py_BuildValue("d", timestep); } PyObject *protect(PyObject *self, PyObject *args) { // // protect(minimum_allowed_height, wc, zc, xmomc, ymomc) PyArrayObject *wc, //Stage at centroids *zc, //Elevation at centroids *xmomc, //Momentums at centroids *ymomc; int N; double minimum_allowed_height; // Convert Python arguments to C if (!PyArg_ParseTuple(args, "dOOOO", &minimum_allowed_height, &wc, &zc, &xmomc, &ymomc)) return NULL; N = wc -> dimensions[0]; _protect(N, minimum_allowed_height, (double*) wc -> data, (double*) zc -> data, (double*) xmomc -> data, (double*) ymomc -> data); return Py_BuildValue(""); } PyObject *balance_deep_and_shallow(PyObject *self, PyObject *args) { // // balance_deep_and_shallow(wc, zc, hc, wv, zv, hv, // xmomc, ymomc, xmomv, ymomv) PyArrayObject *wc, //Stage at centroids *zc, //Elevation at centroids *hc, //Height at centroids *wv, //Stage at vertices *zv, //Elevation at vertices *hv, //Depths at vertices *hvbar, //h-Limited depths at vertices *xmomc, //Momentums at centroids and vertices *ymomc, *xmomv, *ymomv; int N; //, err; // Convert Python arguments to C if (!PyArg_ParseTuple(args, "OOOOOOOOOOO", &wc, &zc, &hc, &wv, &zv, &hv, &hvbar, &xmomc, &ymomc, &xmomv, &ymomv)) return NULL; N = wc -> dimensions[0]; _balance_deep_and_shallow(N, (double*) wc -> data, (double*) zc -> data, (double*) hc -> data, (double*) wv -> data, (double*) zv -> data, (double*) hv -> data, (double*) hvbar -> data, (double*) xmomc -> data, (double*) ymomc -> data, (double*) xmomv -> data, (double*) ymomv -> data); return Py_BuildValue(""); } PyObject *h_limiter(PyObject *self, PyObject *args) { PyObject *domain, *Tmp; PyArrayObject *hv, *hc, //Depth at vertices and centroids *hvbar, //Limited depth at vertices (return values) *neighbours; int k, i, n, N, k3; int dimensions[2]; double beta_h; //Safety factor (see config.py) double *hmin, *hmax, hn; // Convert Python arguments to C if (!PyArg_ParseTuple(args, "OOO", &domain, &hc, &hv)) return NULL; neighbours = get_consecutive_array(domain, "neighbours"); //Get safety factor beta_h Tmp = PyObject_GetAttrString(domain, "beta_h"); if (!Tmp) return NULL; beta_h = PyFloat_AsDouble(Tmp); Py_DECREF(Tmp); N = hc -> dimensions[0]; //Create hvbar dimensions[0] = N; dimensions[1] = 3; hvbar = (PyArrayObject *) PyArray_FromDims(2, dimensions, PyArray_DOUBLE); //Find min and max of this and neighbour's centroid values hmin = malloc(N * sizeof(double)); hmax = malloc(N * sizeof(double)); for (k=0; k data)[k]; hmax[k] = hmin[k]; for (i=0; i<3; i++) { n = ((long*) neighbours -> data)[k3+i]; //Initialise hvbar with values from hv ((double*) hvbar -> data)[k3+i] = ((double*) hv -> data)[k3+i]; if (n >= 0) { hn = ((double*) hc -> data)[n]; //Neighbour's centroid value hmin[k] = min(hmin[k], hn); hmax[k] = max(hmax[k], hn); } } } // Call underlying standard routine _limit(N, beta_h, (double*) hc -> data, (double*) hvbar -> data, hmin, hmax); // // //Py_DECREF(domain); //FIXME: NEcessary? free(hmin); free(hmax); //return result using PyArray to avoid memory leak return PyArray_Return(hvbar); //return Py_BuildValue(""); } PyObject *assign_windfield_values(PyObject *self, PyObject *args) { // // assign_windfield_values(xmom_update, ymom_update, // s_vec, phi_vec, self.const) PyArrayObject //(one element per triangle) *s_vec, //Speeds *phi_vec, //Bearings *xmom_update, //Momentum updates *ymom_update; int N; double cw; // Convert Python arguments to C if (!PyArg_ParseTuple(args, "OOOOd", &xmom_update, &ymom_update, &s_vec, &phi_vec, &cw)) return NULL; N = xmom_update -> dimensions[0]; _assign_wind_field_values(N, (double*) xmom_update -> data, (double*) ymom_update -> data, (double*) s_vec -> data, (double*) phi_vec -> data, cw); return Py_BuildValue(""); } ////////////////////////////////////////// // Method table for python module static struct PyMethodDef MethodTable[] = { /* The cast of the function is necessary since PyCFunction values * only take two PyObject* parameters, and rotate() takes * three. */ {"rotate", (PyCFunction)rotate, METH_VARARGS | METH_KEYWORDS, "Print out"}, {"extrapolate_second_order_sw", extrapolate_second_order_sw, METH_VARARGS, "Print out"}, {"compute_fluxes", compute_fluxes, METH_VARARGS, "Print out"}, {"gravity", gravity, METH_VARARGS, "Print out"}, {"manning_friction", manning_friction, METH_VARARGS, "Print out"}, {"balance_deep_and_shallow", balance_deep_and_shallow, METH_VARARGS, "Print out"}, {"h_limiter", h_limiter, METH_VARARGS, "Print out"}, {"protect", protect, METH_VARARGS | METH_KEYWORDS, "Print out"}, {"assign_windfield_values", assign_windfield_values, METH_VARARGS | METH_KEYWORDS, "Print out"}, //{"distribute_to_vertices_and_edges", // distribute_to_vertices_and_edges, METH_VARARGS}, //{"update_conserved_quantities", // update_conserved_quantities, METH_VARARGS}, //{"set_initialcondition", // set_initialcondition, METH_VARARGS}, {NULL, NULL} }; // Module initialisation void initshallow_water_ext(void){ Py_InitModule("shallow_water_ext", MethodTable); import_array(); //Necessary for handling of NumPY structures }