[1018] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | import unittest |
---|
| 4 | |
---|
| 5 | |
---|
| 6 | from Numeric import dot, allclose, array, transpose, arange, ones, Float |
---|
| 7 | from cg_solve import * |
---|
| 8 | from sparse import Sparse, Sparse_CSR |
---|
| 9 | |
---|
| 10 | |
---|
| 11 | class Test_CG_Solve(unittest.TestCase): |
---|
| 12 | |
---|
| 13 | def test_sparse_solve(self): |
---|
| 14 | """Small Sparse Matrix""" |
---|
| 15 | |
---|
| 16 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 17 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 18 | [0.0, -1.0, 2.0, -1.0], |
---|
| 19 | [0.0,0.0, -1.0, 2.0]] |
---|
| 20 | |
---|
| 21 | A = Sparse(A) |
---|
| 22 | |
---|
| 23 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
| 24 | b = A*xe |
---|
| 25 | x = [0.0, 0.0, 0.0, 0.0] |
---|
| 26 | |
---|
| 27 | x = conjugate_gradient(A,b,x,iprint=0) |
---|
| 28 | |
---|
| 29 | assert allclose(x,xe) |
---|
| 30 | |
---|
[1160] | 31 | def test_max_iter(self): |
---|
| 32 | """Small Sparse Matrix""" |
---|
[1018] | 33 | |
---|
[1160] | 34 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 35 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 36 | [0.0, -1.0, 2.0, -1.0], |
---|
| 37 | [0.0,0.0, -1.0, 2.0]] |
---|
| 38 | |
---|
| 39 | A = Sparse(A) |
---|
| 40 | |
---|
| 41 | xe = [0.0, 1.0, 2.0, 3.0] |
---|
| 42 | b = A*xe |
---|
| 43 | x = [0.0, 0.0, 0.0, 0.0] |
---|
| 44 | |
---|
| 45 | x = conjugate_gradient(A,b,x,iprint=0,imax=2) |
---|
| 46 | |
---|
| 47 | |
---|
[1018] | 48 | def test_solve_large(self): |
---|
| 49 | """Standard 1d laplacian """ |
---|
| 50 | |
---|
| 51 | n = 50 |
---|
| 52 | A = Sparse(n,n) |
---|
| 53 | |
---|
| 54 | for i in arange(0,n): |
---|
| 55 | A[i,i] = 1.0 |
---|
| 56 | if i > 0 : |
---|
| 57 | A[i,i-1] = -0.5 |
---|
| 58 | if i < n-1 : |
---|
| 59 | A[i,i+1] = -0.5 |
---|
| 60 | |
---|
| 61 | xe = ones( (n,), Float) |
---|
| 62 | |
---|
| 63 | b = A*xe |
---|
| 64 | x = conjugate_gradient(A,b,b,tol=1.0e-5,iprint=0) |
---|
| 65 | |
---|
| 66 | assert allclose(x,xe) |
---|
| 67 | |
---|
| 68 | def test_solve_large_2d(self): |
---|
| 69 | """Standard 2d laplacian""" |
---|
| 70 | |
---|
| 71 | n = 20 |
---|
| 72 | m = 10 |
---|
| 73 | |
---|
| 74 | A = Sparse(m*n, m*n) |
---|
| 75 | |
---|
| 76 | for i in arange(0,n): |
---|
| 77 | for j in arange(0,m): |
---|
| 78 | I = j+m*i |
---|
| 79 | A[I,I] = 4.0 |
---|
| 80 | if i > 0 : |
---|
| 81 | A[I,I-m] = -1.0 |
---|
| 82 | if i < n-1 : |
---|
| 83 | A[I,I+m] = -1.0 |
---|
| 84 | if j > 0 : |
---|
| 85 | A[I,I-1] = -1.0 |
---|
| 86 | if j < m-1 : |
---|
| 87 | A[I,I+1] = -1.0 |
---|
| 88 | |
---|
| 89 | xe = ones( (n*m,), Float) |
---|
| 90 | |
---|
| 91 | b = A*xe |
---|
| 92 | x = conjugate_gradient(A,b,b,iprint=0) |
---|
| 93 | |
---|
| 94 | assert allclose(x,xe) |
---|
| 95 | |
---|
| 96 | def test_solve_large_2d_csr_matrix(self): |
---|
| 97 | """Standard 2d laplacian with csr format |
---|
| 98 | """ |
---|
| 99 | |
---|
| 100 | n = 100 |
---|
| 101 | m = 100 |
---|
| 102 | |
---|
| 103 | A = Sparse(m*n, m*n) |
---|
| 104 | |
---|
| 105 | for i in arange(0,n): |
---|
| 106 | for j in arange(0,m): |
---|
| 107 | I = j+m*i |
---|
| 108 | A[I,I] = 4.0 |
---|
| 109 | if i > 0 : |
---|
| 110 | A[I,I-m] = -1.0 |
---|
| 111 | if i < n-1 : |
---|
| 112 | A[I,I+m] = -1.0 |
---|
| 113 | if j > 0 : |
---|
| 114 | A[I,I-1] = -1.0 |
---|
| 115 | if j < m-1 : |
---|
| 116 | A[I,I+1] = -1.0 |
---|
| 117 | |
---|
| 118 | xe = ones( (n*m,), Float) |
---|
| 119 | |
---|
| 120 | # Convert to csr format |
---|
| 121 | #print 'start covert' |
---|
| 122 | A = Sparse_CSR(A) |
---|
| 123 | #print 'finish covert' |
---|
| 124 | b = A*xe |
---|
| 125 | x = conjugate_gradient(A,b,b,iprint=20) |
---|
| 126 | |
---|
| 127 | assert allclose(x,xe) |
---|
| 128 | |
---|
| 129 | |
---|
| 130 | def test_solve_large_2d_with_default_guess(self): |
---|
| 131 | """Standard 2d laplacian using default first guess""" |
---|
| 132 | |
---|
| 133 | n = 20 |
---|
| 134 | m = 10 |
---|
| 135 | |
---|
| 136 | A = Sparse(m*n, m*n) |
---|
| 137 | |
---|
| 138 | for i in arange(0,n): |
---|
| 139 | for j in arange(0,m): |
---|
| 140 | I = j+m*i |
---|
| 141 | A[I,I] = 4.0 |
---|
| 142 | if i > 0 : |
---|
| 143 | A[I,I-m] = -1.0 |
---|
| 144 | if i < n-1 : |
---|
| 145 | A[I,I+m] = -1.0 |
---|
| 146 | if j > 0 : |
---|
| 147 | A[I,I-1] = -1.0 |
---|
| 148 | if j < m-1 : |
---|
| 149 | A[I,I+1] = -1.0 |
---|
| 150 | |
---|
| 151 | xe = ones( (n*m,), Float) |
---|
| 152 | |
---|
| 153 | b = A*xe |
---|
| 154 | x = conjugate_gradient(A,b) |
---|
| 155 | |
---|
| 156 | assert allclose(x,xe) |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | def test_vector_shape_error(self): |
---|
| 160 | """Raise VectorShapeError""" |
---|
| 161 | |
---|
| 162 | A = [[2.0, -1.0, 0.0, 0.0 ], |
---|
| 163 | [-1.0, 2.0, -1.0, 0.0], |
---|
| 164 | [0.0, -1.0, 2.0, -1.0], |
---|
| 165 | [0.0,0.0, -1.0, 2.0]] |
---|
| 166 | |
---|
| 167 | A = Sparse(A) |
---|
| 168 | |
---|
| 169 | xe = [[0.0,2.0], [1.0,3.0], [2.0,4.0], [3.0,2.0]] |
---|
| 170 | |
---|
| 171 | try: |
---|
| 172 | x = conjugate_gradient(A,xe,xe,iprint=0) |
---|
| 173 | except: |
---|
| 174 | pass |
---|
| 175 | else: |
---|
| 176 | msg = 'Should have raised exception' |
---|
| 177 | raise msg |
---|
| 178 | |
---|
| 179 | |
---|
| 180 | #------------------------------------------------------------- |
---|
| 181 | if __name__ == "__main__": |
---|
| 182 | suite = unittest.makeSuite(Test_CG_Solve,'test') |
---|
| 183 | runner = unittest.TextTestRunner() #(verbosity=2) |
---|
| 184 | runner.run(suite) |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | |
---|