[1093] | 1 | #!/usr/bin/env python |
---|
| 2 | |
---|
| 3 | |
---|
| 4 | import unittest |
---|
| 5 | from Numeric import zeros, array, allclose |
---|
| 6 | from math import sqrt, pi |
---|
| 7 | |
---|
| 8 | from util import * |
---|
| 9 | from config import epsilon |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | def test_function(x, y): |
---|
| 13 | return x+y |
---|
| 14 | |
---|
| 15 | class Test_Util(unittest.TestCase): |
---|
| 16 | def setUp(self): |
---|
| 17 | pass |
---|
| 18 | |
---|
| 19 | def tearDown(self): |
---|
| 20 | pass |
---|
| 21 | |
---|
| 22 | |
---|
| 23 | def test_gradient(self): |
---|
| 24 | x0 = 0.0; y0 = 0.0; z0 = 0.0 |
---|
| 25 | x1 = 1.0; y1 = 0.0; z1 = -1.0 |
---|
| 26 | x2 = 0.0; y2 = 1.0; z2 = 0.0 |
---|
| 27 | |
---|
| 28 | zx, zy = gradient(x0, y0, x1, y1, x2, y2, z0, z1, z2) |
---|
| 29 | |
---|
| 30 | assert zx == -1.0 |
---|
| 31 | assert zy == 0.0 |
---|
| 32 | |
---|
| 33 | |
---|
| 34 | |
---|
| 35 | |
---|
| 36 | def test_gradient2(self): |
---|
| 37 | |
---|
| 38 | from util import gradient |
---|
| 39 | x0 = 2.0/3; y0 = 2.0/3 |
---|
| 40 | x1= 8.0/3; y1 = 2.0/3 |
---|
| 41 | x2 = 2.0/3; y2 = 8.0/3 |
---|
| 42 | |
---|
| 43 | q0 = 2.0+2.0/3 |
---|
| 44 | q1 = 8.0+2.0/3 |
---|
| 45 | q2 = 2.0+8.0/3 |
---|
| 46 | |
---|
| 47 | #Gradient of fitted pwl surface |
---|
| 48 | a, b = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
| 49 | |
---|
| 50 | assert abs(a - 3.0) < epsilon |
---|
| 51 | assert abs(b - 1.0) < epsilon |
---|
| 52 | |
---|
| 53 | |
---|
| 54 | |
---|
| 55 | def test_that_C_extension_compiles(self): |
---|
| 56 | FN = 'util_ext.c' |
---|
| 57 | try: |
---|
| 58 | import util_ext |
---|
| 59 | except: |
---|
| 60 | from compile import compile |
---|
| 61 | |
---|
| 62 | try: |
---|
| 63 | compile(FN) |
---|
| 64 | except: |
---|
| 65 | raise 'Could not compile %s' %FN |
---|
| 66 | else: |
---|
| 67 | import util_ext |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | def test_gradient_C_extension(self): |
---|
| 71 | from util_ext import gradient as gradient_c |
---|
| 72 | |
---|
| 73 | x0 = 2.0/3; y0 = 2.0/3 |
---|
| 74 | x1= 8.0/3; y1 = 2.0/3 |
---|
| 75 | x2 = 2.0/3; y2 = 8.0/3 |
---|
| 76 | |
---|
| 77 | q0 = 2.0+2.0/3 |
---|
| 78 | q1 = 8.0+2.0/3 |
---|
| 79 | q2 = 2.0+8.0/3 |
---|
| 80 | |
---|
| 81 | #Gradient of fitted pwl surface |
---|
| 82 | a, b = gradient_c(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
| 83 | |
---|
| 84 | assert abs(a - 3.0) < epsilon |
---|
| 85 | assert abs(b - 1.0) < epsilon |
---|
| 86 | |
---|
| 87 | |
---|
| 88 | def test_gradient_C_extension3(self): |
---|
| 89 | from util_ext import gradient as gradient_c |
---|
| 90 | |
---|
| 91 | from RandomArray import uniform, seed |
---|
| 92 | seed(17, 53) |
---|
| 93 | |
---|
| 94 | x0, x1, x2, y0, y1, y2 = uniform(0.0,3.0,6) |
---|
| 95 | |
---|
| 96 | q0 = uniform(0.0, 10.0, 4) |
---|
| 97 | q1 = uniform(1.0, 3.0, 4) |
---|
| 98 | q2 = uniform(7.0, 20.0, 4) |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | for i in range(4): |
---|
| 102 | #Gradient of fitted pwl surface |
---|
| 103 | from util import gradient_python |
---|
| 104 | a_ref, b_ref = gradient(x0, y0, x1, y1, x2, y2, |
---|
| 105 | q0[i], q1[i], q2[i]) |
---|
| 106 | |
---|
| 107 | #print a_ref, b_ref |
---|
| 108 | a, b = gradient_c(x0, y0, x1, y1, x2, y2, |
---|
| 109 | q0[i], q1[i], q2[i]) |
---|
| 110 | |
---|
| 111 | #print a, a_ref, b, b_ref |
---|
| 112 | assert abs(a - a_ref) < epsilon |
---|
| 113 | assert abs(b - b_ref) < epsilon |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | |
---|
| 117 | #Geometric |
---|
| 118 | #def test_distance(self): |
---|
| 119 | # from util import distance# |
---|
| 120 | # |
---|
| 121 | # self.failUnless( distance([4,2],[7,6]) == 5.0, |
---|
| 122 | # 'Distance is wrong!') |
---|
| 123 | # self.failUnless( allclose(distance([7,6],[9,8]), 2.82842712475), |
---|
| 124 | # 'distance is wrong!') |
---|
| 125 | # self.failUnless( allclose(distance([9,8],[4,2]), 7.81024967591), |
---|
| 126 | # 'distance is wrong!') |
---|
| 127 | # |
---|
| 128 | # self.failUnless( distance([9,8],[4,2]) == distance([4,2],[9,8]), |
---|
| 129 | # 'distance is wrong!') |
---|
| 130 | |
---|
| 131 | def test_angle(self): |
---|
| 132 | from util import angle |
---|
| 133 | |
---|
| 134 | assert allclose(angle([1.0, 1.0])/pi*180, 45.0) |
---|
| 135 | |
---|
| 136 | |
---|
| 137 | def test_anglediff(self): |
---|
| 138 | from util import anglediff |
---|
| 139 | |
---|
| 140 | assert allclose(anglediff([0.0, 1.], [1.0, 1.0])/pi*180, 45.0) |
---|
| 141 | |
---|
| 142 | |
---|
| 143 | |
---|
| 144 | |
---|
| 145 | def test_file_function_time(self): |
---|
| 146 | """Test that File function interpolates correctly |
---|
| 147 | between given times. No x,y dependency here. |
---|
| 148 | """ |
---|
| 149 | |
---|
| 150 | #Write file |
---|
| 151 | import os, time |
---|
| 152 | from config import time_format |
---|
| 153 | from math import sin, pi |
---|
| 154 | |
---|
| 155 | finaltime = 1200 |
---|
| 156 | filename = 'test_file_function.txt' |
---|
| 157 | fid = open(filename, 'w') |
---|
| 158 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 159 | dt = 60 #One minute intervals |
---|
| 160 | t = 0.0 |
---|
| 161 | while t <= finaltime: |
---|
| 162 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 163 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 164 | t += dt |
---|
| 165 | |
---|
| 166 | fid.close() |
---|
| 167 | |
---|
| 168 | F = file_function(filename) |
---|
| 169 | |
---|
| 170 | #Now try interpolation |
---|
| 171 | for i in range(20): |
---|
| 172 | t = i*10 |
---|
| 173 | q = F(t) |
---|
| 174 | |
---|
| 175 | #Exact linear intpolation |
---|
| 176 | assert allclose(q[0], 2*t) |
---|
| 177 | if i%6 == 0: |
---|
| 178 | assert allclose(q[1], t**2) |
---|
| 179 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 180 | |
---|
| 181 | #Check non-exact |
---|
| 182 | |
---|
| 183 | t = 90 #Halfway between 60 and 120 |
---|
| 184 | q = F(t) |
---|
| 185 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 186 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 187 | |
---|
| 188 | |
---|
| 189 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 190 | q = F(t) |
---|
| 191 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 192 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 193 | |
---|
| 194 | os.remove(filename) |
---|
| 195 | |
---|
| 196 | |
---|
[1137] | 197 | def test_ensure_numeric(self): |
---|
| 198 | from util import ensure_numeric |
---|
| 199 | from Numeric import ArrayType, Float, array |
---|
[1093] | 200 | |
---|
[1137] | 201 | A = [1,2,3,4] |
---|
| 202 | B = ensure_numeric(A) |
---|
| 203 | assert type(B) == ArrayType |
---|
| 204 | assert B.typecode() == 'l' |
---|
| 205 | assert B[0] == 1 and B[1] == 2 and B[2] == 3 and B[3] == 4 |
---|
[1093] | 206 | |
---|
[1137] | 207 | |
---|
| 208 | A = [1,2,3.14,4] |
---|
| 209 | B = ensure_numeric(A) |
---|
| 210 | assert type(B) == ArrayType |
---|
| 211 | assert B.typecode() == 'd' |
---|
| 212 | assert B[0] == 1 and B[1] == 2 and B[2] == 3.14 and B[3] == 4 |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | A = [1,2,3,4] |
---|
| 216 | B = ensure_numeric(A, Float) |
---|
| 217 | assert type(B) == ArrayType |
---|
| 218 | assert B.typecode() == 'd' |
---|
| 219 | assert B[0] == 1.0 and B[1] == 2.0 and B[2] == 3.0 and B[3] == 4.0 |
---|
| 220 | |
---|
| 221 | |
---|
| 222 | A = [1,2,3,4] |
---|
| 223 | B = ensure_numeric(A, Float) |
---|
| 224 | assert type(B) == ArrayType |
---|
| 225 | assert B.typecode() == 'd' |
---|
| 226 | assert B[0] == 1.0 and B[1] == 2.0 and B[2] == 3.0 and B[3] == 4.0 |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | A = array([1,2,3,4]) |
---|
| 230 | B = ensure_numeric(A) |
---|
| 231 | assert type(B) == ArrayType |
---|
| 232 | assert B.typecode() == 'l' |
---|
| 233 | assert A == B |
---|
| 234 | assert A is B #Same object |
---|
| 235 | |
---|
| 236 | |
---|
| 237 | A = array([1,2,3,4]) |
---|
| 238 | B = ensure_numeric(A, Float) |
---|
| 239 | assert type(B) == ArrayType |
---|
| 240 | assert B.typecode() == 'd' |
---|
| 241 | assert A == B |
---|
| 242 | assert A is not B #Not the same object |
---|
| 243 | |
---|
| 244 | |
---|
| 245 | |
---|
| 246 | |
---|
| 247 | |
---|
[1093] | 248 | def test_spatio_temporal_file_function_time(self): |
---|
| 249 | """Test that File function interpolates correctly |
---|
| 250 | between given times. |
---|
| 251 | NetCDF version (x,y,t dependency) |
---|
| 252 | """ |
---|
| 253 | |
---|
| 254 | #Create NetCDF (sww) file to be read |
---|
| 255 | # x: 0, 5, 10, 15 |
---|
| 256 | # y: -20, -10, 0, 10 |
---|
| 257 | # t: 0, 60, 120, ...., 1200 |
---|
| 258 | # |
---|
| 259 | # test quantities (arbitrary but non-trivial expressions): |
---|
| 260 | # |
---|
| 261 | # stage = 3*x - y**2 + 2*t |
---|
| 262 | # xmomentum = exp( -((x-7)**2 + (y+5)**2)/20 ) * t**2 |
---|
| 263 | # ymomentum = x**2 + y**2 * sin(t*pi/600) |
---|
| 264 | |
---|
| 265 | #Nice test that may render some of the others redundant. |
---|
| 266 | |
---|
| 267 | import os, time |
---|
| 268 | from config import time_format |
---|
| 269 | from Numeric import sin, pi, exp |
---|
| 270 | from mesh_factory import rectangular |
---|
| 271 | from shallow_water import Domain |
---|
| 272 | import data_manager |
---|
| 273 | |
---|
| 274 | finaltime = 1200 |
---|
| 275 | filename = 'test_file_function' |
---|
| 276 | |
---|
| 277 | #Create a domain to hold test grid |
---|
| 278 | |
---|
| 279 | points, vertices, boundary =\ |
---|
| 280 | rectangular(4, 4, 15, 30, origin = (0, -20)) |
---|
| 281 | |
---|
| 282 | |
---|
| 283 | #print 'Number of elements', len(vertices) |
---|
| 284 | domain = Domain(points, vertices, boundary) |
---|
| 285 | domain.smooth = False |
---|
| 286 | domain.default_order = 2 |
---|
| 287 | domain.set_datadir('.') |
---|
| 288 | domain.set_name(filename) |
---|
| 289 | domain.store = True |
---|
| 290 | domain.format = 'sww' #Native netcdf visualisation format |
---|
| 291 | |
---|
| 292 | #print 'E', domain.get_extent() |
---|
| 293 | #print points |
---|
| 294 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 295 | domain.starttime = start |
---|
| 296 | |
---|
| 297 | |
---|
| 298 | #Store structure |
---|
| 299 | domain.initialise_storage() |
---|
| 300 | |
---|
| 301 | #Compute artificial time steps and store |
---|
| 302 | dt = 60 #One minute intervals |
---|
| 303 | t = 0.0 |
---|
| 304 | while t <= finaltime: |
---|
| 305 | #Compute quantities |
---|
| 306 | f1 = lambda x,y: 3*x - y**2 + 2*t + 4 |
---|
| 307 | domain.set_quantity('stage', f1) |
---|
| 308 | |
---|
| 309 | f2 = lambda x,y: x+y+t**2 |
---|
| 310 | domain.set_quantity('xmomentum', f2) |
---|
| 311 | |
---|
| 312 | f3 = lambda x,y: x**2 + y**2 * sin(t*pi/600) |
---|
| 313 | domain.set_quantity('ymomentum', f3) |
---|
| 314 | |
---|
| 315 | #Store and advance time |
---|
| 316 | domain.time = t |
---|
| 317 | domain.store_timestep(domain.conserved_quantities) |
---|
| 318 | t += dt |
---|
| 319 | |
---|
| 320 | |
---|
| 321 | interpolation_points = [[0,-20], [1,0], [0,1], [1.1, 3.14], [10,-12.5]] |
---|
| 322 | |
---|
| 323 | |
---|
| 324 | |
---|
| 325 | #Set domain.starttime to too early |
---|
| 326 | domain.starttime = start - 1 |
---|
| 327 | |
---|
| 328 | #Create file function |
---|
| 329 | F = file_function(filename + '.sww', domain, |
---|
| 330 | quantities = domain.conserved_quantities, |
---|
| 331 | interpolation_points = interpolation_points) |
---|
| 332 | |
---|
| 333 | #Check that FF updates fixes domain starttime |
---|
| 334 | assert allclose(domain.starttime, start) |
---|
| 335 | |
---|
| 336 | #Check that domain.starttime isn't updated if later |
---|
| 337 | domain.starttime = start + 1 |
---|
| 338 | F = file_function(filename + '.sww', domain, |
---|
| 339 | quantities = domain.conserved_quantities, |
---|
| 340 | interpolation_points = interpolation_points) |
---|
| 341 | assert allclose(domain.starttime, start+1) |
---|
| 342 | |
---|
| 343 | domain.starttime = start |
---|
| 344 | |
---|
| 345 | |
---|
| 346 | |
---|
| 347 | #Check linear interpolation in time |
---|
| 348 | #for id in range(len(interpolation_points)): |
---|
| 349 | for id in [1]: |
---|
| 350 | x = interpolation_points[id][0] |
---|
| 351 | y = interpolation_points[id][1] |
---|
| 352 | |
---|
| 353 | for i in range(20): |
---|
| 354 | t = i*10 |
---|
| 355 | k = i%6 |
---|
| 356 | |
---|
| 357 | if k == 0: |
---|
| 358 | q0 = F(t, point_id=id) |
---|
| 359 | q1 = F(t+60, point_id=id) |
---|
| 360 | |
---|
| 361 | |
---|
| 362 | q = F(t, point_id=id) |
---|
| 363 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 364 | |
---|
| 365 | |
---|
| 366 | #Another check of linear interpolation in time |
---|
| 367 | for id in range(len(interpolation_points)): |
---|
| 368 | q60 = F(60, point_id=id) |
---|
| 369 | q120 = F(120, point_id=id) |
---|
| 370 | |
---|
| 371 | t = 90 #Halfway between 60 and 120 |
---|
| 372 | q = F(t,point_id=id) |
---|
| 373 | assert allclose( (q120+q60)/2, q ) |
---|
| 374 | |
---|
| 375 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 376 | q = F(t, point_id=id) |
---|
| 377 | assert allclose(q60/3 + 2*q120/3, q) |
---|
| 378 | |
---|
| 379 | |
---|
| 380 | |
---|
| 381 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 382 | #than file end time |
---|
| 383 | delta = 23 |
---|
| 384 | domain.starttime = start + delta |
---|
| 385 | F = file_function(filename + '.sww', domain, |
---|
| 386 | quantities = domain.conserved_quantities, |
---|
| 387 | interpolation_points = interpolation_points) |
---|
| 388 | assert allclose(domain.starttime, start+delta) |
---|
| 389 | |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | |
---|
| 393 | #Now try interpolation with delta offset |
---|
| 394 | for id in [1]: |
---|
| 395 | x = interpolation_points[id][0] |
---|
| 396 | y = interpolation_points[id][1] |
---|
| 397 | |
---|
| 398 | for i in range(20): |
---|
| 399 | t = i*10 |
---|
| 400 | k = i%6 |
---|
| 401 | |
---|
| 402 | if k == 0: |
---|
| 403 | q0 = F(t-delta, point_id=id) |
---|
| 404 | q1 = F(t+60-delta, point_id=id) |
---|
| 405 | |
---|
| 406 | q = F(t-delta, point_id=id) |
---|
| 407 | assert allclose(q, (k*q1 + (6-k)*q0)/6) |
---|
| 408 | |
---|
| 409 | |
---|
| 410 | os.remove(filename + '.sww') |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | |
---|
| 414 | def test_file_function_time_with_domain(self): |
---|
| 415 | """Test that File function interpolates correctly |
---|
| 416 | between given times. No x,y dependency here. |
---|
| 417 | Use domain with starttime |
---|
| 418 | """ |
---|
| 419 | |
---|
| 420 | #Write file |
---|
| 421 | import os, time, calendar |
---|
| 422 | from config import time_format |
---|
| 423 | from math import sin, pi |
---|
| 424 | from domain import Domain |
---|
| 425 | |
---|
| 426 | finaltime = 1200 |
---|
| 427 | filename = 'test_file_function.txt' |
---|
| 428 | fid = open(filename, 'w') |
---|
| 429 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 430 | dt = 60 #One minute intervals |
---|
| 431 | t = 0.0 |
---|
| 432 | while t <= finaltime: |
---|
| 433 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 434 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 435 | t += dt |
---|
| 436 | |
---|
| 437 | fid.close() |
---|
| 438 | |
---|
| 439 | a = [0.0, 0.0] |
---|
| 440 | b = [4.0, 0.0] |
---|
| 441 | c = [0.0, 3.0] |
---|
| 442 | |
---|
| 443 | points = [a, b, c] |
---|
| 444 | vertices = [[0,1,2]] |
---|
| 445 | domain = Domain(points, vertices) |
---|
| 446 | |
---|
| 447 | #Check that domain.starttime is updated if non-existing |
---|
| 448 | F = file_function(filename, domain) |
---|
| 449 | assert allclose(domain.starttime, start) |
---|
| 450 | |
---|
| 451 | #Check that domain.starttime is updated if too early |
---|
| 452 | domain.starttime = start - 1 |
---|
| 453 | F = file_function(filename, domain) |
---|
| 454 | assert allclose(domain.starttime, start) |
---|
| 455 | |
---|
| 456 | #Check that domain.starttime isn't updated if later |
---|
| 457 | domain.starttime = start + 1 |
---|
| 458 | F = file_function(filename, domain) |
---|
| 459 | assert allclose(domain.starttime, start+1) |
---|
| 460 | |
---|
| 461 | domain.starttime = start |
---|
| 462 | |
---|
| 463 | |
---|
| 464 | #Now try interpolation |
---|
| 465 | for i in range(20): |
---|
| 466 | t = i*10 |
---|
| 467 | q = F(t) |
---|
| 468 | |
---|
| 469 | #Exact linear intpolation |
---|
| 470 | assert allclose(q[0], 2*t) |
---|
| 471 | if i%6 == 0: |
---|
| 472 | assert allclose(q[1], t**2) |
---|
| 473 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 474 | |
---|
| 475 | #Check non-exact |
---|
| 476 | |
---|
| 477 | t = 90 #Halfway between 60 and 120 |
---|
| 478 | q = F(t) |
---|
| 479 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 480 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 481 | |
---|
| 482 | |
---|
| 483 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 484 | q = F(t) |
---|
| 485 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 486 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 487 | |
---|
| 488 | os.remove(filename) |
---|
| 489 | |
---|
| 490 | |
---|
| 491 | def test_file_function_time_with_domain_different_start(self): |
---|
| 492 | """Test that File function interpolates correctly |
---|
| 493 | between given times. No x,y dependency here. |
---|
| 494 | Use domain with a starttime later than that of file |
---|
| 495 | |
---|
| 496 | ASCII version |
---|
| 497 | """ |
---|
| 498 | |
---|
| 499 | #Write file |
---|
| 500 | import os, time, calendar |
---|
| 501 | from config import time_format |
---|
| 502 | from math import sin, pi |
---|
| 503 | from domain import Domain |
---|
| 504 | |
---|
| 505 | finaltime = 1200 |
---|
| 506 | filename = 'test_file_function.txt' |
---|
| 507 | fid = open(filename, 'w') |
---|
| 508 | start = time.mktime(time.strptime('2000', '%Y')) |
---|
| 509 | dt = 60 #One minute intervals |
---|
| 510 | t = 0.0 |
---|
| 511 | while t <= finaltime: |
---|
| 512 | t_string = time.strftime(time_format, time.gmtime(t+start)) |
---|
| 513 | fid.write('%s, %f %f %f\n' %(t_string, 2*t, t**2, sin(t*pi/600))) |
---|
| 514 | t += dt |
---|
| 515 | |
---|
| 516 | fid.close() |
---|
| 517 | |
---|
| 518 | a = [0.0, 0.0] |
---|
| 519 | b = [4.0, 0.0] |
---|
| 520 | c = [0.0, 3.0] |
---|
| 521 | |
---|
| 522 | points = [a, b, c] |
---|
| 523 | vertices = [[0,1,2]] |
---|
| 524 | domain = Domain(points, vertices) |
---|
| 525 | |
---|
| 526 | #Check that domain.starttime isn't updated if later than file starttime but earlier |
---|
| 527 | #than file end time |
---|
| 528 | delta = 23 |
---|
| 529 | domain.starttime = start + delta |
---|
| 530 | F = file_function(filename, domain) |
---|
| 531 | assert allclose(domain.starttime, start+delta) |
---|
| 532 | |
---|
| 533 | |
---|
| 534 | |
---|
| 535 | |
---|
| 536 | #Now try interpolation with delta offset |
---|
| 537 | for i in range(20): |
---|
| 538 | t = i*10 |
---|
| 539 | q = F(t-delta) |
---|
| 540 | |
---|
| 541 | #Exact linear intpolation |
---|
| 542 | assert allclose(q[0], 2*t) |
---|
| 543 | if i%6 == 0: |
---|
| 544 | assert allclose(q[1], t**2) |
---|
| 545 | assert allclose(q[2], sin(t*pi/600)) |
---|
| 546 | |
---|
| 547 | #Check non-exact |
---|
| 548 | |
---|
| 549 | t = 90 #Halfway between 60 and 120 |
---|
| 550 | q = F(t-delta) |
---|
| 551 | assert allclose( (120**2 + 60**2)/2, q[1] ) |
---|
| 552 | assert allclose( (sin(120*pi/600) + sin(60*pi/600))/2, q[2] ) |
---|
| 553 | |
---|
| 554 | |
---|
| 555 | t = 100 #Two thirds of the way between between 60 and 120 |
---|
| 556 | q = F(t-delta) |
---|
| 557 | assert allclose( 2*120**2/3 + 60**2/3, q[1] ) |
---|
| 558 | assert allclose( 2*sin(120*pi/600)/3 + sin(60*pi/600)/3, q[2] ) |
---|
| 559 | |
---|
| 560 | os.remove(filename) |
---|
| 561 | |
---|
| 562 | |
---|
| 563 | def test_spatio_temporal_file_function(self): |
---|
| 564 | """Test that spatio temporal file function performs the correct |
---|
| 565 | interpolations in both time and space |
---|
| 566 | """ |
---|
| 567 | import time |
---|
| 568 | |
---|
| 569 | #Create sww file of simple propagation from left to right |
---|
| 570 | #through rectangular domain |
---|
| 571 | from shallow_water import Domain, Dirichlet_boundary |
---|
| 572 | from mesh_factory import rectangular |
---|
| 573 | from Numeric import take, concatenate, reshape |
---|
| 574 | |
---|
| 575 | #Create basic mesh and shallow water domain |
---|
| 576 | points, vertices, boundary = rectangular(3, 3) |
---|
| 577 | domain1 = Domain(points, vertices, boundary) |
---|
| 578 | |
---|
| 579 | from util import mean |
---|
| 580 | domain1.reduction = mean |
---|
| 581 | domain1.smooth = True #NOTE: Mimic sww output where each vertex has |
---|
| 582 | # only one value. |
---|
| 583 | |
---|
| 584 | domain1.default_order = 2 |
---|
| 585 | domain1.store = True |
---|
| 586 | domain1.set_datadir('.') |
---|
| 587 | domain1.set_name('spatio_temporal_boundary_source_%d' %(id(self))) |
---|
| 588 | domain1.quantities_to_be_stored = ['stage', 'xmomentum', 'ymomentum'] |
---|
| 589 | |
---|
| 590 | #Bed-slope, friction and IC at vertices (and interpolated elsewhere) |
---|
| 591 | domain1.set_quantity('elevation', 0) |
---|
| 592 | domain1.set_quantity('friction', 0) |
---|
| 593 | domain1.set_quantity('stage', 0) |
---|
| 594 | |
---|
| 595 | # Boundary conditions |
---|
| 596 | B0 = Dirichlet_boundary([0,0,0]) |
---|
| 597 | B6 = Dirichlet_boundary([0.6,0,0]) |
---|
| 598 | domain1.set_boundary({'left': B6, 'top': B6, 'right': B0, 'bottom': B0}) |
---|
| 599 | domain1.check_integrity() |
---|
| 600 | |
---|
| 601 | finaltime = 8 |
---|
| 602 | #Evolution |
---|
| 603 | for t in domain1.evolve(yieldstep = 0.1, finaltime = finaltime): |
---|
| 604 | pass |
---|
| 605 | #domain1.write_time() |
---|
| 606 | |
---|
| 607 | |
---|
| 608 | #Now read data from sww and check |
---|
| 609 | from Scientific.IO.NetCDF import NetCDFFile |
---|
| 610 | filename = domain1.get_name() + '.' + domain1.format |
---|
| 611 | fid = NetCDFFile(filename) |
---|
| 612 | |
---|
| 613 | x = fid.variables['x'][:] |
---|
| 614 | y = fid.variables['y'][:] |
---|
| 615 | stage = fid.variables['stage'][:] |
---|
| 616 | xmomentum = fid.variables['xmomentum'][:] |
---|
| 617 | ymomentum = fid.variables['ymomentum'][:] |
---|
| 618 | time = fid.variables['time'][:] |
---|
| 619 | |
---|
| 620 | #Take stage vertex values at last timestep on diagonal |
---|
| 621 | #Diagonal is identified by vertices: 0, 5, 10, 15 |
---|
| 622 | |
---|
| 623 | timestep = len(time)-1 #Last timestep |
---|
| 624 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 625 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 626 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 627 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 628 | |
---|
| 629 | #Reference interpolated values at midpoints on diagonal at |
---|
| 630 | #this timestep are |
---|
| 631 | r0 = (D[0] + D[1])/2 |
---|
| 632 | r1 = (D[1] + D[2])/2 |
---|
| 633 | r2 = (D[2] + D[3])/2 |
---|
| 634 | |
---|
| 635 | #And the midpoints are found now |
---|
| 636 | Dx = take(reshape(x, (16,1)), [0,5,10,15]) |
---|
| 637 | Dy = take(reshape(y, (16,1)), [0,5,10,15]) |
---|
| 638 | |
---|
| 639 | diag = concatenate( (Dx, Dy), axis=1) |
---|
| 640 | d_midpoints = (diag[1:] + diag[:-1])/2 |
---|
| 641 | |
---|
| 642 | #Let us see if the file function can find the correct |
---|
| 643 | #values at the midpoints at the last timestep: |
---|
| 644 | f = file_function(filename, domain1, |
---|
| 645 | interpolation_points = d_midpoints) |
---|
| 646 | |
---|
| 647 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 648 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 649 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 650 | |
---|
| 651 | |
---|
| 652 | ################## |
---|
| 653 | #Now do the same for the first timestep |
---|
| 654 | |
---|
| 655 | timestep = 0 #First timestep |
---|
| 656 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 657 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 658 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 659 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 660 | |
---|
| 661 | #Reference interpolated values at midpoints on diagonal at |
---|
| 662 | #this timestep are |
---|
| 663 | r0 = (D[0] + D[1])/2 |
---|
| 664 | r1 = (D[1] + D[2])/2 |
---|
| 665 | r2 = (D[2] + D[3])/2 |
---|
| 666 | |
---|
| 667 | #Let us see if the file function can find the correct |
---|
| 668 | #values |
---|
| 669 | q = f(0, point_id=0); assert allclose(r0, q) |
---|
| 670 | q = f(0, point_id=1); assert allclose(r1, q) |
---|
| 671 | q = f(0, point_id=2); assert allclose(r2, q) |
---|
| 672 | |
---|
| 673 | |
---|
| 674 | ################## |
---|
| 675 | #Now do it again for a timestep in the middle |
---|
| 676 | |
---|
| 677 | timestep = 33 |
---|
| 678 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 679 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 680 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 681 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 682 | |
---|
| 683 | #Reference interpolated values at midpoints on diagonal at |
---|
| 684 | #this timestep are |
---|
| 685 | r0 = (D[0] + D[1])/2 |
---|
| 686 | r1 = (D[1] + D[2])/2 |
---|
| 687 | r2 = (D[2] + D[3])/2 |
---|
| 688 | |
---|
| 689 | q = f(timestep/10., point_id=0); assert allclose(r0, q) |
---|
| 690 | q = f(timestep/10., point_id=1); assert allclose(r1, q) |
---|
| 691 | q = f(timestep/10., point_id=2); assert allclose(r2, q) |
---|
| 692 | |
---|
| 693 | |
---|
| 694 | ################## |
---|
| 695 | #Now check temporal interpolation |
---|
| 696 | #Halfway between timestep 15 and 16 |
---|
| 697 | |
---|
| 698 | timestep = 15 |
---|
| 699 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 700 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 701 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 702 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 703 | |
---|
| 704 | #Reference interpolated values at midpoints on diagonal at |
---|
| 705 | #this timestep are |
---|
| 706 | r0_0 = (D[0] + D[1])/2 |
---|
| 707 | r1_0 = (D[1] + D[2])/2 |
---|
| 708 | r2_0 = (D[2] + D[3])/2 |
---|
| 709 | |
---|
| 710 | # |
---|
| 711 | timestep = 16 |
---|
| 712 | d_stage = reshape(take(stage[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 713 | d_uh = reshape(take(xmomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 714 | d_vh = reshape(take(ymomentum[timestep, :], [0,5,10,15]), (4,1)) |
---|
| 715 | D = concatenate( (d_stage, d_uh, d_vh), axis=1) |
---|
| 716 | |
---|
| 717 | #Reference interpolated values at midpoints on diagonal at |
---|
| 718 | #this timestep are |
---|
| 719 | r0_1 = (D[0] + D[1])/2 |
---|
| 720 | r1_1 = (D[1] + D[2])/2 |
---|
| 721 | r2_1 = (D[2] + D[3])/2 |
---|
| 722 | |
---|
| 723 | # The reference values are |
---|
| 724 | r0 = (r0_0 + r0_1)/2 |
---|
| 725 | r1 = (r1_0 + r1_1)/2 |
---|
| 726 | r2 = (r2_0 + r2_1)/2 |
---|
| 727 | |
---|
| 728 | q = f((timestep - 0.5)/10., point_id=0); assert allclose(r0, q) |
---|
| 729 | q = f((timestep - 0.5)/10., point_id=1); assert allclose(r1, q) |
---|
| 730 | q = f((timestep - 0.5)/10., point_id=2); assert allclose(r2, q) |
---|
| 731 | |
---|
| 732 | ################## |
---|
| 733 | #Finally check interpolation 2 thirds of the way |
---|
| 734 | #between timestep 15 and 16 |
---|
| 735 | |
---|
| 736 | # The reference values are |
---|
| 737 | r0 = (r0_0 + 2*r0_1)/3 |
---|
| 738 | r1 = (r1_0 + 2*r1_1)/3 |
---|
| 739 | r2 = (r2_0 + 2*r2_1)/3 |
---|
| 740 | |
---|
| 741 | #And the file function gives |
---|
| 742 | q = f((timestep - 1.0/3)/10., point_id=0); assert allclose(r0, q) |
---|
| 743 | q = f((timestep - 1.0/3)/10., point_id=1); assert allclose(r1, q) |
---|
| 744 | q = f((timestep - 1.0/3)/10., point_id=2); assert allclose(r2, q) |
---|
| 745 | |
---|
| 746 | fid.close() |
---|
| 747 | import os |
---|
| 748 | os.remove(filename) |
---|
| 749 | |
---|
| 750 | |
---|
| 751 | def test_xya_ascii(self): |
---|
| 752 | import time, os |
---|
| 753 | FN = 'xyatest' + str(time.time()) + '.xya' |
---|
| 754 | fid = open(FN, 'w') |
---|
| 755 | fid.write(' %s %s %s\n' %('a1', 'a2', 'a3') ) |
---|
| 756 | fid.write('%f %f %f %f %f\n' %(0,1,10,20,30) ) |
---|
| 757 | fid.write('%f %f %f %f %f\n' %(1,0,30,20,10) ) |
---|
| 758 | fid.write('%f %f %f %f %f\n' %(1,1,40.2,40.3,40.4) ) |
---|
| 759 | fid.close() |
---|
| 760 | |
---|
| 761 | points, attributes = read_xya(FN, format = 'asc') |
---|
| 762 | |
---|
| 763 | assert allclose(points, [ [0,1], [1,0], [1,1] ]) |
---|
| 764 | assert allclose(attributes['a1'], [10,30,40.2]) |
---|
| 765 | assert allclose(attributes['a2'], [20,20,40.3]) |
---|
| 766 | assert allclose(attributes['a3'], [30,10,40.4]) |
---|
| 767 | |
---|
| 768 | os.remove(FN) |
---|
| 769 | |
---|
| 770 | def test_xya_ascii_w_names(self): |
---|
| 771 | import time, os |
---|
| 772 | FN = 'xyatest' + str(time.time()) + '.xya' |
---|
| 773 | fid = open(FN, 'w') |
---|
| 774 | fid.write(' %s %s %s\n' %('a1', 'a2', 'a3') ) |
---|
| 775 | fid.write('%f %f %f %f %f\n' %(0,1,10,20,30) ) |
---|
| 776 | fid.write('%f %f %f %f %f\n' %(1,0,30,20,10) ) |
---|
| 777 | fid.write('%f %f %f %f %f\n' %(1,1,40.2,40.3,40.4) ) |
---|
| 778 | fid.close() |
---|
| 779 | |
---|
| 780 | points, attributes = read_xya(FN, format = 'asc') |
---|
| 781 | |
---|
| 782 | assert allclose(points, [ [0,1], [1,0], [1,1] ]) |
---|
| 783 | |
---|
| 784 | assert allclose(attributes['a1'], [10,30,40.2]) |
---|
| 785 | assert allclose(attributes['a2'], [20,20,40.3]) |
---|
| 786 | assert allclose(attributes['a3'], [30,10,40.4]) |
---|
| 787 | |
---|
| 788 | |
---|
| 789 | os.remove(FN) |
---|
| 790 | |
---|
| 791 | |
---|
| 792 | |
---|
| 793 | |
---|
| 794 | #Polygon stuff |
---|
| 795 | def test_polygon_function_constants(self): |
---|
| 796 | p1 = [[0,0], [10,0], [10,10], [0,10]] |
---|
| 797 | p2 = [[0,0], [10,10], [15,5], [20, 10], [25,0], [30,10], [40,-10]] |
---|
| 798 | |
---|
| 799 | f = Polygon_function( [(p1, 1.0)] ) |
---|
| 800 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) #Two first inside p1 |
---|
| 801 | assert allclose(z, [1,1,0,0]) |
---|
| 802 | |
---|
| 803 | |
---|
| 804 | f = Polygon_function( [(p2, 2.0)] ) |
---|
| 805 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) #First and last inside p2 |
---|
| 806 | assert allclose(z, [2,0,0,2]) |
---|
| 807 | |
---|
| 808 | |
---|
| 809 | #Combined |
---|
| 810 | f = Polygon_function( [(p1, 1.0), (p2, 2.0)] ) |
---|
| 811 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) |
---|
| 812 | assert allclose(z, [2,1,0,2]) |
---|
| 813 | |
---|
| 814 | |
---|
| 815 | def test_polygon_function_callable(self): |
---|
| 816 | """Check that values passed into Polygon_function can be callable |
---|
| 817 | themselves. |
---|
| 818 | """ |
---|
| 819 | p1 = [[0,0], [10,0], [10,10], [0,10]] |
---|
| 820 | p2 = [[0,0], [10,10], [15,5], [20, 10], [25,0], [30,10], [40,-10]] |
---|
| 821 | |
---|
| 822 | f = Polygon_function( [(p1, test_function)] ) |
---|
| 823 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) #Two first inside p1 |
---|
| 824 | assert allclose(z, [10,14,0,0]) |
---|
| 825 | |
---|
| 826 | #Combined |
---|
| 827 | f = Polygon_function( [(p1, test_function), (p2, 2.0)] ) |
---|
| 828 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) |
---|
| 829 | assert allclose(z, [2,14,0,2]) |
---|
| 830 | |
---|
| 831 | |
---|
| 832 | #Combined w default |
---|
| 833 | f = Polygon_function( [(p1, test_function), (p2, 2.0)], default = 3.14) |
---|
| 834 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) |
---|
| 835 | assert allclose(z, [2,14,3.14,2]) |
---|
| 836 | |
---|
| 837 | |
---|
| 838 | #Combined w default func |
---|
| 839 | f = Polygon_function( [(p1, test_function), (p2, 2.0)], |
---|
| 840 | default = test_function) |
---|
| 841 | z = f([5, 5, 27, 35], [5, 9, 8, -5]) |
---|
| 842 | assert allclose(z, [2,14,35,2]) |
---|
| 843 | |
---|
| 844 | |
---|
| 845 | def test_point_on_line(self): |
---|
| 846 | |
---|
| 847 | #Endpoints first |
---|
| 848 | assert point_on_line( 0, 0, 0,0, 1,0 ) |
---|
| 849 | assert point_on_line( 1, 0, 0,0, 1,0 ) |
---|
| 850 | |
---|
| 851 | #Then points on line |
---|
| 852 | assert point_on_line( 0.5, 0, 0,0, 1,0 ) |
---|
| 853 | assert point_on_line( 0, 0.5, 0,1, 0,0 ) |
---|
| 854 | assert point_on_line( 1, 0.5, 1,1, 1,0 ) |
---|
| 855 | assert point_on_line( 0.5, 0.5, 0,0, 1,1 ) |
---|
| 856 | |
---|
| 857 | #Then points not on line |
---|
| 858 | assert not point_on_line( 0.5, 0, 0,1, 1,1 ) |
---|
| 859 | assert not point_on_line( 0, 0.5, 0,0, 1,1 ) |
---|
| 860 | |
---|
| 861 | #From real example that failed |
---|
| 862 | assert not point_on_line( 40,50, 40,20, 40,40 ) |
---|
| 863 | |
---|
| 864 | |
---|
| 865 | #From real example that failed |
---|
| 866 | assert not point_on_line( 40,19, 40,20, 40,40 ) |
---|
| 867 | |
---|
| 868 | |
---|
| 869 | |
---|
| 870 | |
---|
| 871 | def test_inside_polygon_main(self): |
---|
| 872 | |
---|
| 873 | |
---|
| 874 | #Simplest case: Polygon is the unit square |
---|
| 875 | polygon = [[0,0], [1,0], [1,1], [0,1]] |
---|
| 876 | |
---|
| 877 | assert inside_polygon( (0.5, 0.5), polygon ) |
---|
| 878 | assert not inside_polygon( (0.5, 1.5), polygon ) |
---|
| 879 | assert not inside_polygon( (0.5, -0.5), polygon ) |
---|
| 880 | assert not inside_polygon( (-0.5, 0.5), polygon ) |
---|
| 881 | assert not inside_polygon( (1.5, 0.5), polygon ) |
---|
| 882 | |
---|
| 883 | #Try point on borders |
---|
| 884 | assert inside_polygon( (1., 0.5), polygon, closed=True) |
---|
| 885 | assert inside_polygon( (0.5, 1), polygon, closed=True) |
---|
| 886 | assert inside_polygon( (0., 0.5), polygon, closed=True) |
---|
| 887 | assert inside_polygon( (0.5, 0.), polygon, closed=True) |
---|
| 888 | |
---|
| 889 | assert not inside_polygon( (0.5, 1), polygon, closed=False) |
---|
| 890 | assert not inside_polygon( (0., 0.5), polygon, closed=False) |
---|
| 891 | assert not inside_polygon( (0.5, 0.), polygon, closed=False) |
---|
| 892 | assert not inside_polygon( (1., 0.5), polygon, closed=False) |
---|
| 893 | |
---|
| 894 | |
---|
| 895 | |
---|
| 896 | #From real example (that failed) |
---|
| 897 | polygon = [[20,20], [40,20], [40,40], [20,40]] |
---|
| 898 | points = [ [40, 50] ] |
---|
| 899 | res = inside_polygon(points, polygon) |
---|
| 900 | assert len(res) == 0 |
---|
| 901 | |
---|
| 902 | polygon = [[20,20], [40,20], [40,40], [20,40]] |
---|
| 903 | points = [ [25, 25], [30, 20], [40, 50], [90, 20], [40, 90] ] |
---|
| 904 | res = inside_polygon(points, polygon) |
---|
| 905 | assert len(res) == 2 |
---|
| 906 | assert allclose(res, [0,1]) |
---|
| 907 | |
---|
| 908 | |
---|
| 909 | |
---|
| 910 | #More convoluted and non convex polygon |
---|
| 911 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 912 | assert inside_polygon( (0.5, 0.5), polygon ) |
---|
| 913 | assert inside_polygon( (1, -0.5), polygon ) |
---|
| 914 | assert inside_polygon( (1.5, 0), polygon ) |
---|
| 915 | |
---|
| 916 | assert not inside_polygon( (0.5, 1.5), polygon ) |
---|
| 917 | assert not inside_polygon( (0.5, -0.5), polygon ) |
---|
| 918 | |
---|
| 919 | |
---|
| 920 | #Very convoluted polygon |
---|
| 921 | polygon = [[0,0], [10,10], [15,5], [20, 10], [25,0], [30,10], [40,-10]] |
---|
| 922 | assert inside_polygon( (5, 5), polygon ) |
---|
| 923 | assert inside_polygon( (17, 7), polygon ) |
---|
| 924 | assert inside_polygon( (27, 2), polygon ) |
---|
| 925 | assert inside_polygon( (35, -5), polygon ) |
---|
| 926 | assert not inside_polygon( (15, 7), polygon ) |
---|
| 927 | assert not inside_polygon( (24, 3), polygon ) |
---|
| 928 | assert not inside_polygon( (25, -10), polygon ) |
---|
| 929 | |
---|
| 930 | |
---|
| 931 | |
---|
| 932 | #Another combination (that failed) |
---|
| 933 | polygon = [[0,0], [10,0], [10,10], [0,10]] |
---|
| 934 | assert inside_polygon( (5, 5), polygon ) |
---|
| 935 | assert inside_polygon( (7, 7), polygon ) |
---|
| 936 | assert not inside_polygon( (-17, 7), polygon ) |
---|
| 937 | assert not inside_polygon( (7, 17), polygon ) |
---|
| 938 | assert not inside_polygon( (17, 7), polygon ) |
---|
| 939 | assert not inside_polygon( (27, 8), polygon ) |
---|
| 940 | assert not inside_polygon( (35, -5), polygon ) |
---|
| 941 | |
---|
| 942 | |
---|
| 943 | |
---|
| 944 | |
---|
| 945 | #Multiple polygons |
---|
| 946 | |
---|
| 947 | polygon = [[0,0], [1,0], [1,1], [0,1], [0,0], |
---|
| 948 | [10,10], [11,10], [11,11], [10,11], [10,10]] |
---|
| 949 | assert inside_polygon( (0.5, 0.5), polygon ) |
---|
| 950 | assert inside_polygon( (10.5, 10.5), polygon ) |
---|
| 951 | |
---|
| 952 | #FIXME: Fails if point is 5.5, 5.5 |
---|
| 953 | assert not inside_polygon( (0, 5.5), polygon ) |
---|
| 954 | |
---|
| 955 | #Polygon with a hole |
---|
| 956 | polygon = [[-1,-1], [2,-1], [2,2], [-1,2], [-1,-1], |
---|
| 957 | [0,0], [1,0], [1,1], [0,1], [0,0]] |
---|
| 958 | |
---|
| 959 | assert inside_polygon( (0, -0.5), polygon ) |
---|
| 960 | assert not inside_polygon( (0.5, 0.5), polygon ) |
---|
| 961 | |
---|
| 962 | def test_inside_polygon_vector_version(self): |
---|
| 963 | #Now try the vector formulation returning indices |
---|
| 964 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 965 | points = [ [0.5, 0.5], [1, -0.5], [1.5, 0], [0.5, 1.5], [0.5, -0.5]] |
---|
| 966 | res = inside_polygon( points, polygon, verbose=False ) |
---|
| 967 | |
---|
| 968 | assert allclose( res, [0,1,2] ) |
---|
| 969 | |
---|
| 970 | def test_outside_polygon(self): |
---|
| 971 | U = [[0,0], [1,0], [1,1], [0,1]] #Unit square |
---|
| 972 | |
---|
| 973 | assert not outside_polygon( [0.5, 0.5], U ) |
---|
| 974 | #evaluate to False as the point 0.5, 0.5 is inside the unit square |
---|
| 975 | |
---|
| 976 | assert outside_polygon( [1.5, 0.5], U ) |
---|
| 977 | #evaluate to True as the point 1.5, 0.5 is outside the unit square |
---|
| 978 | |
---|
| 979 | indices = outside_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]], U ) |
---|
| 980 | assert allclose( indices, [1] ) |
---|
| 981 | |
---|
| 982 | #One more test of vector formulation returning indices |
---|
| 983 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 984 | points = [ [0.5, 0.5], [1, -0.5], [1.5, 0], [0.5, 1.5], [0.5, -0.5]] |
---|
| 985 | res = outside_polygon( points, polygon ) |
---|
| 986 | |
---|
| 987 | assert allclose( res, [3, 4] ) |
---|
| 988 | |
---|
| 989 | |
---|
| 990 | |
---|
| 991 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 992 | points = [ [0.5, 1.4], [0.5, 0.5], [1, -0.5], [1.5, 0], [0.5, 1.5], [0.5, -0.5]] |
---|
| 993 | res = outside_polygon( points, polygon ) |
---|
| 994 | |
---|
| 995 | assert allclose( res, [0, 4, 5] ) |
---|
| 996 | |
---|
| 997 | def test_outside_polygon2(self): |
---|
| 998 | U = [[0,0], [1,0], [1,1], [0,1]] #Unit square |
---|
| 999 | |
---|
| 1000 | assert not outside_polygon( [0.5, 1.0], U, closed = True ) |
---|
| 1001 | #evaluate to False as the point 0.5, 1.0 is inside the unit square |
---|
| 1002 | |
---|
| 1003 | assert outside_polygon( [0.5, 1.0], U, closed = False ) |
---|
| 1004 | #evaluate to True as the point 0.5, 1.0 is outside the unit square |
---|
| 1005 | |
---|
| 1006 | def test_separate_points_by_polygon(self): |
---|
| 1007 | U = [[0,0], [1,0], [1,1], [0,1]] #Unit square |
---|
| 1008 | |
---|
| 1009 | indices, count = separate_points_by_polygon( [[0.5, 0.5], [1, -0.5], [0.3, 0.2]], U ) |
---|
| 1010 | assert allclose( indices, [0,2,1] ) |
---|
| 1011 | assert count == 2 |
---|
| 1012 | |
---|
| 1013 | #One more test of vector formulation returning indices |
---|
| 1014 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 1015 | points = [ [0.5, 0.5], [1, -0.5], [1.5, 0], [0.5, 1.5], [0.5, -0.5]] |
---|
| 1016 | res, count = separate_points_by_polygon( points, polygon ) |
---|
| 1017 | |
---|
| 1018 | assert allclose( res, [0,1,2,4,3] ) |
---|
| 1019 | assert count == 3 |
---|
| 1020 | |
---|
| 1021 | |
---|
| 1022 | polygon = [[0,0], [1,0], [0.5,-1], [2, -1], [2,1], [0,1]] |
---|
| 1023 | points = [ [0.5, 1.4], [0.5, 0.5], [1, -0.5], [1.5, 0], [0.5, 1.5], [0.5, -0.5]] |
---|
| 1024 | res, count = separate_points_by_polygon( points, polygon ) |
---|
| 1025 | |
---|
| 1026 | assert allclose( res, [1,2,3,5,4,0] ) |
---|
| 1027 | assert count == 3 |
---|
| 1028 | |
---|
| 1029 | |
---|
| 1030 | def test_populate_polygon(self): |
---|
| 1031 | |
---|
| 1032 | polygon = [[0,0], [1,0], [1,1], [0,1]] |
---|
| 1033 | points = populate_polygon(polygon, 5) |
---|
| 1034 | |
---|
| 1035 | assert len(points) == 5 |
---|
| 1036 | for point in points: |
---|
| 1037 | assert inside_polygon(point, polygon) |
---|
| 1038 | |
---|
| 1039 | |
---|
| 1040 | #Very convoluted polygon |
---|
| 1041 | polygon = [[0,0], [10,10], [15,5], [20, 10], [25,0], [30,10], [40,-10]] |
---|
| 1042 | |
---|
| 1043 | points = populate_polygon(polygon, 5) |
---|
| 1044 | |
---|
| 1045 | assert len(points) == 5 |
---|
| 1046 | for point in points: |
---|
| 1047 | assert inside_polygon(point, polygon) |
---|
| 1048 | |
---|
| 1049 | |
---|
| 1050 | |
---|
| 1051 | #------------------------------------------------------------- |
---|
| 1052 | if __name__ == "__main__": |
---|
| 1053 | #suite = unittest.makeSuite(TestCase,'test_inside_polygon_main') |
---|
| 1054 | suite = unittest.makeSuite(Test_Util,'test') |
---|
| 1055 | runner = unittest.TextTestRunner() |
---|
| 1056 | runner.run(suite) |
---|
| 1057 | |
---|
| 1058 | |
---|
| 1059 | |
---|
| 1060 | |
---|