[2091] | 1 | ######################################################### |
---|
| 2 | # |
---|
| 3 | # Subdivide the GA domain. This module is primarily |
---|
| 4 | # responsible for building the ghost layer and |
---|
| 5 | # communication pattern |
---|
| 6 | # |
---|
| 7 | # |
---|
| 8 | # Author: Linda Stals, June 2005 |
---|
| 9 | # Modified: Linda Stals, Nov 2005 (optimise python code) |
---|
| 10 | # |
---|
| 11 | # |
---|
| 12 | ######################################################### |
---|
| 13 | |
---|
[1500] | 14 | import sys |
---|
| 15 | |
---|
[2130] | 16 | from Numeric import zeros, Float, Int, concatenate, \ |
---|
| 17 | reshape, arrayrange, take, nonzero |
---|
| 18 | |
---|
| 19 | from mesh import Mesh |
---|
| 20 | |
---|
| 21 | |
---|
[2906] | 22 | |
---|
[1500] | 23 | ######################################################### |
---|
| 24 | # |
---|
[1575] | 25 | # Subdivide the triangles into non-overlapping domains. |
---|
[1500] | 26 | # |
---|
| 27 | # *) The subdivision is controlled by triangles_per_proc. |
---|
| 28 | # The first triangles_per_proc[0] triangles are assigned |
---|
| 29 | # to the first processor, the second triangles_per_proc[1] |
---|
[1575] | 30 | # are assigned to the second processor etc. |
---|
[1500] | 31 | # |
---|
| 32 | # *) nodes, triangles and boundary contains all of the |
---|
| 33 | # nodes, triangles and boundary tag information for the |
---|
| 34 | # whole domain. The triangles should be orientated in the |
---|
| 35 | # correct way and the nodes number consecutively from 0. |
---|
| 36 | # |
---|
| 37 | # ------------------------------------------------------- |
---|
| 38 | # |
---|
| 39 | # *) A dictionary containing the full_nodes, full_triangles |
---|
| 40 | # and full_boundary information for each processor is |
---|
| 41 | # returned. The node information consists of |
---|
| 42 | # [global_id, x_coord, y_coord]. |
---|
| 43 | # |
---|
| 44 | ######################################################### |
---|
| 45 | |
---|
| 46 | def submesh_full(nodes, triangles, boundary, triangles_per_proc): |
---|
| 47 | |
---|
[2130] | 48 | # Initialise |
---|
[1575] | 49 | |
---|
[1500] | 50 | tlower = 0 |
---|
| 51 | nproc = len(triangles_per_proc) |
---|
| 52 | nnodes = len(nodes) |
---|
| 53 | node_list = [] |
---|
| 54 | triangle_list = [] |
---|
| 55 | boundary_list = [] |
---|
| 56 | submesh = {} |
---|
[2130] | 57 | node_range = reshape(arrayrange(nnodes),(nnodes,1)) |
---|
| 58 | tsubnodes = concatenate((node_range, nodes), 1) |
---|
[2105] | 59 | |
---|
[2130] | 60 | # Loop over processors |
---|
[1575] | 61 | |
---|
[1500] | 62 | for p in range(nproc): |
---|
[1575] | 63 | |
---|
[2130] | 64 | # Find triangles on processor p |
---|
[1575] | 65 | |
---|
[1500] | 66 | tupper = triangles_per_proc[p]+tlower |
---|
| 67 | subtriangles = triangles[tlower:tupper] |
---|
| 68 | triangle_list.append(subtriangles) |
---|
| 69 | |
---|
[2130] | 70 | # Find the boundary edges on processor p |
---|
[2105] | 71 | |
---|
[1500] | 72 | subboundary = {} |
---|
| 73 | for k in boundary: |
---|
| 74 | if (k[0] >=tlower and k[0] < tupper): |
---|
| 75 | subboundary[k]=boundary[k] |
---|
| 76 | boundary_list.append(subboundary) |
---|
[2105] | 77 | |
---|
[2130] | 78 | # Find nodes in processor p |
---|
[1575] | 79 | |
---|
[2090] | 80 | nodemap = zeros(nnodes, 'i') |
---|
[1500] | 81 | for t in subtriangles: |
---|
| 82 | nodemap[t[0]]=1 |
---|
| 83 | nodemap[t[1]]=1 |
---|
| 84 | nodemap[t[2]]=1 |
---|
[2105] | 85 | |
---|
[2090] | 86 | node_list.append(take(tsubnodes,nonzero(nodemap))) |
---|
[1500] | 87 | |
---|
[2130] | 88 | # Move to the next processor |
---|
[1575] | 89 | |
---|
[1500] | 90 | tlower = tupper |
---|
| 91 | |
---|
[2130] | 92 | # Put the results in a dictionary |
---|
[1575] | 93 | |
---|
[1500] | 94 | submesh["full_nodes"] = node_list |
---|
| 95 | submesh["full_triangles"] = triangle_list |
---|
| 96 | submesh["full_boundary"] = boundary_list |
---|
| 97 | |
---|
[2130] | 98 | # Clean up before exiting |
---|
[1575] | 99 | |
---|
[1500] | 100 | del (nodemap) |
---|
| 101 | |
---|
| 102 | return submesh |
---|
| 103 | |
---|
| 104 | |
---|
| 105 | ######################################################### |
---|
| 106 | # |
---|
| 107 | # Build the ghost layer of triangles |
---|
| 108 | # |
---|
| 109 | # *) Given the triangle subpartion for the processor |
---|
| 110 | # build a ghost layer of triangles. The ghost layer |
---|
| 111 | # consists of two layers of neighbouring triangles. |
---|
| 112 | # |
---|
| 113 | # *) The vertices in the ghost triangles must also |
---|
| 114 | # be added to the node list for the current processor |
---|
| 115 | # |
---|
| 116 | # |
---|
| 117 | # ------------------------------------------------------- |
---|
| 118 | # |
---|
| 119 | # *) The extra triangles and nodes are returned. |
---|
| 120 | # |
---|
| 121 | # *) The node information consists of |
---|
| 122 | # [global_id, x_coord, y_coord]. |
---|
| 123 | # |
---|
| 124 | # *) The triangle information consists of |
---|
| 125 | # [triangle number, t], where t = [v1, v2, v3]. |
---|
| 126 | # |
---|
| 127 | ######################################################### |
---|
| 128 | |
---|
| 129 | def ghost_layer(submesh, mesh, p, tupper, tlower): |
---|
[1575] | 130 | |
---|
[2090] | 131 | ncoord = len(mesh.coordinates) |
---|
| 132 | ntriangles = len(mesh.triangles) |
---|
[2105] | 133 | |
---|
[2130] | 134 | # Find the first layer of boundary triangles |
---|
[1575] | 135 | |
---|
[2090] | 136 | trianglemap = zeros(ntriangles, 'i') |
---|
[1500] | 137 | for t in range(tlower, tupper): |
---|
| 138 | n = mesh.neighbours[t, 0] |
---|
| 139 | if n > 0: |
---|
| 140 | if n < tlower or n >= tupper: |
---|
| 141 | trianglemap[n] = 1 |
---|
| 142 | n = mesh.neighbours[t, 1] |
---|
| 143 | if n > 0: |
---|
| 144 | if n < tlower or n >= tupper: |
---|
| 145 | trianglemap[n] = 1 |
---|
| 146 | n = mesh.neighbours[t, 2] |
---|
| 147 | if n > 0: |
---|
| 148 | if n < tlower or n >= tupper: |
---|
| 149 | trianglemap[n] = 1 |
---|
| 150 | |
---|
[2130] | 151 | # Find the second layer of boundary triangles |
---|
[1575] | 152 | |
---|
[1500] | 153 | for t in range(len(trianglemap)): |
---|
| 154 | if trianglemap[t]==1: |
---|
| 155 | n = mesh.neighbours[t, 0] |
---|
| 156 | if n > 0: |
---|
| 157 | if (n < tlower or n >= tupper) and trianglemap[n] == 0: |
---|
| 158 | trianglemap[n] = 1 |
---|
| 159 | n = mesh.neighbours[t, 1] |
---|
| 160 | if n > 0: |
---|
| 161 | if (n < tlower or n >= tupper) and trianglemap[n] == 0: |
---|
| 162 | trianglemap[n] = 1 |
---|
| 163 | n = mesh.neighbours[t, 2] |
---|
| 164 | if n > 0: |
---|
| 165 | if (n < tlower or n >= tupper) and trianglemap[n] == 0: |
---|
| 166 | trianglemap[n] = 1 |
---|
| 167 | |
---|
[2130] | 168 | # Build the triangle list and make note of the vertices |
---|
[1575] | 169 | |
---|
[2090] | 170 | nodemap = zeros(ncoord, 'i') |
---|
[1500] | 171 | fullnodes = submesh["full_nodes"][p] |
---|
[2105] | 172 | |
---|
[1500] | 173 | subtriangles = [] |
---|
| 174 | for i in range(len(trianglemap)): |
---|
| 175 | if trianglemap[i] == 1: |
---|
| 176 | t = list(mesh.triangles[i]) |
---|
| 177 | nodemap[t[0]] = 1 |
---|
| 178 | nodemap[t[1]] = 1 |
---|
| 179 | nodemap[t[2]] = 1 |
---|
| 180 | |
---|
[2090] | 181 | trilist = reshape(arrayrange(ntriangles),(ntriangles,1)) |
---|
| 182 | tsubtriangles = concatenate((trilist, mesh.triangles), 1) |
---|
| 183 | subtriangles = take(tsubtriangles, nonzero(trianglemap)) |
---|
[2105] | 184 | |
---|
[2130] | 185 | # Keep a record of the triangle vertices, if they are not already there |
---|
[1575] | 186 | |
---|
[1500] | 187 | subnodes = [] |
---|
| 188 | for n in fullnodes: |
---|
[2090] | 189 | nodemap[int(n[0])] = 0 |
---|
[1500] | 190 | |
---|
[2090] | 191 | nodelist = reshape(arrayrange(ncoord),(ncoord,1)) |
---|
| 192 | tsubnodes = concatenate((nodelist, mesh.coordinates), 1) |
---|
| 193 | subnodes = take(tsubnodes, nonzero(nodemap)) |
---|
[2105] | 194 | |
---|
[2130] | 195 | # Clean up before exiting |
---|
[1575] | 196 | |
---|
[2090] | 197 | del (nodelist) |
---|
| 198 | del (trilist) |
---|
| 199 | del (tsubnodes) |
---|
[1500] | 200 | del (nodemap) |
---|
| 201 | del (trianglemap) |
---|
| 202 | |
---|
[2130] | 203 | # Return the triangles and vertices sitting on the boundary layer |
---|
[1575] | 204 | |
---|
[1500] | 205 | return subnodes, subtriangles |
---|
| 206 | |
---|
[2625] | 207 | ######################################################### |
---|
| 208 | # |
---|
| 209 | # Find the edges of the ghost trianlges that do not |
---|
| 210 | # have a neighbour in the current cell. These are |
---|
| 211 | # treated as a special type of boundary edge. |
---|
| 212 | # |
---|
| 213 | # *) Given the ghost triangles in a particular |
---|
| 214 | # triangle, use the mesh to find its neigbours. If |
---|
| 215 | # the neighbour is not in the processor set it to |
---|
| 216 | # be a boundary edge |
---|
| 217 | # |
---|
| 218 | # *) The vertices in the ghost triangles must also |
---|
| 219 | # be added to the node list for the current processor |
---|
| 220 | # |
---|
| 221 | # *) The boundary edges for the ghost triangles are |
---|
| 222 | # ignored. |
---|
| 223 | # |
---|
| 224 | # ------------------------------------------------------- |
---|
| 225 | # |
---|
| 226 | # *) The type assigned to the ghost boundary edges is 'ghost' |
---|
| 227 | # |
---|
| 228 | # *) The boundary information is returned as a directorier |
---|
| 229 | # with the key = (triangle id, edge no) and the values |
---|
| 230 | # assigned to the key is 'ghost' |
---|
| 231 | # |
---|
| 232 | # |
---|
| 233 | ######################################################### |
---|
| 234 | def is_in_processor(ghost_list, tlower, tupper, n): |
---|
| 235 | return (n in ghost_list) or (tlower <= n and tupper >= n) |
---|
[1500] | 236 | |
---|
[2625] | 237 | def ghost_bnd_layer(ghosttri, tlower, tupper, mesh, p): |
---|
| 238 | |
---|
| 239 | ghost_list = [] |
---|
| 240 | subboundary = {} |
---|
| 241 | |
---|
| 242 | for t in ghosttri: |
---|
| 243 | ghost_list.append(t[0]) |
---|
| 244 | |
---|
| 245 | for t in ghosttri: |
---|
| 246 | n = mesh.neighbours[t[0], 0] |
---|
| 247 | if not is_in_processor(ghost_list, tlower, tupper, n): |
---|
| 248 | subboundary[t[0], 0] = 'ghost' |
---|
| 249 | |
---|
| 250 | n = mesh.neighbours[t[0], 1] |
---|
| 251 | if not is_in_processor(ghost_list, tlower, tupper, n): |
---|
| 252 | subboundary[t[0], 1] = 'ghost' |
---|
| 253 | |
---|
| 254 | n = mesh.neighbours[t[0], 2] |
---|
| 255 | if not is_in_processor(ghost_list, tlower, tupper, n): |
---|
| 256 | subboundary[t[0], 2] = 'ghost' |
---|
| 257 | |
---|
| 258 | return subboundary |
---|
| 259 | |
---|
[1500] | 260 | ######################################################### |
---|
| 261 | # |
---|
| 262 | # The ghost triangles on the current processor will need |
---|
| 263 | # to get updated information from the neighbouring |
---|
| 264 | # processor containing the corresponding full triangles. |
---|
| 265 | # |
---|
| 266 | # *) The tri_per_proc is used to determine which |
---|
| 267 | # processor contains the full node copy. |
---|
| 268 | # |
---|
| 269 | # ------------------------------------------------------- |
---|
| 270 | # |
---|
| 271 | # *) The ghost communication pattern consists of |
---|
| 272 | # [global node number, neighbour processor number]. |
---|
| 273 | # |
---|
| 274 | ######################################################### |
---|
| 275 | |
---|
| 276 | def ghost_commun_pattern(subtri, p, tri_per_proc): |
---|
| 277 | |
---|
[2130] | 278 | # Loop over the ghost triangles |
---|
[1575] | 279 | |
---|
[2090] | 280 | ghost_commun = zeros((len(subtri), 2), Int) |
---|
[2105] | 281 | |
---|
[2090] | 282 | for i in range(len(subtri)): |
---|
| 283 | global_no = subtri[i][0] |
---|
[1500] | 284 | |
---|
[2130] | 285 | # Find which processor contains the full triangle |
---|
[1575] | 286 | |
---|
[1500] | 287 | nproc = len(tri_per_proc) |
---|
| 288 | neigh = nproc-1 |
---|
| 289 | sum = 0 |
---|
| 290 | for q in range(nproc-1): |
---|
| 291 | if (global_no < sum+tri_per_proc[q]): |
---|
| 292 | neigh = q |
---|
| 293 | break |
---|
| 294 | sum = sum+tri_per_proc[q] |
---|
| 295 | |
---|
[2130] | 296 | # Keep a copy of the neighbour processor number |
---|
[1575] | 297 | |
---|
[2090] | 298 | ghost_commun[i] = [global_no, neigh] |
---|
[2105] | 299 | |
---|
[1500] | 300 | return ghost_commun |
---|
[1575] | 301 | |
---|
[1500] | 302 | ######################################################### |
---|
| 303 | # |
---|
| 304 | # The full triangles in this processor must communicate |
---|
| 305 | # updated information to neighbouring processor that |
---|
| 306 | # contain ghost triangles |
---|
| 307 | # |
---|
| 308 | # *) The ghost communication pattern for all of the |
---|
| 309 | # processor must be built before calling this processor. |
---|
| 310 | # |
---|
| 311 | # *) The full communication pattern is found by looping |
---|
| 312 | # through the ghost communication pattern for all of the |
---|
| 313 | # processors. Recall that this information is stored in |
---|
| 314 | # the form [global node number, neighbour processor number]. |
---|
| 315 | # The full communication for the neighbour processor is |
---|
| 316 | # then updated. |
---|
| 317 | # |
---|
| 318 | # ------------------------------------------------------- |
---|
| 319 | # |
---|
| 320 | # *) The full communication pattern consists of |
---|
| 321 | # [global id, [p1, p2, ...]], where p1, p2 etc contain |
---|
| 322 | # a ghost node copy of the triangle global id. |
---|
| 323 | # |
---|
| 324 | ######################################################### |
---|
| 325 | |
---|
| 326 | def full_commun_pattern(submesh, tri_per_proc): |
---|
| 327 | tlower = 0 |
---|
| 328 | nproc = len(tri_per_proc) |
---|
| 329 | full_commun = [] |
---|
| 330 | |
---|
[2130] | 331 | # Loop over the processor |
---|
[1575] | 332 | |
---|
[1500] | 333 | for p in range(nproc): |
---|
| 334 | |
---|
[2130] | 335 | # Loop over the full triangles in the current processor |
---|
[1500] | 336 | # and build an empty dictionary |
---|
[1575] | 337 | |
---|
[1500] | 338 | fcommun = {} |
---|
| 339 | tupper = tri_per_proc[p]+tlower |
---|
| 340 | for i in range(tlower, tupper): |
---|
| 341 | fcommun[i] = [] |
---|
| 342 | full_commun.append(fcommun) |
---|
| 343 | tlower = tupper |
---|
| 344 | |
---|
[2130] | 345 | # Loop over the processor again |
---|
[1575] | 346 | |
---|
[1500] | 347 | for p in range(nproc): |
---|
| 348 | |
---|
[2130] | 349 | # Loop over the ghost triangles in the current processor, |
---|
[1500] | 350 | # find which processor contains the corresponding full copy |
---|
[2091] | 351 | # and note that the processor must send updates to this |
---|
[1500] | 352 | # processor |
---|
[1575] | 353 | |
---|
[1500] | 354 | for g in submesh["ghost_commun"][p]: |
---|
| 355 | neigh = g[1] |
---|
| 356 | full_commun[neigh][g[0]].append(p) |
---|
| 357 | |
---|
| 358 | return full_commun |
---|
| 359 | |
---|
[1575] | 360 | |
---|
[1500] | 361 | ######################################################### |
---|
| 362 | # |
---|
| 363 | # Given the non-overlapping grid partition, an extra layer |
---|
| 364 | # of triangles are included to help with the computations. |
---|
| 365 | # The triangles in this extra layer are not updated by |
---|
| 366 | # the processor, their updated values must be sent by the |
---|
| 367 | # processor containing the original, full, copy of the |
---|
| 368 | # triangle. The communication pattern that controls these |
---|
| 369 | # updates must also be built. |
---|
| 370 | # |
---|
[2625] | 371 | # *) Assumes that full triangles, nodes etc have already |
---|
| 372 | # been found and stored in submesh |
---|
| 373 | # |
---|
[1500] | 374 | # *) See the documentation for ghost_layer, |
---|
| 375 | # ghost_commun_pattern and full_commun_pattern |
---|
| 376 | # |
---|
| 377 | # ------------------------------------------------------- |
---|
| 378 | # |
---|
| 379 | # *) The additional information is added to the submesh |
---|
| 380 | # dictionary. See the documentation for ghost_layer, |
---|
| 381 | # ghost_commun_pattern and full_commun_pattern |
---|
| 382 | # |
---|
[2625] | 383 | # *) The ghost_triangles, ghost_nodes, ghost_boundary, |
---|
| 384 | # ghost_commun and full_commun is added to submesh |
---|
[1500] | 385 | ######################################################### |
---|
| 386 | |
---|
| 387 | def submesh_ghost(submesh, mesh, triangles_per_proc): |
---|
[1575] | 388 | |
---|
[1500] | 389 | nproc = len(triangles_per_proc) |
---|
| 390 | tlower = 0 |
---|
| 391 | ghost_triangles = [] |
---|
| 392 | ghost_nodes = [] |
---|
| 393 | ghost_commun = [] |
---|
[2625] | 394 | ghost_bnd = [] |
---|
[1575] | 395 | |
---|
[2130] | 396 | # Loop over the processors |
---|
[1575] | 397 | |
---|
[1500] | 398 | for p in range(nproc): |
---|
| 399 | |
---|
[2130] | 400 | # Find the full triangles in this processor |
---|
[1575] | 401 | |
---|
[1500] | 402 | tupper = triangles_per_proc[p]+tlower |
---|
| 403 | |
---|
[2130] | 404 | # Build the ghost boundary layer |
---|
[2105] | 405 | |
---|
[2130] | 406 | [subnodes, subtri] = \ |
---|
| 407 | ghost_layer(submesh, mesh, p, tupper, tlower) |
---|
[1500] | 408 | ghost_triangles.append(subtri) |
---|
| 409 | ghost_nodes.append(subnodes) |
---|
[2105] | 410 | |
---|
[2625] | 411 | # Find the boundary layer formed by the ghost triangles |
---|
| 412 | |
---|
| 413 | subbnd = ghost_bnd_layer(subtri, tupper, tlower, mesh, p) |
---|
| 414 | ghost_bnd.append(subbnd) |
---|
| 415 | |
---|
[2130] | 416 | # Build the communication pattern for the ghost nodes |
---|
[1575] | 417 | |
---|
[2130] | 418 | gcommun = \ |
---|
| 419 | ghost_commun_pattern(subtri, p, triangles_per_proc) |
---|
[1500] | 420 | ghost_commun.append(gcommun) |
---|
| 421 | |
---|
[2130] | 422 | # Move to the next processor |
---|
[1575] | 423 | |
---|
[1500] | 424 | tlower = tupper |
---|
| 425 | |
---|
[2130] | 426 | # Record the ghost layer and communication pattern |
---|
[1575] | 427 | |
---|
[1500] | 428 | submesh["ghost_nodes"] = ghost_nodes |
---|
| 429 | submesh["ghost_triangles"] = ghost_triangles |
---|
| 430 | submesh["ghost_commun"] = ghost_commun |
---|
[2625] | 431 | submesh["ghost_boundary"] = ghost_bnd |
---|
| 432 | |
---|
[2130] | 433 | # Build the communication pattern for the full triangles |
---|
[1575] | 434 | |
---|
[1500] | 435 | full_commun = full_commun_pattern(submesh, triangles_per_proc) |
---|
| 436 | submesh["full_commun"] = full_commun |
---|
| 437 | |
---|
[2130] | 438 | # Return the submesh |
---|
[1575] | 439 | |
---|
[1500] | 440 | return submesh |
---|
| 441 | |
---|
[2091] | 442 | |
---|
| 443 | ######################################################### |
---|
| 444 | # |
---|
| 445 | # Certain quantities may be assigned to the triangles, |
---|
| 446 | # these quantities must be subdivided in the same way |
---|
| 447 | # as the triangles |
---|
| 448 | # |
---|
| 449 | # *) The quantities are ordered in the same way as the |
---|
| 450 | # triangles |
---|
| 451 | # |
---|
| 452 | # ------------------------------------------------------- |
---|
| 453 | # |
---|
| 454 | # *) The quantites attached to the full triangles are |
---|
| 455 | # stored in full_quan |
---|
| 456 | # |
---|
| 457 | # *) The quantities attached to the ghost triangles are |
---|
| 458 | # stored in ghost_quan |
---|
| 459 | ######################################################### |
---|
| 460 | |
---|
[1580] | 461 | def submesh_quantities(submesh, quantities, triangles_per_proc): |
---|
[2105] | 462 | |
---|
[1580] | 463 | nproc = len(triangles_per_proc) |
---|
| 464 | |
---|
| 465 | lower = 0 |
---|
| 466 | |
---|
[2130] | 467 | # Build an empty dictionary to hold the quantites |
---|
[2105] | 468 | |
---|
[1580] | 469 | submesh["full_quan"] = {} |
---|
| 470 | submesh["ghost_quan"] = {} |
---|
| 471 | for k in quantities: |
---|
| 472 | submesh["full_quan"][k] = [] |
---|
| 473 | submesh["ghost_quan"][k] = [] |
---|
[2091] | 474 | |
---|
[2130] | 475 | # Loop trough the subdomains |
---|
[2105] | 476 | |
---|
[1580] | 477 | for p in range(nproc): |
---|
| 478 | upper = lower+triangles_per_proc[p] |
---|
| 479 | |
---|
[2130] | 480 | # Find the global ID of the ghost triangles |
---|
[2105] | 481 | |
---|
[1580] | 482 | global_id = [] |
---|
| 483 | M = len(submesh["ghost_triangles"][p]) |
---|
| 484 | for j in range(M): |
---|
| 485 | global_id.append(submesh["ghost_triangles"][p][j][0]) |
---|
| 486 | |
---|
[2130] | 487 | # Use the global ID to extract the quantites information from |
---|
[2091] | 488 | # the full domain |
---|
[2105] | 489 | |
---|
[1580] | 490 | for k in quantities: |
---|
| 491 | submesh["full_quan"][k].append(quantities[k][lower:upper]) |
---|
| 492 | submesh["ghost_quan"][k].append(zeros( (M,3) , Float)) |
---|
| 493 | for j in range(M): |
---|
[2130] | 494 | submesh["ghost_quan"][k][p][j] = \ |
---|
| 495 | quantities[k][global_id[j]] |
---|
[1580] | 496 | |
---|
| 497 | lower = upper |
---|
| 498 | |
---|
| 499 | return submesh |
---|
| 500 | |
---|
[1500] | 501 | ######################################################### |
---|
| 502 | # |
---|
| 503 | # Build the grid partition on the host. |
---|
| 504 | # |
---|
| 505 | # *) See the documentation for submesh_ghost and |
---|
| 506 | # submesh_full |
---|
| 507 | # |
---|
| 508 | # ------------------------------------------------------- |
---|
| 509 | # |
---|
| 510 | # *) A dictionary containing the full_triangles, |
---|
| 511 | # full_nodes, full_boundary, ghost_triangles, ghost_nodes, |
---|
[2625] | 512 | # ghost_boundary, ghost_commun and full_commun is returned. |
---|
[1500] | 513 | # |
---|
| 514 | ######################################################### |
---|
| 515 | |
---|
[1580] | 516 | def build_submesh(nodes, triangles, edges, quantities, |
---|
| 517 | triangles_per_proc): |
---|
[1500] | 518 | |
---|
[2130] | 519 | # Temporarily build the mesh to find the neighbouring |
---|
[1500] | 520 | # triangles |
---|
[1575] | 521 | |
---|
[1500] | 522 | mesh = Mesh(nodes, triangles) |
---|
| 523 | |
---|
[2130] | 524 | # Subdivide into non-overlapping partitions |
---|
[1575] | 525 | |
---|
[2130] | 526 | submeshf = submesh_full(nodes, triangles, edges, \ |
---|
| 527 | triangles_per_proc) |
---|
[2105] | 528 | |
---|
[2130] | 529 | # Add any extra ghost boundary layer information |
---|
[1575] | 530 | |
---|
[1500] | 531 | submeshg = submesh_ghost(submeshf, mesh, triangles_per_proc) |
---|
[2091] | 532 | |
---|
[2130] | 533 | # Order the quantities information to be the same as the triangle |
---|
[2091] | 534 | # information |
---|
[2105] | 535 | |
---|
[2130] | 536 | submesh = submesh_quantities(submeshg, quantities, \ |
---|
| 537 | triangles_per_proc) |
---|
[2105] | 538 | |
---|
[1580] | 539 | return submesh |
---|
[1500] | 540 | |
---|