1 | |
---|
2 | \chapter{Performance Analysis} |
---|
3 | |
---|
4 | |
---|
5 | To evaluate the performance of the code on a parallel machine we ran |
---|
6 | some examples on a cluster of four nodes connected with PathScale |
---|
7 | InfiniPath HTX. Each node has two AMD Opteron 275 (Dual-core 2.2 GHz |
---|
8 | Processors) and 4 GB of main memory. The system achieves 60 |
---|
9 | Gigaflops with the Linpack benchmark, which is about 85\% of peak |
---|
10 | performance. |
---|
11 | |
---|
12 | For each test run we evaluate the parallel efficiency as |
---|
13 | \[ |
---|
14 | E_n = \frac{T_1}{nT_n} 100, |
---|
15 | \] |
---|
16 | where $T_n = \max_{0\le i < n}\{t_i\}$, $n$ is the total number of |
---|
17 | processors (submesh) and $t_i$ is the time required to run the {\tt |
---|
18 | evolve} code on processor $i$. Note that $t_i$ does not include the |
---|
19 | time required to build and subpartition the mesh etc., it only |
---|
20 | includes the time required to do the evolve calculations (eg. |
---|
21 | \code{domain.evolve(yieldstep = 0.1, finaltime = 3.0)}). |
---|
22 | |
---|
23 | \section{Advection, Rectangular Domain} |
---|
24 | |
---|
25 | The first example looked at the rectangular domain example given in |
---|
26 | Section \ref{subsec:codeRPA}, except we changed the finaltime time |
---|
27 | to 1.0 (\code{domain.evolve(yieldstep = 0.1, finaltime = 1.0)}). |
---|
28 | |
---|
29 | For this particular example we can control the mesh size by changing |
---|
30 | the parameters \code{N} and \code{M} given in the following section |
---|
31 | of code taken from |
---|
32 | Section \ref{subsec:codeRPA}. |
---|
33 | |
---|
34 | \begin{verbatim} |
---|
35 | ####################### |
---|
36 | # Partition the mesh |
---|
37 | ####################### |
---|
38 | N = 20 |
---|
39 | M = 20 |
---|
40 | |
---|
41 | # Build a unit mesh, subdivide it over numproces processors with each |
---|
42 | # submesh containing M*N nodes |
---|
43 | |
---|
44 | points, vertices, boundary, full_send_dict, ghost_recv_dict = \ |
---|
45 | parallel_rectangle(N, M, len1_g=1.0) |
---|
46 | \end{verbatim} |
---|
47 | |
---|
48 | Tables \ref{tbl:rpa40}, \ref{tbl:rpa80} and \ref{tbl:rpa160} show |
---|
49 | the efficiency results for different values of \code{N} and |
---|
50 | \code{M}. The examples where $n \le 4$ were run on one Opteron node |
---|
51 | containing 4 processors, the $n = 8$ example was run on 2 nodes |
---|
52 | (giving a total of 8 processors). The communication within a node is |
---|
53 | faster than the communication across nodes, so we would expect to |
---|
54 | see a decrease in efficiency when we jump from 4 to 8 nodes. |
---|
55 | Furthermore, as \code{N} and \code{M} are increased the ratio of |
---|
56 | exterior to interior triangles decreases, which in-turn decreases |
---|
57 | the amount of communication relative the amount of computation and |
---|
58 | thus the efficiency should increase. |
---|
59 | |
---|
60 | The efficiency results shown here are competitive. |
---|
61 | |
---|
62 | \begin{table} |
---|
63 | \caption{Parallel Efficiency Results for the Advection Problem on a |
---|
64 | Rectangular Domain with {\tt N} = 40, {\tt M} = |
---|
65 | 40.\label{tbl:rpa40}} |
---|
66 | \begin{center} |
---|
67 | \begin{tabular}{|c|c c|}\hline |
---|
68 | $n$ & $T_n$ (sec) & $E_n (\%)$ \\\hline |
---|
69 | 1 & 36.61 & \\ |
---|
70 | 2 & 18.76 & 98 \\ |
---|
71 | 4 & 10.16 & 90 \\ |
---|
72 | 8 & 6.39 & 72 \\\hline |
---|
73 | \end{tabular} |
---|
74 | \end{center} |
---|
75 | \end{table} |
---|
76 | |
---|
77 | \begin{table} |
---|
78 | \caption{Parallel Efficiency Results for the Advection Problem on a |
---|
79 | Rectangular Domain with {\tt N} = 80, {\tt M} = |
---|
80 | 80.\label{tbl:rpa80}} |
---|
81 | \begin{center} |
---|
82 | \begin{tabular}{|c|c c|}\hline |
---|
83 | $n$ & $T_n$ (sec) & $E_n (\%)$ \\\hline |
---|
84 | 1 & 282.18 & \\ |
---|
85 | 2 & 143.14 & 99 \\ |
---|
86 | 4 & 75.06 & 94 \\ |
---|
87 | 8 & 41.67 & 85 \\\hline |
---|
88 | \end{tabular} |
---|
89 | \end{center} |
---|
90 | \end{table} |
---|
91 | |
---|
92 | |
---|
93 | \begin{table} |
---|
94 | \caption{Parallel Efficiency Results for the Advection Problem on a |
---|
95 | Rectangular Domain with {\tt N} = 160, {\tt M} = |
---|
96 | 160.\label{tbl:rpa160}} |
---|
97 | \begin{center} |
---|
98 | \begin{tabular}{|c|c c|}\hline |
---|
99 | $n$ & $T_n$ (sec) & $E_n (\%)$ \\\hline |
---|
100 | 1 & 2200.35 & \\ |
---|
101 | 2 & 1126.35 & 97 \\ |
---|
102 | 4 & 569.49 & 97 \\ |
---|
103 | 8 & 304.43 & 90 \\\hline |
---|
104 | \end{tabular} |
---|
105 | \end{center} |
---|
106 | \end{table} |
---|
107 | |
---|
108 | |
---|
109 | %Another way of measuring the performance of the code on a parallel machine is to increase the problem size as the number of processors are increased so that the number of triangles per processor remains roughly the same. We have not carried out measurements of this kind as we usually have static grids and it is not possible to increase the number of triangles. |
---|
110 | |
---|
111 | \section{Advection, Merimbula Mesh} |
---|
112 | |
---|
113 | We now look at another advection example, except this time the mesh |
---|
114 | comes from the Merimbula test problem. That is, we ran the code |
---|
115 | given in Section \ref{subsec:codeRPMM}, except the final time was |
---|
116 | reduced to 10000 (\code{finaltime = 10000}). The results are given |
---|
117 | in Table \ref{tbl:rpm}. These are good efficiency results, |
---|
118 | especially considering the structure of the Merimbula mesh. |
---|
119 | %Note that since we are solving an advection problem the amount of calculation |
---|
120 | %done on each triangle is relatively low, when we more to other problems that |
---|
121 | %involve more calculations we would expect the computation to communication ratio to increase and thus get an increase in efficiency. |
---|
122 | |
---|
123 | \begin{table} |
---|
124 | \caption{Parallel Efficiency Results for the Advection Problem on the |
---|
125 | Merimbula Mesh.\label{tbl:rpm}} |
---|
126 | \begin{center} |
---|
127 | \begin{tabular}{|c|c c|}\hline |
---|
128 | $n$ & $T_n$ (sec) & $E_n (\%)$ \\\hline |
---|
129 | 1 &145.17 & \\ |
---|
130 | 2 &77.52 & 94 \\ |
---|
131 | 4 & 41.24 & 88 \\ |
---|
132 | 8 & 22.96 & 79 \\\hline |
---|
133 | \end{tabular} |
---|
134 | \end{center} |
---|
135 | \end{table} |
---|
136 | |
---|
137 | \section{Shallow Water, Merimbula Mesh} |
---|
138 | |
---|
139 | The final example we looked at is the shallow water equation on the |
---|
140 | Merimbula mesh. We used the code listed in Section \ref{subsec:codeRPSMM}. The |
---|
141 | results are listed in Table \ref{tbl:rpsm}. The efficiency results are not as |
---|
142 | good as initially expected so we profiled the code and found that |
---|
143 | the problem is with the \code{update_boundary} routine in the {\tt domain.py} |
---|
144 | file. On one processor the \code{update_boundary} routine accounts for about |
---|
145 | 72\% of the total computation time and unfortunately it is difficult to |
---|
146 | parallelise this routine. When metis subpartitions the mesh it is possible |
---|
147 | that one processor will only get a few boundary edges (some may not get any) |
---|
148 | while another processor may contain a relatively large number of boundary |
---|
149 | edges. The profiler indicated that when running the problem on 8 processors, |
---|
150 | Processor 0 spent about 3.8 times more doing the \code{update_boundary} |
---|
151 | calculations than Processor 7. This load imbalance reduced the parallel |
---|
152 | efficiency. |
---|
153 | |
---|
154 | Before doing the shallow equation calculations on a larger number of |
---|
155 | processors we recommend that the \code{update_boundary} calculations be |
---|
156 | optimised as much as possible to reduce the effect of the load imbalance. |
---|
157 | |
---|
158 | |
---|
159 | \begin{table} |
---|
160 | \caption{Parallel Efficiency Results for the Shallow Water Equation on the |
---|
161 | Merimbula Mesh.\label{tbl:rpsm}} |
---|
162 | \begin{center} |
---|
163 | \begin{tabular}{|c|c c|}\hline |
---|
164 | $n$ & $T_n$ (sec) & $E_n (\%)$ \\\hline |
---|
165 | 1 & 7.04 & \\ |
---|
166 | 2 & 3.62 & 97 \\ |
---|
167 | 4 & 1.94 & 91 \\ |
---|
168 | 8 & 1.15 & 77 \\\hline |
---|
169 | \end{tabular} |
---|
170 | \end{center} |
---|
171 | \end{table} |
---|