1 | #!/usr/bin/env python |
---|
2 | # |
---|
3 | """General 2D triangular classes for triangular mesh generation. |
---|
4 | |
---|
5 | Note: A .index attribute is added to objects such as vertices and |
---|
6 | segments, often when reading and writing to files. This information |
---|
7 | should not be used as percistant information. It is not the 'index' of |
---|
8 | an element in a list. |
---|
9 | |
---|
10 | |
---|
11 | Copyright 2003/2004 |
---|
12 | Ole Nielsen, Stephen Roberts, Duncan Gray, Christopher Zoppou |
---|
13 | Geoscience Australia |
---|
14 | """ |
---|
15 | import load_mesh.loadASCII |
---|
16 | import alpha_shape.alpha_shape |
---|
17 | |
---|
18 | import sys |
---|
19 | import math |
---|
20 | import triangle.triang as triang |
---|
21 | import re |
---|
22 | import os |
---|
23 | import pickle |
---|
24 | |
---|
25 | import types |
---|
26 | import exceptions |
---|
27 | |
---|
28 | import load_mesh |
---|
29 | from coordinate_transforms.geo_reference import Geo_reference,DEFAULT_ZONE |
---|
30 | |
---|
31 | SET_COLOUR='red' |
---|
32 | |
---|
33 | # FIXME (DSG-ALL)When the dependancies between pyvolution and utils |
---|
34 | #are sorted out this can be changed |
---|
35 | def gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2): |
---|
36 | """ |
---|
37 | """ |
---|
38 | |
---|
39 | det = (y2-y0)*(x1-x0) - (y1-y0)*(x2-x0) |
---|
40 | a = (y2-y0)*(q1-q0) - (y1-y0)*(q2-q0) |
---|
41 | a /= det |
---|
42 | |
---|
43 | b = (x1-x0)*(q2-q0) - (x2-x0)*(q1-q0) |
---|
44 | b /= det |
---|
45 | |
---|
46 | return a, b |
---|
47 | |
---|
48 | ############################################## |
---|
49 | #Initialise module |
---|
50 | |
---|
51 | #FIXME (DSG) Don't have this dependent on pyvolution! |
---|
52 | #Changed by Ole: Let util.py make the decision |
---|
53 | #from pyvolution.util import gradient |
---|
54 | #import compile |
---|
55 | #if compile.can_use_C_extension('util_ext.c'): |
---|
56 | # from util_ext import gradient, point_on_line |
---|
57 | #else: |
---|
58 | # gradient = gradient_python |
---|
59 | |
---|
60 | |
---|
61 | # 1st and third values must be the same |
---|
62 | # FIXME: maybe make this a switch that the user can change? - DSG |
---|
63 | initialconversions = ['', 'exterior',''] |
---|
64 | |
---|
65 | #from os import sep |
---|
66 | #sys.path.append('..'+sep+'pmesh') |
---|
67 | #print "sys.path",sys.path |
---|
68 | |
---|
69 | class MeshObject: |
---|
70 | """ |
---|
71 | An abstract superclass for the basic mesh objects, eg vertex, segment, |
---|
72 | triangle. |
---|
73 | """ |
---|
74 | def __init__(self): |
---|
75 | pass |
---|
76 | |
---|
77 | class Point(MeshObject): |
---|
78 | """ |
---|
79 | Define a point in a 2D space. |
---|
80 | """ |
---|
81 | def __init__(self,X,Y): |
---|
82 | __slots__ = ['x','y'] |
---|
83 | self.x=X |
---|
84 | self.y=Y |
---|
85 | |
---|
86 | def DistanceToPoint(self, OtherPoint): |
---|
87 | """ |
---|
88 | Returns the distance from this point to another |
---|
89 | """ |
---|
90 | SumOfSquares = ((self.x - OtherPoint.x)**2) + ((self.y - OtherPoint.y)**2) |
---|
91 | return math.sqrt(SumOfSquares) |
---|
92 | |
---|
93 | def IsInsideCircle(self, Center, Radius): |
---|
94 | """ |
---|
95 | Return 1 if this point is inside the circle, |
---|
96 | 0 otherwise |
---|
97 | """ |
---|
98 | |
---|
99 | if (self.DistanceToPoint(Center)<Radius): |
---|
100 | return 1 |
---|
101 | else: |
---|
102 | return 0 |
---|
103 | |
---|
104 | def __repr__(self): |
---|
105 | return "(%f,%f)" % (self.x,self.y) |
---|
106 | |
---|
107 | def cmp_xy(self, point): |
---|
108 | if self.x < point.x: |
---|
109 | return -1 |
---|
110 | elif self.x > point.x: |
---|
111 | return 1 |
---|
112 | else: |
---|
113 | if self.y < point.y: |
---|
114 | return -1 |
---|
115 | elif self.y > point.y: |
---|
116 | return 1 |
---|
117 | else: |
---|
118 | return 0 |
---|
119 | |
---|
120 | def same_x_y(self, point): |
---|
121 | if self.x == point.x and self.y == point.y: |
---|
122 | return True |
---|
123 | else: |
---|
124 | return False |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | class Vertex(Point): |
---|
129 | """ |
---|
130 | A point on the mesh. |
---|
131 | Object attributes based on the Triangle program |
---|
132 | """ |
---|
133 | def __init__(self,X,Y, attributes = None): |
---|
134 | __slots__ = ['x','y','attributes'] |
---|
135 | |
---|
136 | assert (type(X) == types.FloatType or type(X) == types.IntType) |
---|
137 | assert (type(Y) == types.FloatType or type(Y) == types.IntType) |
---|
138 | self.x=X |
---|
139 | self.y=Y |
---|
140 | self.attributes=[] |
---|
141 | |
---|
142 | if attributes is None: |
---|
143 | self.attributes=[] |
---|
144 | else: |
---|
145 | self.attributes=attributes |
---|
146 | |
---|
147 | |
---|
148 | def setAttributes(self,attributes): |
---|
149 | """ |
---|
150 | attributes is a list. |
---|
151 | """ |
---|
152 | self.attributes = attributes |
---|
153 | |
---|
154 | VERTEXSQUARESIDELENGTH = 6 |
---|
155 | def draw(self, canvas, tags, colour = 'black',scale = 1, xoffset = 0, yoffset =0, ): |
---|
156 | x = scale*(self.x + xoffset) |
---|
157 | y = -1*scale*(self.y + yoffset) # - since for a canvas - is up |
---|
158 | #print "draw x:", x |
---|
159 | #print "draw y:", y |
---|
160 | cornerOffset= self.VERTEXSQUARESIDELENGTH/2 |
---|
161 | |
---|
162 | # A hack to see the vert tags |
---|
163 | # note: there will be many tags, since tags will not be removed |
---|
164 | #when zooming |
---|
165 | #canvas.create_text(x+ 2*cornerOffset, |
---|
166 | # y+ 2*cornerOffset, |
---|
167 | # text=tags) |
---|
168 | |
---|
169 | return canvas.create_rectangle(x-cornerOffset, |
---|
170 | y-cornerOffset, |
---|
171 | x+cornerOffset, |
---|
172 | y+cornerOffset, |
---|
173 | tags = tags, |
---|
174 | outline=colour, |
---|
175 | fill = 'white') |
---|
176 | |
---|
177 | #return tags |
---|
178 | |
---|
179 | def __repr__(self): |
---|
180 | return "[(%f,%f),%r]" % (self.x,self.y,self.attributes) |
---|
181 | |
---|
182 | class Hole(Point): |
---|
183 | """ |
---|
184 | A region of the mesh were no triangles are generated. |
---|
185 | Defined by a point in the hole enclosed by segments. |
---|
186 | """ |
---|
187 | HOLECORNERLENGTH = 6 |
---|
188 | def draw(self, canvas, tags, colour = 'purple',scale = 1, xoffset = 0, yoffset =0, ): |
---|
189 | x = scale*(self.x + xoffset) |
---|
190 | y = -1*scale*(self.y + yoffset) # - since for a canvas - is up |
---|
191 | #print "draw x:", x |
---|
192 | #print "draw y:", y |
---|
193 | cornerOffset= self.HOLECORNERLENGTH/2 |
---|
194 | return canvas.create_oval(x-cornerOffset, |
---|
195 | y-cornerOffset, |
---|
196 | x+cornerOffset, |
---|
197 | y+cornerOffset, |
---|
198 | tags = tags, |
---|
199 | outline=colour, |
---|
200 | fill = 'white') |
---|
201 | |
---|
202 | class Region(Point): |
---|
203 | """ |
---|
204 | A region of the mesh, defined by a point in the region |
---|
205 | enclosed by segments. Used to tag areas. |
---|
206 | """ |
---|
207 | CROSSLENGTH = 6 |
---|
208 | TAG = 0 |
---|
209 | MAXAREA = 1 |
---|
210 | |
---|
211 | def __init__(self,X,Y, tag = None, maxArea = None): |
---|
212 | """Precondition: tag is a string and maxArea is a real |
---|
213 | """ |
---|
214 | # This didn't work. |
---|
215 | #super(Region,self)._init_(self,X,Y) |
---|
216 | self.x=X |
---|
217 | self.y=Y |
---|
218 | self.attributes =[] # index 0 is the tag string |
---|
219 | #optoinal index 1 is the max triangle area |
---|
220 | #NOTE the size of this attribute is assumed |
---|
221 | # to be 1 or 2 in regionstrings2int |
---|
222 | if tag is None: |
---|
223 | self.attributes.append("") |
---|
224 | else: |
---|
225 | self.attributes.append(tag) #this is a string |
---|
226 | |
---|
227 | if maxArea is not None: |
---|
228 | self.setMaxArea(maxArea) # maxArea is a number |
---|
229 | |
---|
230 | def getTag(self,): |
---|
231 | return self.attributes[self.TAG] |
---|
232 | |
---|
233 | def setTag(self,tag): |
---|
234 | self.attributes[self.TAG] = tag |
---|
235 | |
---|
236 | def getMaxArea(self): |
---|
237 | """ Returns the Max Area of a Triangle or |
---|
238 | None, if the Max Area has not been set. |
---|
239 | """ |
---|
240 | if self.isMaxArea(): |
---|
241 | return self.attributes[1] |
---|
242 | else: |
---|
243 | return None |
---|
244 | |
---|
245 | def setMaxArea(self,MaxArea): |
---|
246 | if self.isMaxArea(): |
---|
247 | self.attributes[self.MAXAREA] = float(MaxArea) |
---|
248 | else: |
---|
249 | self.attributes.append( float(MaxArea) ) |
---|
250 | |
---|
251 | def deleteMaxArea(self): |
---|
252 | if self.isMaxArea(): |
---|
253 | self.attributes.pop(self.MAXAREA) |
---|
254 | |
---|
255 | def isMaxArea(self): |
---|
256 | return len(self.attributes)> 1 |
---|
257 | |
---|
258 | def draw(self, canvas, tags, scale=1, xoffset = 0, yoffset =0, colour = "black"): |
---|
259 | """ |
---|
260 | Draw a black cross, returning the objectID |
---|
261 | """ |
---|
262 | x = scale*(self.x + xoffset) |
---|
263 | y = -1*scale*(self.y + yoffset) |
---|
264 | cornerOffset= self.CROSSLENGTH/2 |
---|
265 | return canvas.create_polygon(x, |
---|
266 | y-cornerOffset, |
---|
267 | x, |
---|
268 | y, |
---|
269 | x+cornerOffset, |
---|
270 | y, |
---|
271 | x, |
---|
272 | y, |
---|
273 | x, |
---|
274 | y+cornerOffset, |
---|
275 | x, |
---|
276 | y, |
---|
277 | x-cornerOffset, |
---|
278 | y, |
---|
279 | x, |
---|
280 | y, |
---|
281 | tags = tags, |
---|
282 | outline = colour,fill = '') |
---|
283 | |
---|
284 | def __repr__(self): |
---|
285 | if self.isMaxArea(): |
---|
286 | area = self.getMaxArea() |
---|
287 | return "(%f,%f,%s,%f)" % (self.x,self.y, |
---|
288 | self.getTag(), self.getMaxArea()) |
---|
289 | else: |
---|
290 | return "(%f,%f,%s)" % (self.x,self.y, |
---|
291 | self.getTag()) |
---|
292 | |
---|
293 | class Triangle(MeshObject): |
---|
294 | """ |
---|
295 | A triangle element, defined by 3 vertices. |
---|
296 | Attributes based on the Triangle program. |
---|
297 | """ |
---|
298 | |
---|
299 | def __init__(self, vertex1, vertex2, vertex3, attribute = None, neighbors = None ): |
---|
300 | """ |
---|
301 | Vertices, the initial arguments, are listed in counterclockwise order. |
---|
302 | """ |
---|
303 | self.vertices= [vertex1,vertex2, vertex3 ] |
---|
304 | |
---|
305 | if attribute is None: |
---|
306 | self.attribute ="" |
---|
307 | else: |
---|
308 | self.attribute = attribute #this is a string |
---|
309 | |
---|
310 | if neighbors is None: |
---|
311 | self.neighbors=[] |
---|
312 | else: |
---|
313 | self.neighbors=neighbors |
---|
314 | |
---|
315 | def replace(self,new_triangle): |
---|
316 | self = new_triangle |
---|
317 | |
---|
318 | def longestSideID(self): |
---|
319 | ax = self.vertices[0].x |
---|
320 | ay = self.vertices[0].y |
---|
321 | |
---|
322 | bx = self.vertices[1].x |
---|
323 | by = self.vertices[1].y |
---|
324 | |
---|
325 | cx = self.vertices[2].x |
---|
326 | cy = self.vertices[2].y |
---|
327 | |
---|
328 | lenA = ((cx-bx)**2+(cy-by)**2)**0.5 |
---|
329 | lenB = ((ax-cx)**2+(ay-cy)**2)**0.5 |
---|
330 | lenC = ((bx-ax)**2+(by-ay)**2)**0.5 |
---|
331 | |
---|
332 | len = [lenA,lenB,lenC] |
---|
333 | return len.index(max(len)) |
---|
334 | |
---|
335 | def rotate(self,offset): |
---|
336 | """ |
---|
337 | permute the order of the sides of the triangle |
---|
338 | offset must be 0,1 or 2 |
---|
339 | """ |
---|
340 | |
---|
341 | if offset == 0: |
---|
342 | pass |
---|
343 | else: |
---|
344 | if offset == 1: |
---|
345 | self.vertices = [self.vertices[1],self.vertices[2],self.vertices[0]] |
---|
346 | self.neighbors = [self.neighbors[1],self.neighbors[2],self.neighbors[0]] |
---|
347 | if offset == 2: |
---|
348 | self.vertices = [self.vertices[2],self.vertices[0],self.vertices[1]] |
---|
349 | self.neighbors = [self.neighbors[2],self.neighbors[0],self.neighbors[1]] |
---|
350 | |
---|
351 | def rotate_longest_side(self): |
---|
352 | self.rotate(self.longestSideID()) |
---|
353 | |
---|
354 | def getVertices(self): |
---|
355 | return self.vertices |
---|
356 | |
---|
357 | def calcArea(self): |
---|
358 | ax = self.vertices[0].x |
---|
359 | ay = self.vertices[0].y |
---|
360 | |
---|
361 | bx = self.vertices[1].x |
---|
362 | by = self.vertices[1].y |
---|
363 | |
---|
364 | cx = self.vertices[2].x |
---|
365 | cy = self.vertices[2].y |
---|
366 | |
---|
367 | return abs((bx*ay-ax*by)+(cx*by-bx*cy)+(ax*cy-cx*ay))/2 |
---|
368 | |
---|
369 | def calcP(self): |
---|
370 | #calculate the perimeter |
---|
371 | ax = self.vertices[0].x |
---|
372 | ay = self.vertices[0].y |
---|
373 | |
---|
374 | bx = self.vertices[1].x |
---|
375 | by = self.vertices[1].y |
---|
376 | |
---|
377 | cx = self.vertices[2].x |
---|
378 | cy = self.vertices[2].y |
---|
379 | |
---|
380 | a = ((cx-bx)**2+(cy-by)**2)**0.5 |
---|
381 | b = ((ax-cx)**2+(ay-cy)**2)**0.5 |
---|
382 | c = ((bx-ax)**2+(by-ay)**2)**0.5 |
---|
383 | |
---|
384 | return a+b+c |
---|
385 | |
---|
386 | def setNeighbors(self,neighbor1 = None, neighbor2 = None, neighbor3 = None): |
---|
387 | """ |
---|
388 | neighbor1 is the triangle opposite vertex1 and so on. |
---|
389 | Null represents no neighbor |
---|
390 | """ |
---|
391 | self.neighbors = [neighbor1, neighbor2, neighbor3] |
---|
392 | |
---|
393 | def setAttribute(self,attribute): |
---|
394 | """ |
---|
395 | neighbor1 is the triangle opposite vertex1 and so on. |
---|
396 | Null represents no neighbor |
---|
397 | """ |
---|
398 | self.attribute = attribute |
---|
399 | |
---|
400 | def __repr__(self): |
---|
401 | return "[%s,%s]" % (self.vertices,self.attribute) |
---|
402 | |
---|
403 | |
---|
404 | def draw(self, canvas, tags, scale=1, xoffset = 0, yoffset =0, colour = "green"): |
---|
405 | """ |
---|
406 | Draw a triangle, returning the objectID |
---|
407 | """ |
---|
408 | return canvas.create_polygon(scale*(self.vertices[1].x + xoffset), |
---|
409 | scale*-1*(self.vertices[1].y + yoffset), |
---|
410 | scale*(self.vertices[0].x + xoffset), |
---|
411 | scale*-1*(self.vertices[0].y + yoffset), |
---|
412 | scale*(self.vertices[2].x + xoffset), |
---|
413 | scale*-1*(self.vertices[2].y + yoffset), |
---|
414 | tags = tags, |
---|
415 | outline = colour,fill = '') |
---|
416 | |
---|
417 | class Segment(MeshObject): |
---|
418 | """ |
---|
419 | Segments are edges whose presence in the triangulation is enforced. |
---|
420 | |
---|
421 | """ |
---|
422 | def __init__(self, vertex1, vertex2, tag = None ): |
---|
423 | """ |
---|
424 | Each segment is specified by listing the vertices of its endpoints |
---|
425 | The vertices are Vertex objects |
---|
426 | """ |
---|
427 | assert(vertex1 != vertex2) |
---|
428 | self.vertices = [vertex1,vertex2 ] |
---|
429 | |
---|
430 | if tag is None: |
---|
431 | self.tag = self.__class__.default |
---|
432 | else: |
---|
433 | self.tag = tag #this is a string |
---|
434 | |
---|
435 | def __repr__(self): |
---|
436 | return "[%s,%s]" % (self.vertices,self.tag) |
---|
437 | |
---|
438 | |
---|
439 | def draw(self, canvas, tags,scale=1 , xoffset=0 , yoffset=0,colour='blue' ): |
---|
440 | x=[] |
---|
441 | y=[] |
---|
442 | for end in self.vertices: |
---|
443 | #end.draw(canvas,scale, xoffset, yoffset ) # draw the vertices |
---|
444 | x.append(scale*(end.x + xoffset)) |
---|
445 | y.append(-1*scale*(end.y + yoffset)) # - since for a canvas - is up |
---|
446 | |
---|
447 | return canvas.create_line(x[0], y[0], x[1], y[1], |
---|
448 | tags = tags,fill=colour) |
---|
449 | def set_tag(self,tag): |
---|
450 | self.tag = tag |
---|
451 | |
---|
452 | # Class methods |
---|
453 | def set_default_tag(cls, default): |
---|
454 | cls.default = default |
---|
455 | |
---|
456 | def get_default_tag(cls): |
---|
457 | return cls.default |
---|
458 | |
---|
459 | set_default_tag = classmethod(set_default_tag) |
---|
460 | get_default_tag = classmethod(get_default_tag) |
---|
461 | |
---|
462 | Segment.set_default_tag("") |
---|
463 | |
---|
464 | class Mesh: |
---|
465 | """ |
---|
466 | Representation of a 2D triangular mesh. |
---|
467 | User attributes describe the mesh region/segments/vertices/attributes |
---|
468 | |
---|
469 | mesh attributes describe the mesh that is produced eg triangles and vertices. |
---|
470 | |
---|
471 | The Mesh holds user information to define the |
---|
472 | """ |
---|
473 | |
---|
474 | def __repr__(self): |
---|
475 | return """ |
---|
476 | mesh Triangles: %s |
---|
477 | mesh Attribute Titles: %s |
---|
478 | mesh Segments: %s |
---|
479 | mesh Vertices: %s |
---|
480 | user Segments: %s |
---|
481 | user Vertices: %s |
---|
482 | holes: %s |
---|
483 | regions: %s""" % (self.meshTriangles, |
---|
484 | self.attributeTitles, |
---|
485 | self.meshSegments, |
---|
486 | self.meshVertices, |
---|
487 | self.getUserSegments(), |
---|
488 | self.userVertices, |
---|
489 | self.holes, |
---|
490 | self.regions) |
---|
491 | |
---|
492 | def __init__(self, |
---|
493 | userSegments=None, |
---|
494 | userVertices=None, |
---|
495 | holes=None, |
---|
496 | regions=None, |
---|
497 | geo_reference=None): |
---|
498 | self.meshTriangles=[] |
---|
499 | self.attributeTitles=[] |
---|
500 | self.meshSegments=[] |
---|
501 | self.meshVertices=[] |
---|
502 | |
---|
503 | #Peters stuff |
---|
504 | # FIXME (DSG) Sets of what? |
---|
505 | self.setID={} |
---|
506 | #a dictionary of names. |
---|
507 | #multiple sets are allowed, but the gui does not yet |
---|
508 | #support this |
---|
509 | |
---|
510 | self.setID['None']=0 |
---|
511 | #contains the names of the sets pointing to the indexes |
---|
512 | #in the list. |
---|
513 | |
---|
514 | self.sets=[[]] |
---|
515 | #Contains the lists of triangles (triangle sets) |
---|
516 | |
---|
517 | |
---|
518 | self.visualise_graph = True |
---|
519 | |
---|
520 | if userSegments is None: |
---|
521 | self.userSegments=[] |
---|
522 | else: |
---|
523 | self.userSegments=userSegments |
---|
524 | self.alphaUserSegments=[] |
---|
525 | |
---|
526 | if userVertices is None: |
---|
527 | self.userVertices=[] |
---|
528 | else: |
---|
529 | self.userVertices=userVertices |
---|
530 | |
---|
531 | if holes is None: |
---|
532 | self.holes=[] |
---|
533 | else: |
---|
534 | self.holes=holes |
---|
535 | |
---|
536 | if regions is None: |
---|
537 | self.regions=[] |
---|
538 | else: |
---|
539 | self.regions=regions |
---|
540 | |
---|
541 | if geo_reference is None: |
---|
542 | self.geo_reference = Geo_reference(DEFAULT_ZONE,0,0) |
---|
543 | else: |
---|
544 | self.geo_reference = geo_reference |
---|
545 | |
---|
546 | def __cmp__(self,other): |
---|
547 | |
---|
548 | # A dic for the initial m |
---|
549 | dic = self.Mesh2triangList() |
---|
550 | dic_mesh = self.Mesh2MeshList() |
---|
551 | for element in dic_mesh.keys(): |
---|
552 | dic[element] = dic_mesh[element] |
---|
553 | for element in dic.keys(): |
---|
554 | dic[element].sort() |
---|
555 | |
---|
556 | # A dic for the exported/imported m |
---|
557 | dic_other = other.Mesh2triangList() |
---|
558 | dic_mesh = other.Mesh2MeshList() |
---|
559 | for element in dic_mesh.keys(): |
---|
560 | dic_other[element] = dic_mesh[element] |
---|
561 | for element in dic.keys(): |
---|
562 | dic_other[element].sort() |
---|
563 | |
---|
564 | #print "dsg************************8" |
---|
565 | #print "dic ",dic |
---|
566 | #print "*******8" |
---|
567 | #print "mesh",dic_other |
---|
568 | #print "dic.__cmp__(dic_o)",dic.__cmp__(dic_other) |
---|
569 | #print "dsg************************8" |
---|
570 | |
---|
571 | return (dic.__cmp__(dic_other)) |
---|
572 | |
---|
573 | def generateMesh(self, mode = None, maxArea = None, isRegionalMaxAreas = True): |
---|
574 | """ |
---|
575 | Based on the current user vaules, holes and regions |
---|
576 | generate a new mesh |
---|
577 | mode is a string that sets conditions on the mesh generations |
---|
578 | see triangle_instructions.txt for a definition of the commands |
---|
579 | PreCondition: maxArea is a double |
---|
580 | """ |
---|
581 | #print "mode ",mode |
---|
582 | if mode == None: |
---|
583 | self.mode = "" |
---|
584 | else: |
---|
585 | self.mode = mode |
---|
586 | |
---|
587 | if not re.match('p',self.mode): |
---|
588 | self.mode += 'p' #p - read a planar straight line graph. |
---|
589 | #there must be segments to use this switch |
---|
590 | # TODO throw an aception if there aren't seg's |
---|
591 | # it's more comlex than this. eg holes |
---|
592 | if not re.match('z',self.mode): |
---|
593 | self.mode += 'z' # z - Number all items starting from zero (rather than one) |
---|
594 | if not re.match('n',self.mode): |
---|
595 | self.mode += 'n' # n - output a list of neighboring triangles |
---|
596 | if not re.match('A',self.mode): |
---|
597 | self.mode += 'A' # A - output region attribute list for triangles |
---|
598 | if not re.match('V',self.mode) and not re.match('Q',self.mode): |
---|
599 | self.mode += 'V' # V - output info about what Triangle is doing |
---|
600 | |
---|
601 | if maxArea != None: |
---|
602 | self.mode += 'a' + str(maxArea) |
---|
603 | |
---|
604 | if isRegionalMaxAreas: |
---|
605 | self.mode += 'a' |
---|
606 | |
---|
607 | meshDict = self.Mesh2triangList() |
---|
608 | #print "!@!@ This is going to triangle !@!@" |
---|
609 | #print meshDict |
---|
610 | #print "!@!@ This is going to triangle !@!@" |
---|
611 | |
---|
612 | #print "meshDict['segmenttaglist']", meshDict['segmenttaglist'] |
---|
613 | [meshDict['segmenttaglist'], |
---|
614 | segconverter] = segment_strings2ints(meshDict['segmenttaglist'], |
---|
615 | initialconversions) |
---|
616 | #print "regionlist",meshDict['regionlist'] |
---|
617 | [meshDict['regionlist'], |
---|
618 | regionconverter] = region_strings2ints(meshDict['regionlist']) |
---|
619 | #print "regionlist",meshDict['regionlist'] |
---|
620 | #print "meshDict['segmenttaglist']", meshDict['segmenttaglist' |
---|
621 | generatedMesh = triang.genMesh( |
---|
622 | meshDict['pointlist'], |
---|
623 | meshDict['segmentlist'], |
---|
624 | meshDict['holelist'], |
---|
625 | meshDict['regionlist'], |
---|
626 | meshDict['pointattributelist'], |
---|
627 | meshDict['segmenttaglist'], |
---|
628 | [], # since the trianglelist isn't used |
---|
629 | self.mode) |
---|
630 | #print "generated",generatedMesh |
---|
631 | generatedMesh['generatedsegmentmarkerlist'] = \ |
---|
632 | segment_ints2strings(generatedMesh['generatedsegmentmarkerlist'], |
---|
633 | segconverter) |
---|
634 | #print "processed gen",generatedMesh['generatedsegmentmarkerlist'] |
---|
635 | generatedMesh['generatedtriangleattributelist'] = \ |
---|
636 | region_ints2strings(generatedMesh['generatedtriangleattributelist'], |
---|
637 | regionconverter) |
---|
638 | |
---|
639 | |
---|
640 | if len(generatedMesh['generatedpointattributelist'][0])==0: |
---|
641 | self.attributeTitles = [] |
---|
642 | generatedMesh['generatedpointattributetitlelist']=self.attributeTitles |
---|
643 | |
---|
644 | self.setTriangulation(generatedMesh) |
---|
645 | |
---|
646 | def addUserPoint(self, pointType, x,y): |
---|
647 | if pointType == Vertex: |
---|
648 | point = self.addUserVertex(x,y) |
---|
649 | if pointType == Hole: |
---|
650 | point = self.addHole(x,y) |
---|
651 | if pointType == Region: |
---|
652 | point = self.addRegion(x,y) |
---|
653 | return point |
---|
654 | |
---|
655 | def addUserVertex(self, x,y): |
---|
656 | v=Vertex(x, y) |
---|
657 | self.userVertices.append(v) |
---|
658 | return v |
---|
659 | |
---|
660 | def addHole(self, x,y): |
---|
661 | h=Hole(x, y) |
---|
662 | self.holes.append(h) |
---|
663 | return h |
---|
664 | |
---|
665 | def addRegion(self, x,y): |
---|
666 | h=Region(x, y) |
---|
667 | self.regions.append(h) |
---|
668 | return h |
---|
669 | |
---|
670 | def addRegionEN(self, x,y): |
---|
671 | h=Region(x-self.geo_reference.xllcorner, |
---|
672 | y-self.geo_reference.yllcorner) |
---|
673 | self.regions.append(h) |
---|
674 | return h |
---|
675 | |
---|
676 | def getUserVertices(self): |
---|
677 | return self.userVertices |
---|
678 | |
---|
679 | def getUserSegments(self): |
---|
680 | allSegments = self.userSegments + self.alphaUserSegments |
---|
681 | #print "self.userSegments",self.userSegments |
---|
682 | #print "self.alphaUserSegments",self.alphaUserSegments |
---|
683 | #print "allSegments",allSegments |
---|
684 | return allSegments |
---|
685 | |
---|
686 | def deleteUserSegments(self,seg): |
---|
687 | if self.userSegments.count(seg) == 0: |
---|
688 | self.alphaUserSegments.remove(seg) |
---|
689 | pass |
---|
690 | else: |
---|
691 | self.userSegments.remove(seg) |
---|
692 | |
---|
693 | def clearUserSegments(self): |
---|
694 | self.userSegments = [] |
---|
695 | self.alphaUserSegments = [] |
---|
696 | |
---|
697 | def getTriangulation(self): |
---|
698 | return self.meshTriangles |
---|
699 | |
---|
700 | def getMeshVertices(self): |
---|
701 | return self.meshVertices |
---|
702 | |
---|
703 | def getMeshSegments(self): |
---|
704 | return self.meshSegments |
---|
705 | |
---|
706 | def getHoles(self): |
---|
707 | return self.holes |
---|
708 | |
---|
709 | def getRegions(self): |
---|
710 | return self.regions |
---|
711 | |
---|
712 | def isTriangulation(self): |
---|
713 | if self.meshVertices == []: |
---|
714 | return False |
---|
715 | else: |
---|
716 | return True |
---|
717 | |
---|
718 | def addUserSegment(self, v1,v2): |
---|
719 | """ |
---|
720 | PRECON: A segment between the two vertices is not already present. |
---|
721 | Check by calling isUserSegmentNew before calling this function. |
---|
722 | |
---|
723 | """ |
---|
724 | s=Segment( v1,v2) |
---|
725 | self.userSegments.append(s) |
---|
726 | return s |
---|
727 | |
---|
728 | def clearTriangulation(self): |
---|
729 | |
---|
730 | #Clear the current generated mesh values |
---|
731 | self.meshTriangles=[] |
---|
732 | self.meshSegments=[] |
---|
733 | self.meshVertices=[] |
---|
734 | |
---|
735 | def removeDuplicatedUserVertices(self): |
---|
736 | """Pre-condition: There are no user segments |
---|
737 | This function will keep the first duplicate |
---|
738 | """ |
---|
739 | assert self.getUserSegments() == [] |
---|
740 | self.userVertices, counter = self.removeDuplicatedVertices(self.userVertices) |
---|
741 | return counter |
---|
742 | |
---|
743 | def removeDuplicatedVertices(self, Vertices): |
---|
744 | """ |
---|
745 | This function will keep the first duplicate, remove all others |
---|
746 | Precondition: Each vertex has a dupindex, which is the list |
---|
747 | index. |
---|
748 | |
---|
749 | Note: this removes vertices that have the same x,y values, |
---|
750 | not duplicate instances in the Vertices list. |
---|
751 | """ |
---|
752 | remove = [] |
---|
753 | index = 0 |
---|
754 | for v in Vertices: |
---|
755 | v.dupindex = index |
---|
756 | index += 1 |
---|
757 | t = list(Vertices) |
---|
758 | t.sort(Point.cmp_xy) |
---|
759 | |
---|
760 | length = len(t) |
---|
761 | behind = 0 |
---|
762 | ahead = 1 |
---|
763 | counter = 0 |
---|
764 | while ahead < length: |
---|
765 | b = t[behind] |
---|
766 | ah = t[ahead] |
---|
767 | if (b.y == ah.y and b.x == ah.x): |
---|
768 | remove.append(ah.dupindex) |
---|
769 | behind += 1 |
---|
770 | ahead += 1 |
---|
771 | |
---|
772 | # remove the duplicate vertices |
---|
773 | remove.sort() |
---|
774 | remove.reverse() |
---|
775 | for i in remove: |
---|
776 | Vertices.pop(i) |
---|
777 | pass |
---|
778 | |
---|
779 | #Remove the attribute that this function added |
---|
780 | for v in Vertices: |
---|
781 | del v.dupindex |
---|
782 | return Vertices,counter |
---|
783 | |
---|
784 | def thinoutVertices(self, delta): |
---|
785 | """Pre-condition: There are no user segments |
---|
786 | This function will keep the first duplicate |
---|
787 | """ |
---|
788 | assert self.getUserSegments() == [] |
---|
789 | #t = self.userVertices |
---|
790 | #self.userVertices =[] |
---|
791 | boxedVertices = {} |
---|
792 | thinnedUserVertices =[] |
---|
793 | delta = round(delta,1) |
---|
794 | |
---|
795 | for v in self.userVertices : |
---|
796 | # tag is the center of the boxes |
---|
797 | tag = (round(v.x/delta,0)*delta,round(v.y/delta,0)*delta) |
---|
798 | #this creates a dict of lists of faces, indexed by tag |
---|
799 | boxedVertices.setdefault(tag,[]).append(v) |
---|
800 | |
---|
801 | for [tag,verts] in boxedVertices.items(): |
---|
802 | min = delta |
---|
803 | bestVert = None |
---|
804 | tagVert = Vertex(tag[0],tag[1]) |
---|
805 | for v in verts: |
---|
806 | dist = v.DistanceToPoint(tagVert) |
---|
807 | if (dist<min): |
---|
808 | min = dist |
---|
809 | bestVert = v |
---|
810 | thinnedUserVertices.append(bestVert) |
---|
811 | self.userVertices =thinnedUserVertices |
---|
812 | |
---|
813 | |
---|
814 | def isUserSegmentNew(self, v1,v2): |
---|
815 | identicalSegs= [x for x in self.getUserSegments() if (x.vertices[0] == v1 and x.vertices[1] == v2) or (x.vertices[0] == v2 and x.vertices[1] == v1) ] |
---|
816 | |
---|
817 | return len(identicalSegs) == 0 |
---|
818 | |
---|
819 | |
---|
820 | def deleteSegsOfVertex(self, delVertex): |
---|
821 | """ |
---|
822 | Delete this vertex and any segments that connect to it. |
---|
823 | """ |
---|
824 | #Find segments that connect to delVertex |
---|
825 | deletedSegments = [] |
---|
826 | for seg in self.getUserSegments(): |
---|
827 | if (delVertex in seg.vertices): |
---|
828 | deletedSegments.append(seg) |
---|
829 | # Delete segments that connect to delVertex |
---|
830 | for seg in deletedSegments: |
---|
831 | self.deleteUserSegments(seg) |
---|
832 | return deletedSegments |
---|
833 | |
---|
834 | |
---|
835 | def deleteMeshObject(self, MeshObject): |
---|
836 | """ |
---|
837 | Returns a list of all objects that were removed |
---|
838 | """ |
---|
839 | deletedObs = [] |
---|
840 | if isinstance(MeshObject, Vertex ): |
---|
841 | deletedObs = self.deleteSegsOfVertex(MeshObject) |
---|
842 | deletedObs.append(MeshObject) |
---|
843 | self.userVertices.remove(MeshObject) |
---|
844 | elif isinstance(MeshObject, Segment): |
---|
845 | deletedObs.append(MeshObject) |
---|
846 | self.deleteUserSegments(MeshObject) |
---|
847 | elif isinstance(MeshObject, Hole): |
---|
848 | deletedObs.append(MeshObject) |
---|
849 | self.holes.remove(MeshObject) |
---|
850 | elif isinstance(MeshObject, Region): |
---|
851 | deletedObs.append(MeshObject) |
---|
852 | self.regions.remove(MeshObject) |
---|
853 | return deletedObs |
---|
854 | |
---|
855 | def Mesh2triangList(self, userVertices=None, |
---|
856 | userSegments=None, |
---|
857 | holes=None, |
---|
858 | regions=None): |
---|
859 | """ |
---|
860 | Convert the Mesh to a dictionary of the lists needed for the triang modul; |
---|
861 | points list: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
862 | pointattributelist: [(a11,a12,...),(a21,a22),...] (Tuples of doubles) |
---|
863 | segment list: [(point1,point2),(p3,p4),...] (Tuples of integers) |
---|
864 | hole list: [(x1,y1),...](Tuples of doubles, one inside each hole region) |
---|
865 | regionlist: [ (x1,y1,tag, max area),...] (Tuple of 3-4 doubles) |
---|
866 | |
---|
867 | Note, this adds an index attribute to the user Vertex objects. |
---|
868 | |
---|
869 | Used to produce output to triangle |
---|
870 | """ |
---|
871 | if userVertices is None: |
---|
872 | userVertices = self.getUserVertices() |
---|
873 | if userSegments is None: |
---|
874 | userSegments = self.getUserSegments() |
---|
875 | if holes is None: |
---|
876 | holes = self.getHoles() |
---|
877 | if regions is None: |
---|
878 | regions = self.getRegions() |
---|
879 | |
---|
880 | meshDict = {} |
---|
881 | |
---|
882 | pointlist=[] |
---|
883 | pointattributelist=[] |
---|
884 | index = 0 |
---|
885 | for vertex in userVertices: |
---|
886 | vertex.index = index |
---|
887 | pointlist.append((vertex.x,vertex.y)) |
---|
888 | pointattributelist.append((vertex.attributes)) |
---|
889 | |
---|
890 | index += 1 |
---|
891 | meshDict['pointlist'] = pointlist |
---|
892 | meshDict['pointattributelist'] = pointattributelist |
---|
893 | |
---|
894 | segmentlist=[] |
---|
895 | segmenttaglist=[] |
---|
896 | for seg in userSegments: |
---|
897 | segmentlist.append((seg.vertices[0].index,seg.vertices[1].index)) |
---|
898 | segmenttaglist.append(seg.tag) |
---|
899 | meshDict['segmentlist'] =segmentlist |
---|
900 | meshDict['segmenttaglist'] =segmenttaglist |
---|
901 | |
---|
902 | holelist=[] |
---|
903 | for hole in holes: |
---|
904 | holelist.append((hole.x,hole.y)) |
---|
905 | meshDict['holelist'] = holelist |
---|
906 | |
---|
907 | regionlist=[] |
---|
908 | for region in regions: |
---|
909 | if (region.getMaxArea() != None): |
---|
910 | regionlist.append((region.x,region.y,region.getTag(), |
---|
911 | region.getMaxArea())) |
---|
912 | else: |
---|
913 | regionlist.append((region.x,region.y,region.getTag())) |
---|
914 | meshDict['regionlist'] = regionlist |
---|
915 | #print "*(*(" |
---|
916 | #print meshDict |
---|
917 | #print meshDict['regionlist'] |
---|
918 | #print "*(*(" |
---|
919 | return meshDict |
---|
920 | |
---|
921 | def Mesh2MeshList(self): |
---|
922 | """ |
---|
923 | Convert the Mesh to a dictionary of lists describing the triangulation variables; |
---|
924 | generated point list: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
925 | generated point attribute list: [(a11,a12,...),(a21,a22),...] (Tuples of doubles) |
---|
926 | generated point attribute title list:[A1Title, A2Title ...] (list of strings) |
---|
927 | generated segment list: [(point1,point2),(p3,p4),...] (Tuples of integers) |
---|
928 | generated segment tag list: [tag,tag,...] list of strings |
---|
929 | |
---|
930 | generated triangle list: [(p1,p2,p3), (p4,p5,p6),....] tuple of points |
---|
931 | |
---|
932 | generated triangle attribute list: [s1,s2,...] list of strings |
---|
933 | |
---|
934 | generated triangle neighbor list: [(t1,t2,t3), (t4,t5,t6),....] tuple of triangles |
---|
935 | |
---|
936 | Used to produce .tsh file |
---|
937 | """ |
---|
938 | |
---|
939 | meshDict = {} |
---|
940 | pointlist=[] |
---|
941 | pointattributelist=[] |
---|
942 | |
---|
943 | |
---|
944 | self.maxVertexIndex=0 |
---|
945 | for vertex in self.meshVertices: |
---|
946 | vertex.index = self.maxVertexIndex |
---|
947 | pointlist.append((vertex.x,vertex.y)) |
---|
948 | pointattributelist.append((vertex.attributes)) |
---|
949 | self.maxVertexIndex += 1 |
---|
950 | |
---|
951 | meshDict['generatedpointlist'] = pointlist |
---|
952 | meshDict['generatedpointattributelist'] = pointattributelist |
---|
953 | meshDict['generatedpointattributetitlelist'] = self.attributeTitles |
---|
954 | #segments |
---|
955 | segmentlist=[] |
---|
956 | segmenttaglist=[] |
---|
957 | for seg in self.meshSegments: |
---|
958 | segmentlist.append((seg.vertices[0].index,seg.vertices[1].index)) |
---|
959 | segmenttaglist.append(seg.tag) |
---|
960 | meshDict['generatedsegmentlist'] =segmentlist |
---|
961 | meshDict['generatedsegmenttaglist'] =segmenttaglist |
---|
962 | |
---|
963 | # Make sure that the indexation is correct |
---|
964 | index = 0 |
---|
965 | for tri in self.meshTriangles: |
---|
966 | tri.index = index |
---|
967 | index += 1 |
---|
968 | |
---|
969 | trianglelist = [] |
---|
970 | triangleattributelist = [] |
---|
971 | triangleneighborlist = [] |
---|
972 | for tri in self.meshTriangles: |
---|
973 | trianglelist.append((tri.vertices[0].index,tri.vertices[1].index,tri.vertices[2].index)) |
---|
974 | triangleattributelist.append([tri.attribute]) |
---|
975 | neighborlist = [-1,-1,-1] |
---|
976 | for neighbor,index in map(None,tri.neighbors, |
---|
977 | range(len(tri.neighbors))): |
---|
978 | if neighbor: |
---|
979 | neighborlist[index] = neighbor.index |
---|
980 | triangleneighborlist.append(neighborlist) |
---|
981 | |
---|
982 | meshDict['generatedtrianglelist'] = trianglelist |
---|
983 | meshDict['generatedtriangleattributelist'] = triangleattributelist |
---|
984 | meshDict['generatedtriangleneighborlist'] = triangleneighborlist |
---|
985 | |
---|
986 | #print "mesh.Mesh2MeshList*)*)" |
---|
987 | #print meshDict |
---|
988 | #print "mesh.Mesh2MeshList*)*)" |
---|
989 | |
---|
990 | return meshDict |
---|
991 | |
---|
992 | |
---|
993 | def Mesh2MeshDic(self): |
---|
994 | """ |
---|
995 | Convert the user and generated info of a mesh to a dictionary |
---|
996 | structure |
---|
997 | """ |
---|
998 | dic = self.Mesh2triangList() |
---|
999 | dic_mesh = self.Mesh2MeshList() |
---|
1000 | for element in dic_mesh.keys(): |
---|
1001 | dic[element] = dic_mesh[element] |
---|
1002 | return dic |
---|
1003 | |
---|
1004 | def setTriangulation(self, genDict): |
---|
1005 | """ |
---|
1006 | Set the mesh attributes given a dictionary of the lists |
---|
1007 | returned from the triang module |
---|
1008 | generated point list: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
1009 | generated point attribute list:[(P1att1,P1attt2, ...),(P2att1,P2attt2,...),...] |
---|
1010 | generated point attribute title list:[A1Title, A2Title ...] (list of strings) |
---|
1011 | generated segment list: [(point1,point2),(p3,p4),...] (Tuples of integers) |
---|
1012 | generated segment marker list: [S1Tag, S2Tag, ...] (list of ints) |
---|
1013 | triangle list: [(point1,point2, point3),(p5,p4, p1),...] (Tuples of integers) |
---|
1014 | triangle neighbor list: [(triangle1,triangle2, triangle3),(t5,t4, t1),...] (Tuples of integers) -1 means there's no triangle neighbor |
---|
1015 | triangle attribute list: [(T1att), (T2att), ...] (list of a list of strings) |
---|
1016 | """ |
---|
1017 | #Clear the current generated mesh values |
---|
1018 | self.meshTriangles=[] |
---|
1019 | self.attributeTitles=[] |
---|
1020 | self.meshSegments=[] |
---|
1021 | self.meshVertices=[] |
---|
1022 | |
---|
1023 | #print "mesh.setTriangulation@#@#@#" |
---|
1024 | #print genDict |
---|
1025 | #print "@#@#@#" |
---|
1026 | |
---|
1027 | self.maxVertexIndex = 0 |
---|
1028 | for point in genDict['generatedpointlist']: |
---|
1029 | v=Vertex(point[0], point[1]) |
---|
1030 | v.index = self.maxVertexIndex |
---|
1031 | self.maxVertexIndex +=1 |
---|
1032 | self.meshVertices.append(v) |
---|
1033 | |
---|
1034 | self.attributeTitles = genDict['generatedpointattributetitlelist'] |
---|
1035 | |
---|
1036 | index = 0 |
---|
1037 | for seg,marker in map(None,genDict['generatedsegmentlist'],genDict['generatedsegmentmarkerlist']): |
---|
1038 | segObject = Segment( self.meshVertices[seg[0]], |
---|
1039 | self.meshVertices[seg[1]], tag = marker ) |
---|
1040 | segObject.index = index |
---|
1041 | index +=1 |
---|
1042 | self.meshSegments.append(segObject) |
---|
1043 | |
---|
1044 | index = 0 |
---|
1045 | for triangle in genDict['generatedtrianglelist']: |
---|
1046 | tObject =Triangle( self.meshVertices[triangle[0]], |
---|
1047 | self.meshVertices[triangle[1]], |
---|
1048 | self.meshVertices[triangle[2]] ) |
---|
1049 | tObject.index = index |
---|
1050 | index +=1 |
---|
1051 | self.meshTriangles.append(tObject) |
---|
1052 | |
---|
1053 | index = 0 |
---|
1054 | for att in genDict['generatedtriangleattributelist']: |
---|
1055 | if att == []: |
---|
1056 | self.meshTriangles[index].setAttribute("") |
---|
1057 | else: |
---|
1058 | self.meshTriangles[index].setAttribute(att[0]) |
---|
1059 | index += 1 |
---|
1060 | |
---|
1061 | index = 0 |
---|
1062 | for att in genDict['generatedpointattributelist']: |
---|
1063 | if att == None: |
---|
1064 | self.meshVertices[index].setAttributes([]) |
---|
1065 | else: |
---|
1066 | self.meshVertices[index].setAttributes(att) |
---|
1067 | index += 1 |
---|
1068 | |
---|
1069 | index = 0 |
---|
1070 | for triangle in genDict['generatedtriangleneighborlist']: |
---|
1071 | # Build a list of triangle object neighbors |
---|
1072 | ObjectNeighbor = [] |
---|
1073 | for neighbor in triangle: |
---|
1074 | if ( neighbor != -1): |
---|
1075 | ObjectNeighbor.append(self.meshTriangles[neighbor]) |
---|
1076 | else: |
---|
1077 | ObjectNeighbor.append(None) |
---|
1078 | self.meshTriangles[index].setNeighbors(ObjectNeighbor[0],ObjectNeighbor[1],ObjectNeighbor[2]) |
---|
1079 | index += 1 |
---|
1080 | |
---|
1081 | |
---|
1082 | def setMesh(self, genDict): |
---|
1083 | """ |
---|
1084 | Set the user Mesh attributes given a dictionary of the lists |
---|
1085 | point list: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
1086 | point attribute list:[(P1att1,P1attt2, ...),(P2att1,P2attt2,...),...] |
---|
1087 | segment list: [(point1,point2),(p3,p4),...] (Tuples of integers) |
---|
1088 | segment tag list: [S1Tag, S2Tag, ...] (list of ints) |
---|
1089 | region list: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
1090 | region attribute list: ["","reservoir",""] list of strings |
---|
1091 | region max area list:[real, None, Real,...] list of None and reals |
---|
1092 | |
---|
1093 | mesh is an instance of a mesh object |
---|
1094 | """ |
---|
1095 | #Clear the current user mesh values |
---|
1096 | self.clearUserSegments() |
---|
1097 | self.userVertices=[] |
---|
1098 | self.Holes=[] |
---|
1099 | self.Regions=[] |
---|
1100 | |
---|
1101 | #print "mesh.setMesh@#@#@#" |
---|
1102 | #print genDict |
---|
1103 | #print "@#@#@#" |
---|
1104 | |
---|
1105 | #index = 0 |
---|
1106 | for point in genDict['pointlist']: |
---|
1107 | v=Vertex(point[0], point[1]) |
---|
1108 | #v.index = index |
---|
1109 | #index +=1 |
---|
1110 | self.userVertices.append(v) |
---|
1111 | |
---|
1112 | #index = 0 |
---|
1113 | for seg,tag in map(None,genDict['segmentlist'],genDict['segmenttaglist']): |
---|
1114 | segObject = Segment( self.userVertices[seg[0]], |
---|
1115 | self.userVertices[seg[1]], tag = tag ) |
---|
1116 | #segObject.index = index |
---|
1117 | #index +=1 |
---|
1118 | self.userSegments.append(segObject) |
---|
1119 | |
---|
1120 | # Remove the loading of attribute info. |
---|
1121 | # Have attribute info added using least_squares in pyvolution |
---|
1122 | # index = 0 |
---|
1123 | # for att in genDict['pointattributelist']: |
---|
1124 | # if att == None: |
---|
1125 | # self.userVertices[index].setAttributes([]) |
---|
1126 | # else: |
---|
1127 | # self.userVertices[index].setAttributes(att) |
---|
1128 | # index += 1 |
---|
1129 | |
---|
1130 | #index = 0 |
---|
1131 | for point in genDict['holelist']: |
---|
1132 | h=Hole(point[0], point[1]) |
---|
1133 | #h.index = index |
---|
1134 | #index +=1 |
---|
1135 | self.holes.append(h) |
---|
1136 | |
---|
1137 | #index = 0 |
---|
1138 | for reg,att,maxArea in map(None, |
---|
1139 | genDict['regionlist'], |
---|
1140 | genDict['regionattributelist'], |
---|
1141 | genDict['regionmaxarealist']): |
---|
1142 | Object = Region( reg[0], |
---|
1143 | reg[1], |
---|
1144 | tag = att, |
---|
1145 | maxArea = maxArea) |
---|
1146 | #Object.index = index |
---|
1147 | #index +=1 |
---|
1148 | self.regions.append(Object) |
---|
1149 | |
---|
1150 | def addVertsSegs(self, outlineDict): |
---|
1151 | """ |
---|
1152 | Add out-line (user Mesh) attributes given a dictionary of the lists |
---|
1153 | points: [(x1,y1),(x2,y2),...] (Tuples of doubles) |
---|
1154 | segments: [(point1,point2),(p3,p4),...] (Tuples of integers) |
---|
1155 | segment_tags: [S1Tag, S2Tag, ...] (list of strings) |
---|
1156 | |
---|
1157 | Assume the values are in Eastings and Northings, with no reference |
---|
1158 | point |
---|
1159 | """ |
---|
1160 | if not outlineDict.has_key('segment_tags'): |
---|
1161 | outlineDict['segment_tags'] = [] |
---|
1162 | for i in range(len(outlineDict['segments'])): |
---|
1163 | outlineDict['segment_tags'].append('') |
---|
1164 | #print "outlineDict['segment_tags']",outlineDict['segment_tags'] |
---|
1165 | #print "outlineDict['points']",outlineDict['points'] |
---|
1166 | #print "outlineDict['segments']",outlineDict['segments'] |
---|
1167 | |
---|
1168 | localUserVertices = [] |
---|
1169 | #index = 0 |
---|
1170 | for point in outlineDict['points']: |
---|
1171 | v=Vertex(point[0]-self.geo_reference.xllcorner, |
---|
1172 | point[1]-self.geo_reference.yllcorner) |
---|
1173 | #v.index = index |
---|
1174 | #index +=1 |
---|
1175 | self.userVertices.append(v) |
---|
1176 | localUserVertices.append(v) |
---|
1177 | |
---|
1178 | #index = 0 |
---|
1179 | for seg,seg_tag in map(None,outlineDict['segments'], |
---|
1180 | outlineDict['segment_tags']): |
---|
1181 | segObject = Segment( localUserVertices[seg[0]], |
---|
1182 | localUserVertices[seg[1]] ) |
---|
1183 | if not seg_tag == '': |
---|
1184 | segObject.set_tag(seg_tag) |
---|
1185 | #segObject.index = index |
---|
1186 | #index +=1 |
---|
1187 | self.userSegments.append(segObject) |
---|
1188 | #DSG!!! |
---|
1189 | |
---|
1190 | def TestautoSegment(self): |
---|
1191 | newsegs = [] |
---|
1192 | s1 = Segment(self.userVertices[0], |
---|
1193 | self.userVertices[1]) |
---|
1194 | s2 = Segment(self.userVertices[0], |
---|
1195 | self.userVertices[2]) |
---|
1196 | s3 = Segment(self.userVertices[2], |
---|
1197 | self.userVertices[1]) |
---|
1198 | if self.isUserSegmentNew(s1.vertices[0],s1.vertices[1]): |
---|
1199 | newsegs.append(s1) |
---|
1200 | if self.isUserSegmentNew(s2.vertices[0],s2.vertices[1]): |
---|
1201 | newsegs.append(s2) |
---|
1202 | if self.isUserSegmentNew(s3.vertices[0],s3.vertices[1]): |
---|
1203 | newsegs.append(s3) |
---|
1204 | #DSG!!! |
---|
1205 | self.userSegments.extend(newsegs) |
---|
1206 | return newsegs |
---|
1207 | |
---|
1208 | |
---|
1209 | def savePickle(self, currentName): |
---|
1210 | fd = open(currentName, 'w') |
---|
1211 | pickle.dump(self,fd) |
---|
1212 | fd.close() |
---|
1213 | |
---|
1214 | def autoSegmentHull(self): |
---|
1215 | """ |
---|
1216 | initially work by running an executable |
---|
1217 | Later compile the c code with a python wrapper. |
---|
1218 | |
---|
1219 | Precon: There must be 3 or more vertices in the userVertices structure |
---|
1220 | """ |
---|
1221 | newsegs = [] |
---|
1222 | inputfile = 'hull_in.txt' |
---|
1223 | outputfile = inputfile + '-alf' |
---|
1224 | #write vertices to file |
---|
1225 | fd = open(inputfile,'w') |
---|
1226 | for v in self.userVertices: |
---|
1227 | fd.write(str(v.x)) |
---|
1228 | fd.write(' ') |
---|
1229 | fd.write(str(v.y)) |
---|
1230 | fd.write('\n') |
---|
1231 | fd.close() |
---|
1232 | |
---|
1233 | #run hull executable |
---|
1234 | #warning need to compile hull for the current operating system |
---|
1235 | command = 'hull.exe -A -i ' + inputfile |
---|
1236 | os.system(command) |
---|
1237 | |
---|
1238 | #read results into this object |
---|
1239 | fd = open(outputfile) |
---|
1240 | lines = fd.readlines() |
---|
1241 | fd.close() |
---|
1242 | #print "(*(*(*(" |
---|
1243 | #print lines |
---|
1244 | #print "(*(*(*(" |
---|
1245 | lines.pop(0) #remove the first (title) line |
---|
1246 | for line in lines: |
---|
1247 | vertindexs = line.split() |
---|
1248 | #print 'int(vertindexs[0])', int(vertindexs[0]) |
---|
1249 | #print 'int(vertindexs[1])', int(vertindexs[1]) |
---|
1250 | #print 'self.userVertices[int(vertindexs[0])]' ,self.userVertices[int(vertindexs[0])] |
---|
1251 | #print 'self.userVertices[int(vertindexs[1])]' ,self.userVertices[int(vertindexs[1])] |
---|
1252 | v1 = self.userVertices[int(vertindexs[0])] |
---|
1253 | v2 = self.userVertices[int(vertindexs[1])] |
---|
1254 | |
---|
1255 | if self.isUserSegmentNew(v1,v2): |
---|
1256 | newseg = Segment(v1, v2) |
---|
1257 | newsegs.append(newseg) |
---|
1258 | #DSG!!! |
---|
1259 | self.userSegments.extend(newsegs) |
---|
1260 | return newsegs |
---|
1261 | def autoSegmentFilter(self,raw_boundary=True, |
---|
1262 | remove_holes=False, |
---|
1263 | smooth_indents=False, |
---|
1264 | expand_pinch=False): |
---|
1265 | """ |
---|
1266 | Precon: There is a self.shape |
---|
1267 | """ |
---|
1268 | #FIXME remove the precon. Internally check |
---|
1269 | return self._boundary2mesh(raw_boundary=raw_boundary, |
---|
1270 | remove_holes=remove_holes, |
---|
1271 | smooth_indents=smooth_indents, |
---|
1272 | expand_pinch=expand_pinch) |
---|
1273 | |
---|
1274 | |
---|
1275 | |
---|
1276 | def autoSegment(self, alpha = None, |
---|
1277 | raw_boundary=True, |
---|
1278 | remove_holes=False, |
---|
1279 | smooth_indents=False, |
---|
1280 | expand_pinch=False): |
---|
1281 | """ |
---|
1282 | Precon: There must be 3 or more vertices in the userVertices structure |
---|
1283 | """ |
---|
1284 | self._createBoundary(alpha=alpha) |
---|
1285 | return self._boundary2mesh(raw_boundary=raw_boundary, |
---|
1286 | remove_holes=remove_holes, |
---|
1287 | smooth_indents=smooth_indents, |
---|
1288 | expand_pinch=expand_pinch) |
---|
1289 | |
---|
1290 | def _createBoundary(self,alpha=None): |
---|
1291 | """ |
---|
1292 | """ |
---|
1293 | points=[] |
---|
1294 | for vertex in self.getUserVertices(): |
---|
1295 | points.append((vertex.x,vertex.y)) |
---|
1296 | self.shape = alpha_shape.alpha_shape.Alpha_Shape(points, alpha = alpha) |
---|
1297 | |
---|
1298 | |
---|
1299 | def _boundary2mesh(self, raw_boundary=True, |
---|
1300 | remove_holes=False, |
---|
1301 | smooth_indents=False, |
---|
1302 | expand_pinch=False): |
---|
1303 | """ |
---|
1304 | Precon there must be a shape object. |
---|
1305 | """ |
---|
1306 | self.shape.set_boundary_type(raw_boundary=raw_boundary, |
---|
1307 | remove_holes=remove_holes, |
---|
1308 | smooth_indents=smooth_indents, |
---|
1309 | expand_pinch=expand_pinch) |
---|
1310 | boundary_segs = self.shape.get_boundary() |
---|
1311 | #print "boundary_segs",boundary_segs |
---|
1312 | segs2delete = self.alphaUserSegments |
---|
1313 | #FIXME(DSG-DSG) this algorithm needs comments |
---|
1314 | #FIXME(DSG-DSG) can it be sped up? It's slow |
---|
1315 | new_segs = {} |
---|
1316 | #alpha_segs = [] |
---|
1317 | #user_segs = [] |
---|
1318 | for seg in boundary_segs: |
---|
1319 | v1 = self.userVertices[int(seg[0])] |
---|
1320 | v2 = self.userVertices[int(seg[1])] |
---|
1321 | boundary_seg = Segment(v1, v2) |
---|
1322 | new_segs[(v1,v2)] = boundary_seg |
---|
1323 | |
---|
1324 | for user_seg in self.userSegments: |
---|
1325 | if new_segs.has_key((user_seg.vertices[0], |
---|
1326 | user_seg.vertices[1])): |
---|
1327 | del new_segs[user_seg.vertices[0], |
---|
1328 | user_seg.vertices[1]] |
---|
1329 | elif new_segs.has_key((user_seg.vertices[1], |
---|
1330 | user_seg.vertices[0])): |
---|
1331 | del new_segs[user_seg.vertices[1], |
---|
1332 | user_seg.vertices[0]] |
---|
1333 | |
---|
1334 | optimum_alpha = self.shape.get_alpha() |
---|
1335 | alpha_segs_no_user_segs = new_segs.values() |
---|
1336 | self.alphaUserSegments = alpha_segs_no_user_segs |
---|
1337 | return alpha_segs_no_user_segs, segs2delete, optimum_alpha |
---|
1338 | |
---|
1339 | def _boundary2mesh_old(self, raw_boundary=True, |
---|
1340 | remove_holes=False, |
---|
1341 | smooth_indents=False, |
---|
1342 | expand_pinch=False): |
---|
1343 | """ |
---|
1344 | Precon there must be a shape object. |
---|
1345 | """ |
---|
1346 | self.shape.set_boundary_type(raw_boundary=raw_boundary, |
---|
1347 | remove_holes=remove_holes, |
---|
1348 | smooth_indents=smooth_indents, |
---|
1349 | expand_pinch=expand_pinch) |
---|
1350 | boundary_segs = self.shape.get_boundary() |
---|
1351 | #print "boundary_segs",boundary_segs |
---|
1352 | segs2delete = self.alphaUserSegments |
---|
1353 | |
---|
1354 | #FIXME(DSG-DSG) this algorithm needs comments |
---|
1355 | #FIXME(DSG-DSG) can it be sped up? It's slow |
---|
1356 | new_segs = [] |
---|
1357 | alpha_segs = [] |
---|
1358 | user_segs = [] |
---|
1359 | for seg in boundary_segs: |
---|
1360 | v1 = self.userVertices[int(seg[0])] |
---|
1361 | v2 = self.userVertices[int(seg[1])] |
---|
1362 | alpha_seg = self.representedAlphaUserSegment(v1, v2) |
---|
1363 | user_seg = self.representedUserSegment(v1, v2) |
---|
1364 | #DSG!!! |
---|
1365 | assert not(not (alpha_seg == None) and not (user_seg == None)) |
---|
1366 | if not alpha_seg == None: |
---|
1367 | alpha_segs.append(alpha_seg) |
---|
1368 | elif not user_seg == None: |
---|
1369 | user_segs.append(user_seg) |
---|
1370 | else: |
---|
1371 | unique_seg = Segment(v1, v2) |
---|
1372 | new_segs.append(unique_seg) |
---|
1373 | |
---|
1374 | for seg in alpha_segs: |
---|
1375 | try: |
---|
1376 | segs2delete.remove(seg) |
---|
1377 | except: |
---|
1378 | pass |
---|
1379 | |
---|
1380 | self.alphaUserSegments = [] |
---|
1381 | self.alphaUserSegments.extend(new_segs) |
---|
1382 | self.alphaUserSegments.extend(alpha_segs) |
---|
1383 | |
---|
1384 | optimum_alpha = self.shape.get_alpha() |
---|
1385 | # need to draw newsegs |
---|
1386 | return new_segs, segs2delete, optimum_alpha |
---|
1387 | |
---|
1388 | def representedAlphaUserSegment(self, v1,v2): |
---|
1389 | identicalSegs= [x for x in self.alphaUserSegments if (x.vertices[0] == v1 and x.vertices[1] == v2) or (x.vertices[0] == v2 and x.vertices[1] == v1) ] |
---|
1390 | |
---|
1391 | if identicalSegs == []: |
---|
1392 | return None |
---|
1393 | else: |
---|
1394 | # Only return the first one. |
---|
1395 | return identicalSegs[0] |
---|
1396 | |
---|
1397 | def representedUserSegment(self, v1,v2): |
---|
1398 | identicalSegs= [x for x in self.userSegments if (x.vertices[0] == v1 and x.vertices[1] == v2) or (x.vertices[0] == v2 and x.vertices[1] == v1) ] |
---|
1399 | |
---|
1400 | if identicalSegs == []: |
---|
1401 | return None |
---|
1402 | else: |
---|
1403 | # Only return the first one. |
---|
1404 | return identicalSegs[0] |
---|
1405 | |
---|
1406 | def joinVertices(self): |
---|
1407 | """ |
---|
1408 | Return list of segments connecting all userVertices |
---|
1409 | in the order they were given |
---|
1410 | |
---|
1411 | Precon: There must be 3 or more vertices in the userVertices structure |
---|
1412 | """ |
---|
1413 | |
---|
1414 | newsegs = [] |
---|
1415 | |
---|
1416 | v1 = self.userVertices[0] |
---|
1417 | for v2 in self.userVertices[1:]: |
---|
1418 | if self.isUserSegmentNew(v1,v2): |
---|
1419 | newseg = Segment(v1, v2) |
---|
1420 | newsegs.append(newseg) |
---|
1421 | v1 = v2 |
---|
1422 | |
---|
1423 | #Connect last point to the first |
---|
1424 | v2 = self.userVertices[0] |
---|
1425 | if self.isUserSegmentNew(v1,v2): |
---|
1426 | newseg = Segment(v1, v2) |
---|
1427 | newsegs.append(newseg) |
---|
1428 | |
---|
1429 | |
---|
1430 | #Update list of user segments |
---|
1431 | #DSG!!! |
---|
1432 | self.userSegments.extend(newsegs) |
---|
1433 | return newsegs |
---|
1434 | |
---|
1435 | def normaliseMesh(self,scale, offset, height_scale): |
---|
1436 | [xmin, ymin, xmax, ymax] = self.boxsize() |
---|
1437 | [attmin0, attmax0] = self.maxMinVertAtt(0) |
---|
1438 | #print "[attmin0, attmax0]" ,[attmin0, attmax0] |
---|
1439 | [attmin1, attmax1] = self.maxMinVertAtt(1) |
---|
1440 | #print [xmin, ymin, xmax, ymax] |
---|
1441 | xrange = xmax - xmin |
---|
1442 | yrange = ymax - ymin |
---|
1443 | if xrange > yrange: |
---|
1444 | min,max = xmin, xmax |
---|
1445 | else: |
---|
1446 | min,max = ymin, ymax |
---|
1447 | |
---|
1448 | for obj in self.getUserVertices(): |
---|
1449 | obj.x = (obj.x - xmin)/(max- min)*scale + offset |
---|
1450 | obj.y = (obj.y - ymin)/(max- min)*scale + offset |
---|
1451 | if len(obj.attributes) > 0 and attmin0 != attmax0: |
---|
1452 | obj.attributes[0] = (obj.attributes[0]-attmin0)/ \ |
---|
1453 | (attmax0-attmin0)*height_scale |
---|
1454 | if len(obj.attributes) > 1 and attmin1 != attmax1: |
---|
1455 | obj.attributes[1] = (obj.attributes[1]-attmin1)/ \ |
---|
1456 | (attmax1-attmin1)*height_scale |
---|
1457 | |
---|
1458 | for obj in self.getMeshVertices(): |
---|
1459 | obj.x = (obj.x - xmin)/(max- min)*scale + offset |
---|
1460 | obj.y = (obj.y - ymin)/(max- min)*scale + offset |
---|
1461 | if len(obj.attributes) > 0 and attmin0 != attmax0: |
---|
1462 | obj.attributes[0] = (obj.attributes[0]-attmin0)/ \ |
---|
1463 | (attmax0-attmin0)*height_scale |
---|
1464 | if len(obj.attributes) > 1 and attmin1 != attmax1: |
---|
1465 | obj.attributes[1] = (obj.attributes[1]-attmin1)/ \ |
---|
1466 | (attmax1-attmin1)*height_scale |
---|
1467 | |
---|
1468 | for obj in self.getHoles(): |
---|
1469 | obj.x = (obj.x - xmin)/(max- min)*scale + offset |
---|
1470 | obj.y = (obj.y - ymin)/(max- min)*scale + offset |
---|
1471 | for obj in self.getRegions(): |
---|
1472 | obj.x = (obj.x - xmin)/(max- min)*scale + offset |
---|
1473 | obj.y = (obj.y - ymin)/(max- min)*scale + offset |
---|
1474 | [xmin, ymin, xmax, ymax] = self.boxsize() |
---|
1475 | #print [xmin, ymin, xmax, ymax] |
---|
1476 | |
---|
1477 | def boxsizeVerts(self): |
---|
1478 | """ |
---|
1479 | Returns a list of verts denoting a box or triangle that contains verts on the xmin, ymin, xmax and ymax axis. |
---|
1480 | Structure: list of verts |
---|
1481 | """ |
---|
1482 | # FIXME dsg!!! large is a hack |
---|
1483 | #You want the kinds package, part of Numeric: |
---|
1484 | #In [2]: import kinds |
---|
1485 | |
---|
1486 | #In [3]: kinds.default_float_kind.M |
---|
1487 | #kinds.default_float_kind.MAX kinds.default_float_kind.MIN |
---|
1488 | #kinds.default_float_kind.MAX_10_EXP kinds.default_float_kind.MIN_10_EXP |
---|
1489 | #kinds.default_float_kind.MAX_EXP kinds.default_float_kind.MIN_EXP |
---|
1490 | |
---|
1491 | #In [3]: kinds.default_float_kind.MIN |
---|
1492 | #Out[3]: 2.2250738585072014e-308 |
---|
1493 | |
---|
1494 | large = 1e100 |
---|
1495 | xmin= large |
---|
1496 | xmax=-large |
---|
1497 | ymin= large |
---|
1498 | ymax=-large |
---|
1499 | for vertex in self.userVertices: |
---|
1500 | if vertex.x < xmin: |
---|
1501 | xmin = vertex.x |
---|
1502 | xminVert = vertex |
---|
1503 | if vertex.x > xmax: |
---|
1504 | xmax = vertex.x |
---|
1505 | xmaxVert = vertex |
---|
1506 | |
---|
1507 | if vertex.y < ymin: |
---|
1508 | ymin = vertex.y |
---|
1509 | yminVert = vertex |
---|
1510 | if vertex.y > ymax: |
---|
1511 | ymax = vertex.y |
---|
1512 | ymaxVert = vertex |
---|
1513 | verts, count = self.removeDuplicatedVertices([xminVert,xmaxVert,yminVert,ymaxVert]) |
---|
1514 | |
---|
1515 | return verts |
---|
1516 | |
---|
1517 | def boxsize(self): |
---|
1518 | """ |
---|
1519 | Returns a list denoting a box that contains the entire structure of vertices |
---|
1520 | Structure: [xmin, ymin, xmax, ymax] |
---|
1521 | """ |
---|
1522 | # FIXME dsg!!! large is a hack |
---|
1523 | #You want the kinds package, part of Numeric: |
---|
1524 | #In [2]: import kinds |
---|
1525 | |
---|
1526 | #In [3]: kinds.default_float_kind.M |
---|
1527 | #kinds.default_float_kind.MAX kinds.default_float_kind.MIN |
---|
1528 | #kinds.default_float_kind.MAX_10_EXP kinds.default_fltesting oat_kind.MIN_10_EXP |
---|
1529 | #kinds.default_float_kind.MAX_EXP kinds.default_float_kind.MIN_EXP |
---|
1530 | |
---|
1531 | #In [3]: kinds.default_float_kind.MIN |
---|
1532 | #Out[3]: 2.2250738585072014e-308 |
---|
1533 | |
---|
1534 | large = 1e100 |
---|
1535 | xmin= large |
---|
1536 | xmax=-large |
---|
1537 | ymin= large |
---|
1538 | ymax=-large |
---|
1539 | for vertex in self.userVertices: |
---|
1540 | if vertex.x < xmin: |
---|
1541 | xmin = vertex.x |
---|
1542 | if vertex.x > xmax: |
---|
1543 | xmax = vertex.x |
---|
1544 | |
---|
1545 | if vertex.y < ymin: |
---|
1546 | ymin = vertex.y |
---|
1547 | if vertex.y > ymax: |
---|
1548 | ymax = vertex.y |
---|
1549 | return [xmin, ymin, xmax, ymax] |
---|
1550 | |
---|
1551 | def maxMinVertAtt(self, iatt): |
---|
1552 | """ |
---|
1553 | Returns a list denoting a box that contains the entire structure of vertices |
---|
1554 | Structure: [xmin, ymin, xmax, ymax] |
---|
1555 | """ |
---|
1556 | # FIXME dsg!!! large is a hacktesting |
---|
1557 | #You want the kinds package, part of Numeric: |
---|
1558 | #In [2]: import kinds |
---|
1559 | |
---|
1560 | #In [3]: kinds.default_float_kind.M |
---|
1561 | #kinds.default_float_kind.MAX kinds.default_float_kind.MIN |
---|
1562 | #kinds.default_float_kind.MAX_10_EXP kinds.default_float_kind.MIN_10_EXP |
---|
1563 | #kinds.default_float_kind.MAX_EXP kinds.default_float_kind.MIN_EXP |
---|
1564 | |
---|
1565 | #In [3]: kinds.default_float_kind.MIN |
---|
1566 | #Out[3]: 2.2250738585072014e-308 |
---|
1567 | |
---|
1568 | large = 1e100 |
---|
1569 | min= large |
---|
1570 | max=-large |
---|
1571 | for vertex in self.userVertices: |
---|
1572 | if len(vertex.attributes) > iatt: |
---|
1573 | if vertex.attributes[iatt] < min: |
---|
1574 | min = vertex.attributes[iatt] |
---|
1575 | if vertex.attributes[iatt] > max: |
---|
1576 | max = vertex.attributes[iatt] |
---|
1577 | for vertex in self.meshVertices: |
---|
1578 | if len(vertex.attributes) > iatt: |
---|
1579 | if vertex.attributes[iatt] < min: |
---|
1580 | min = vertex.attributes[iatt] |
---|
1581 | if vertex.attributes[iatt] > max: |
---|
1582 | max = vertex.attributes[iatt] |
---|
1583 | return [min, max] |
---|
1584 | |
---|
1585 | def scaleoffset(self, WIDTH, HEIGHT): |
---|
1586 | """ |
---|
1587 | Returns a list denoting the scale and offset terms that need to be |
---|
1588 | applied when converting mesh co-ordinates onto grid co-ordinates |
---|
1589 | Structure: [scale, xoffset, yoffset] |
---|
1590 | """ |
---|
1591 | OFFSET = 0.05*min([WIDTH, HEIGHT]) |
---|
1592 | [xmin, ymin, xmax, ymax] = self.boxsize() |
---|
1593 | SCALE = min([0.9*WIDTH, 0.9*HEIGHT])/max([xmax-xmin, ymax-ymin]) |
---|
1594 | |
---|
1595 | if SCALE*xmin < OFFSET: |
---|
1596 | xoffset = abs(SCALE*xmin) + OFFSET |
---|
1597 | if SCALE*xmax > WIDTH - OFFSET: |
---|
1598 | xoffset= -(SCALE*xmax - WIDTH + OFFSET) |
---|
1599 | if SCALE*ymin < OFFSET: |
---|
1600 | b = abs(SCALE*ymin)+OFFSET |
---|
1601 | if SCALE*ymax > HEIGHT-OFFSET: |
---|
1602 | b = -(SCALE*ymax - HEIGHT + OFFSET) |
---|
1603 | yoffset = HEIGHT - b |
---|
1604 | return [SCALE, xoffset, yoffset] |
---|
1605 | |
---|
1606 | def plotMeshTriangle(self,tag = 0,WIDTH = 400,HEIGHT = 400): |
---|
1607 | """ |
---|
1608 | Plots all node connections. |
---|
1609 | tag = 0 (no node numbers), tag = 1 (node numbers) |
---|
1610 | """ |
---|
1611 | |
---|
1612 | try: |
---|
1613 | from Tkinter import Tk, Frame, Button, Canvas, BOTTOM, Label |
---|
1614 | |
---|
1615 | [SCALE, xoffset, yoffset] = self.scaleoffset( WIDTH, HEIGHT) |
---|
1616 | |
---|
1617 | root = Tk() |
---|
1618 | frame = Frame(root) |
---|
1619 | frame.pack() |
---|
1620 | button = Button(frame, text="OK", fg="red", command=frame.quit) |
---|
1621 | button.pack(side=BOTTOM) |
---|
1622 | canvas = Canvas(frame,bg="white", width=WIDTH, height=HEIGHT) |
---|
1623 | canvas.pack() |
---|
1624 | text = Label(frame, width=20, height=10, text='triangle mesh') |
---|
1625 | text.pack() |
---|
1626 | |
---|
1627 | #print self.meshTriangles |
---|
1628 | for triangle in self.meshTriangles: |
---|
1629 | triangle.draw(canvas,1, |
---|
1630 | scale = SCALE, |
---|
1631 | xoffset = xoffset, |
---|
1632 | yoffset = yoffset ) |
---|
1633 | |
---|
1634 | root.mainloop() |
---|
1635 | |
---|
1636 | except: |
---|
1637 | print "Unexpected error:", sys.exc_info()[0] |
---|
1638 | raise |
---|
1639 | |
---|
1640 | #print """ |
---|
1641 | #node::plot Failed. |
---|
1642 | #Most probably, the Tkinter module is not available. |
---|
1643 | #""" |
---|
1644 | |
---|
1645 | def plotUserSegments(self,tag = 0,WIDTH = 400,HEIGHT = 400): |
---|
1646 | """ |
---|
1647 | Plots all node connections. |
---|
1648 | tag = 0 (no node numbers), tag = 1 (node numbers) |
---|
1649 | """ |
---|
1650 | |
---|
1651 | try: |
---|
1652 | from Tkinter import Tk, Frame, Button, Canvas, BOTTOM, Label |
---|
1653 | |
---|
1654 | [SCALE, xoffset, yoffset] = self.scaleoffset( WIDTH, HEIGHT) |
---|
1655 | |
---|
1656 | root = Tk() |
---|
1657 | frame = Frame(root) |
---|
1658 | frame.pack() |
---|
1659 | button = Button(frame, text="OK", fg="red", command=frame.quit) |
---|
1660 | button.pack(side=BOTTOM) |
---|
1661 | canvas = Canvas(frame, bg="white", width=WIDTH, height=HEIGHT) |
---|
1662 | canvas.pack() |
---|
1663 | text = Label(frame, width=20, height=10, text='user segments') |
---|
1664 | text.pack() |
---|
1665 | |
---|
1666 | for segment in self.getUserSegments(): |
---|
1667 | segment.draw(canvas,SCALE, xoffset, yoffset ) |
---|
1668 | |
---|
1669 | root.mainloop() |
---|
1670 | |
---|
1671 | except: |
---|
1672 | print "Unexpected error:", sys.exc_info()[0] |
---|
1673 | raise |
---|
1674 | |
---|
1675 | #print """ |
---|
1676 | #node::plot Failed. |
---|
1677 | #Most probably, the Tkinter module is not available. |
---|
1678 | #""" |
---|
1679 | |
---|
1680 | |
---|
1681 | def exportASCIIobj(self,ofile): |
---|
1682 | """ |
---|
1683 | export a file, ofile, with the format |
---|
1684 | lines: v <x> <y> <first attribute> |
---|
1685 | f <vertex #> <vertex #> <vertex #> (of the triangles) |
---|
1686 | """ |
---|
1687 | fd = open(ofile,'w') |
---|
1688 | self.writeASCIIobj(fd) |
---|
1689 | fd.close() |
---|
1690 | |
---|
1691 | |
---|
1692 | def writeASCIIobj(self,fd): |
---|
1693 | fd.write(" # Triangulation as an obj file\n") |
---|
1694 | numVert = str(len(self.meshVertices)) |
---|
1695 | |
---|
1696 | index1 = 1 |
---|
1697 | for vert in self.meshVertices: |
---|
1698 | vert.index1 = index1 |
---|
1699 | index1 += 1 |
---|
1700 | |
---|
1701 | fd.write("v " |
---|
1702 | + str(vert.x) + " " |
---|
1703 | + str(vert.y) + " " |
---|
1704 | + str(vert.attributes[0]) + "\n") |
---|
1705 | |
---|
1706 | for tri in self.meshTriangles: |
---|
1707 | fd.write("f " |
---|
1708 | + str(tri.vertices[0].index1) + " " |
---|
1709 | + str(tri.vertices[1].index1) + " " |
---|
1710 | + str(tri.vertices[2].index1) + "\n") |
---|
1711 | |
---|
1712 | def exportASCIIsegmentoutlinefile(self,ofile): |
---|
1713 | """Write the boundary user mesh info, eg |
---|
1714 | vertices that are connected to segments, |
---|
1715 | segments |
---|
1716 | """ |
---|
1717 | |
---|
1718 | verts = {} |
---|
1719 | for seg in self.getUserSegments(): |
---|
1720 | verts[seg.vertices[0]] = seg.vertices[0] |
---|
1721 | verts[seg.vertices[1]] = seg.vertices[1] |
---|
1722 | meshDict = self.Mesh2IOOutlineDict(userVertices=verts.values()) |
---|
1723 | load_mesh.loadASCII.export_mesh_file(ofile,meshDict) |
---|
1724 | |
---|
1725 | # exportASCIImeshfile - this function is used |
---|
1726 | def export_mesh_file(self,ofile): |
---|
1727 | """ |
---|
1728 | export a file, ofile, with the format |
---|
1729 | """ |
---|
1730 | |
---|
1731 | dict = self.Mesh2IODict() |
---|
1732 | load_mesh.loadASCII.export_mesh_file(ofile,dict) |
---|
1733 | |
---|
1734 | def exportPointsFile(self,ofile): |
---|
1735 | """ |
---|
1736 | export a points (.xya or .pts) file, ofile. |
---|
1737 | |
---|
1738 | """ |
---|
1739 | |
---|
1740 | mesh_dict = self.Mesh2IODict() |
---|
1741 | point_dict = {} |
---|
1742 | point_dict['attributelist'] = {} #this will need to be expanded.. |
---|
1743 | # if attributes are brought back in. |
---|
1744 | point_dict['geo_reference'] = self.geo_reference |
---|
1745 | if mesh_dict['vertices'] == []: |
---|
1746 | point_dict['pointlist'] = mesh_dict['points'] |
---|
1747 | else: |
---|
1748 | point_dict['pointlist'] = mesh_dict['vertices'] |
---|
1749 | |
---|
1750 | load_mesh.loadASCII.export_points_file(ofile,point_dict) |
---|
1751 | |
---|
1752 | |
---|
1753 | ########### IO CONVERTERS ################## |
---|
1754 | """ |
---|
1755 | The dict fromat for IO with .tsh files is; |
---|
1756 | (the triangulation) |
---|
1757 | vertices: [[x1,y1],[x2,y2],...] (lists of doubles) |
---|
1758 | vertex_attributes: [[a11,a12,...],[a21,a22],...] (lists of doubles) |
---|
1759 | vertex_attribute_titles:[A1Title, A2Title ...] (A list of strings) |
---|
1760 | segments: [[v1,v2],[v3,v4],...] (lists of integers) |
---|
1761 | segment_tags : [tag,tag,...] list of strings |
---|
1762 | triangles : [(v1,v2,v3), (v4,v5,v6),....] lists of points |
---|
1763 | triangle tags: [s1,s2,...] A list of strings |
---|
1764 | triangle neighbors: [[t1,t2,t3], [t4,t5,t6],..] lists of triangles |
---|
1765 | |
---|
1766 | (the outline) |
---|
1767 | points: [[x1,y1],[x2,y2],...] (lists of doubles) |
---|
1768 | point_attributes: [[a11,a12,...],[a21,a22],...] (lists of doubles) |
---|
1769 | outline_segments: [[point1,point2],[p3,p4],...] (lists of integers) |
---|
1770 | outline_segment_tags : [tag1,tag2,...] list of strings |
---|
1771 | holes : [[x1,y1],...](List of doubles, one inside each hole region) |
---|
1772 | regions : [ [x1,y1],...] (List of 4 doubles) |
---|
1773 | region_tags : [tag1,tag2,...] (list of strings) |
---|
1774 | region_max_areas: [ma1,ma2,...] (A list of doubles) |
---|
1775 | {Convension: A -ve max area means no max area} |
---|
1776 | |
---|
1777 | """ |
---|
1778 | |
---|
1779 | |
---|
1780 | |
---|
1781 | def Mesh2IODict(self): |
---|
1782 | """ |
---|
1783 | Convert the triangulation and outline info of a mesh to a dictionary |
---|
1784 | structure |
---|
1785 | """ |
---|
1786 | dict = self.Mesh2IOTriangulationDict() |
---|
1787 | dict_mesh = self.Mesh2IOOutlineDict() |
---|
1788 | for element in dict_mesh.keys(): |
---|
1789 | dict[element] = dict_mesh[element] |
---|
1790 | |
---|
1791 | # add the geo reference |
---|
1792 | dict['geo_reference'] = self.geo_reference |
---|
1793 | return dict |
---|
1794 | |
---|
1795 | def Mesh2IOTriangulationDict(self): |
---|
1796 | """ |
---|
1797 | Convert the Mesh to a dictionary of lists describing the |
---|
1798 | triangulation variables; |
---|
1799 | |
---|
1800 | Used to produce .tsh file |
---|
1801 | """ |
---|
1802 | |
---|
1803 | meshDict = {} |
---|
1804 | vertices=[] |
---|
1805 | vertex_attributes=[] |
---|
1806 | |
---|
1807 | self.maxVertexIndex=0 |
---|
1808 | for vertex in self.meshVertices: |
---|
1809 | vertex.index = self.maxVertexIndex |
---|
1810 | vertices.append([vertex.x,vertex.y]) |
---|
1811 | vertex_attributes.append(vertex.attributes) |
---|
1812 | self.maxVertexIndex += 1 |
---|
1813 | |
---|
1814 | meshDict['vertices'] = vertices |
---|
1815 | meshDict['vertex_attributes'] = vertex_attributes |
---|
1816 | meshDict['vertex_attribute_titles'] = self.attributeTitles |
---|
1817 | #segments |
---|
1818 | segments=[] |
---|
1819 | segment_tags=[] |
---|
1820 | for seg in self.meshSegments: |
---|
1821 | segments.append([seg.vertices[0].index,seg.vertices[1].index]) |
---|
1822 | segment_tags.append(seg.tag) |
---|
1823 | meshDict['segments'] =segments |
---|
1824 | meshDict['segment_tags'] =segment_tags |
---|
1825 | |
---|
1826 | # Make sure that the indexation is correct |
---|
1827 | index = 0 |
---|
1828 | for tri in self.meshTriangles: |
---|
1829 | tri.index = index |
---|
1830 | index += 1 |
---|
1831 | |
---|
1832 | triangles = [] |
---|
1833 | triangle_tags = [] |
---|
1834 | triangle_neighbors = [] |
---|
1835 | for tri in self.meshTriangles: |
---|
1836 | triangles.append([tri.vertices[0].index,tri.vertices[1].index,tri.vertices[2].index]) |
---|
1837 | triangle_tags.append(tri.attribute) |
---|
1838 | neighborlist = [-1,-1,-1] |
---|
1839 | for neighbor,index in map(None,tri.neighbors, |
---|
1840 | range(len(tri.neighbors))): |
---|
1841 | if neighbor: |
---|
1842 | neighborlist[index] = neighbor.index |
---|
1843 | triangle_neighbors.append(neighborlist) |
---|
1844 | |
---|
1845 | meshDict['triangles'] = triangles |
---|
1846 | meshDict['triangle_tags'] = triangle_tags |
---|
1847 | meshDict['triangle_neighbors'] = triangle_neighbors |
---|
1848 | |
---|
1849 | #print "mesh.Mesh2IOTriangulationDict*)*)" |
---|
1850 | #print meshDict |
---|
1851 | #print "mesh.Mesh2IOTriangulationDict*)*)" |
---|
1852 | |
---|
1853 | return meshDict |
---|
1854 | |
---|
1855 | |
---|
1856 | def Mesh2IOOutlineDict(self, userVertices=None, |
---|
1857 | userSegments=None, |
---|
1858 | holes=None, |
---|
1859 | regions=None): |
---|
1860 | """ |
---|
1861 | Convert the mesh outline to a dictionary of the lists needed for the |
---|
1862 | triang module; |
---|
1863 | |
---|
1864 | Note, this adds an index attribute to the user Vertex objects. |
---|
1865 | |
---|
1866 | Used to produce .tsh file and output to triangle |
---|
1867 | """ |
---|
1868 | if userVertices is None: |
---|
1869 | userVertices = self.getUserVertices() |
---|
1870 | if userSegments is None: |
---|
1871 | userSegments = self.getUserSegments() |
---|
1872 | if holes is None: |
---|
1873 | holes = self.getHoles() |
---|
1874 | if regions is None: |
---|
1875 | regions = self.getRegions() |
---|
1876 | |
---|
1877 | meshDict = {} |
---|
1878 | #print "userVertices",userVertices |
---|
1879 | #print "userSegments",userSegments |
---|
1880 | pointlist=[] |
---|
1881 | pointattributelist=[] |
---|
1882 | index = 0 |
---|
1883 | for vertex in userVertices: |
---|
1884 | vertex.index = index |
---|
1885 | pointlist.append([vertex.x,vertex.y]) |
---|
1886 | pointattributelist.append(vertex.attributes) |
---|
1887 | |
---|
1888 | index += 1 |
---|
1889 | meshDict['points'] = pointlist |
---|
1890 | meshDict['point_attributes'] = pointattributelist |
---|
1891 | |
---|
1892 | segmentlist=[] |
---|
1893 | segmenttaglist=[] |
---|
1894 | for seg in userSegments: |
---|
1895 | segmentlist.append([seg.vertices[0].index,seg.vertices[1].index]) |
---|
1896 | segmenttaglist.append(seg.tag) |
---|
1897 | meshDict['outline_segments'] =segmentlist |
---|
1898 | meshDict['outline_segment_tags'] =segmenttaglist |
---|
1899 | |
---|
1900 | holelist=[] |
---|
1901 | for hole in holes: |
---|
1902 | holelist.append([hole.x,hole.y]) |
---|
1903 | meshDict['holes'] = holelist |
---|
1904 | |
---|
1905 | regionlist=[] |
---|
1906 | regiontaglist = [] |
---|
1907 | regionmaxarealist = [] |
---|
1908 | for region in regions: |
---|
1909 | regionlist.append([region.x,region.y]) |
---|
1910 | regiontaglist.append(region.getTag()) |
---|
1911 | |
---|
1912 | if (region.getMaxArea() != None): |
---|
1913 | regionmaxarealist.append(region.getMaxArea()) |
---|
1914 | else: |
---|
1915 | regionmaxarealist.append( load_mesh.loadASCII.NOMAXAREA) |
---|
1916 | meshDict['regions'] = regionlist |
---|
1917 | meshDict['region_tags'] = regiontaglist |
---|
1918 | meshDict['region_max_areas'] = regionmaxarealist |
---|
1919 | #print "*(*(" |
---|
1920 | #print meshDict |
---|
1921 | #print meshDict['regionlist'] |
---|
1922 | #print "*(*(" |
---|
1923 | return meshDict |
---|
1924 | |
---|
1925 | def IOTriangulation2Mesh(self, genDict): |
---|
1926 | """ |
---|
1927 | Set the mesh attributes given an tsh IO dictionary |
---|
1928 | """ |
---|
1929 | #Clear the current generated mesh values |
---|
1930 | self.meshTriangles=[] |
---|
1931 | self.attributeTitles=[] |
---|
1932 | self.meshSegments=[] |
---|
1933 | self.meshVertices=[] |
---|
1934 | |
---|
1935 | #print "mesh.setTriangulation@#@#@#" |
---|
1936 | #print genDict |
---|
1937 | #print "@#@#@#" |
---|
1938 | |
---|
1939 | self.maxVertexIndex = 0 |
---|
1940 | for point in genDict['vertices']: |
---|
1941 | v=Vertex(point[0], point[1]) |
---|
1942 | v.index = self.maxVertexIndex |
---|
1943 | self.maxVertexIndex +=1 |
---|
1944 | self.meshVertices.append(v) |
---|
1945 | |
---|
1946 | self.attributeTitles = genDict['vertex_attribute_titles'] |
---|
1947 | |
---|
1948 | index = 0 |
---|
1949 | for seg,tag in map(None,genDict['segments'],genDict['segment_tags']): |
---|
1950 | segObject = Segment( self.meshVertices[seg[0]], |
---|
1951 | self.meshVertices[seg[1]], tag = tag ) |
---|
1952 | segObject.index = index |
---|
1953 | index +=1 |
---|
1954 | self.meshSegments.append(segObject) |
---|
1955 | |
---|
1956 | index = 0 |
---|
1957 | for triangle in genDict['triangles']: |
---|
1958 | tObject =Triangle( self.meshVertices[triangle[0]], |
---|
1959 | self.meshVertices[triangle[1]], |
---|
1960 | self.meshVertices[triangle[2]] ) |
---|
1961 | tObject.index = index |
---|
1962 | index +=1 |
---|
1963 | self.meshTriangles.append(tObject) |
---|
1964 | |
---|
1965 | index = 0 |
---|
1966 | for att in genDict['triangle_tags']: |
---|
1967 | if att == []: |
---|
1968 | self.meshTriangles[index].setAttribute("") |
---|
1969 | else: |
---|
1970 | self.meshTriangles[index].setAttribute(att) |
---|
1971 | index += 1 |
---|
1972 | |
---|
1973 | index = 0 |
---|
1974 | for att in genDict['vertex_attributes']: |
---|
1975 | if att == None: |
---|
1976 | self.meshVertices[index].setAttributes([]) |
---|
1977 | else: |
---|
1978 | self.meshVertices[index].setAttributes(att) |
---|
1979 | index += 1 |
---|
1980 | |
---|
1981 | index = 0 |
---|
1982 | for triangle in genDict['triangle_neighbors']: |
---|
1983 | # Build a list of triangle object neighbors |
---|
1984 | ObjectNeighbor = [] |
---|
1985 | for neighbor in triangle: |
---|
1986 | if ( neighbor != -1): |
---|
1987 | ObjectNeighbor.append(self.meshTriangles[neighbor]) |
---|
1988 | else: |
---|
1989 | ObjectNeighbor.append(None) |
---|
1990 | self.meshTriangles[index].setNeighbors(ObjectNeighbor[0],ObjectNeighbor[1],ObjectNeighbor[2]) |
---|
1991 | index += 1 |
---|
1992 | |
---|
1993 | |
---|
1994 | def IOOutline2Mesh(self, genDict): |
---|
1995 | """ |
---|
1996 | Set the outline (user Mesh attributes) given a IO tsh dictionary |
---|
1997 | |
---|
1998 | mesh is an instance of a mesh object |
---|
1999 | """ |
---|
2000 | #Clear the current user mesh values |
---|
2001 | self.clearUserSegments() |
---|
2002 | self.userVertices=[] |
---|
2003 | self.Holes=[] |
---|
2004 | self.Regions=[] |
---|
2005 | |
---|
2006 | #print "mesh.IOOutline2Mesh@#@#@#" |
---|
2007 | #print "genDict",genDict |
---|
2008 | #print "@#@#@#" |
---|
2009 | |
---|
2010 | #index = 0 |
---|
2011 | for point in genDict['points']: |
---|
2012 | v=Vertex(point[0], point[1]) |
---|
2013 | #v.index = index |
---|
2014 | #index +=1 |
---|
2015 | self.userVertices.append(v) |
---|
2016 | |
---|
2017 | #index = 0 |
---|
2018 | for seg,tag in map(None,genDict['outline_segments'],genDict['outline_segment_tags']): |
---|
2019 | segObject = Segment( self.userVertices[seg[0]], |
---|
2020 | self.userVertices[seg[1]], tag = tag ) |
---|
2021 | #segObject.index = index |
---|
2022 | #index +=1 |
---|
2023 | self.userSegments.append(segObject) |
---|
2024 | |
---|
2025 | # Remove the loading of attribute info. |
---|
2026 | # Have attribute info added using least_squares in pyvolution |
---|
2027 | # index = 0 |
---|
2028 | # for att in genDict['point_attributes']: |
---|
2029 | # if att == None: |
---|
2030 | # self.userVertices[index].setAttributes([]) |
---|
2031 | # else: |
---|
2032 | # self.userVertices[index].setAttributes(att) |
---|
2033 | # index += 1 |
---|
2034 | |
---|
2035 | #index = 0 |
---|
2036 | for point in genDict['holes']: |
---|
2037 | h=Hole(point[0], point[1]) |
---|
2038 | #h.index = index |
---|
2039 | #index +=1 |
---|
2040 | self.holes.append(h) |
---|
2041 | |
---|
2042 | #index = 0 |
---|
2043 | for reg,att,maxArea in map(None, |
---|
2044 | genDict['regions'], |
---|
2045 | genDict['region_tags'], |
---|
2046 | genDict['region_max_areas']): |
---|
2047 | if maxArea > 0: # maybe I should ref NOMAXAREA? Prob' not though |
---|
2048 | Object = Region( reg[0], |
---|
2049 | reg[1], |
---|
2050 | tag = att, |
---|
2051 | maxArea = maxArea) |
---|
2052 | else: |
---|
2053 | Object = Region( reg[0], |
---|
2054 | reg[1], |
---|
2055 | tag = att) |
---|
2056 | |
---|
2057 | #Object.index = index |
---|
2058 | #index +=1 |
---|
2059 | self.regions.append(Object) |
---|
2060 | |
---|
2061 | ############################################ |
---|
2062 | |
---|
2063 | |
---|
2064 | def refineSet(self,setName): |
---|
2065 | Triangles = self.sets[self.setID[setName]] |
---|
2066 | Refine(self,Triangles) |
---|
2067 | |
---|
2068 | def selectAllTriangles(self): |
---|
2069 | A=[] |
---|
2070 | A.extend(self.meshTriangles) |
---|
2071 | if not('All' in self.setID.keys()): |
---|
2072 | self.setID['All']=len(self.sets) |
---|
2073 | self.sets.append(A) |
---|
2074 | else: |
---|
2075 | self.sets[self.setID['All']]=A |
---|
2076 | return 'All' |
---|
2077 | # and objectIDs |
---|
2078 | |
---|
2079 | |
---|
2080 | def clearSelection(self): |
---|
2081 | A = [] |
---|
2082 | if not('None' in self.setID.keys()): |
---|
2083 | self.setID['None']=len(self.sets) |
---|
2084 | self.sets.append(A) |
---|
2085 | return 'None' |
---|
2086 | |
---|
2087 | def drawSet(self,canvas,setName,SCALE,colour=SET_COLOUR): |
---|
2088 | #FIXME Draws over previous triangles - may bloat canvas |
---|
2089 | Triangles = self.sets[self.setID[setName]] |
---|
2090 | for triangle in Triangles: |
---|
2091 | triangle.draw(canvas,1, |
---|
2092 | scale = SCALE, |
---|
2093 | colour = colour) |
---|
2094 | |
---|
2095 | def undrawSet(self,canvas,setName,SCALE,colour='green'): |
---|
2096 | #FIXME Draws over previous lines - may bloat canvas |
---|
2097 | Triangles = self.sets[self.setID[setName]] |
---|
2098 | for triangle in Triangles: |
---|
2099 | triangle.draw(canvas,1, |
---|
2100 | scale = SCALE, |
---|
2101 | colour = colour) |
---|
2102 | |
---|
2103 | def weed(self,Vertices,Segments): |
---|
2104 | #Depreciated |
---|
2105 | #weed out existing duplicates |
---|
2106 | print 'len(self.getUserSegments())' |
---|
2107 | print len(self.getUserSegments()) |
---|
2108 | print 'len(self.getUserVertices())' |
---|
2109 | print len(self.getUserVertices()) |
---|
2110 | |
---|
2111 | point_keys = {} |
---|
2112 | for vertex in Vertices: |
---|
2113 | point = (vertex.x,vertex.y) |
---|
2114 | point_keys[point]=vertex |
---|
2115 | #inlined would looks very ugly |
---|
2116 | |
---|
2117 | line_keys = {} |
---|
2118 | for segment in Segments: |
---|
2119 | vertex1 = segment.vertices[0] |
---|
2120 | vertex2 = segment.vertices[1] |
---|
2121 | point1 = (vertex1.x,vertex1.y) |
---|
2122 | point2 = (vertex2.x,vertex2.y) |
---|
2123 | segment.vertices[0]=point_keys[point1] |
---|
2124 | segment.vertices[1]=point_keys[point2] |
---|
2125 | vertex1 = segment.vertices[0] |
---|
2126 | vertex2 = segment.vertices[1] |
---|
2127 | point1 = (vertex1.x,vertex1.y) |
---|
2128 | point2 = (vertex2.x,vertex2.y) |
---|
2129 | line1 = (point1,point2) |
---|
2130 | line2 = (point2,point1) |
---|
2131 | if not (line_keys.has_key(line1) \ |
---|
2132 | or line_keys.has_key(line2)): |
---|
2133 | line_keys[line1]=segment |
---|
2134 | Vertices=point_keys.values() |
---|
2135 | Segments=line_keys.values() |
---|
2136 | return Vertices,Segments |
---|
2137 | |
---|
2138 | def segs_to_dict(self,segments): |
---|
2139 | dict={} |
---|
2140 | for segment in segments: |
---|
2141 | vertex1 = segment.vertices[0] |
---|
2142 | vertex2 = segment.vertices[1] |
---|
2143 | point1 = (vertex1.x,vertex1.y) |
---|
2144 | point2 = (vertex2.x,vertex2.y) |
---|
2145 | line = (point1,point2) |
---|
2146 | dict[line]=segment |
---|
2147 | return dict |
---|
2148 | |
---|
2149 | def seg2line(self,s): |
---|
2150 | return ((s.vertices[0].x,s.vertices[0].y,)\ |
---|
2151 | (s.vertices[1].x,s.vertices[1].y)) |
---|
2152 | |
---|
2153 | def line2seg(self,line,tag=None): |
---|
2154 | point0 = self.point2ver(line[0]) |
---|
2155 | point1 = self.point2ver(line[1]) |
---|
2156 | return Segment(point0,point1,tag=tag) |
---|
2157 | |
---|
2158 | def ver2point(self,vertex): |
---|
2159 | return (vertex.x,vertex.y) |
---|
2160 | |
---|
2161 | def point2ver(self,point): |
---|
2162 | return Vertex(point[0],point[1]) |
---|
2163 | |
---|
2164 | def smooth_polySet(self,min_radius=0.05): |
---|
2165 | #for all pairs of connecting segments: |
---|
2166 | # propose a new segment that replaces the 2 |
---|
2167 | |
---|
2168 | # If the difference between the new segment |
---|
2169 | # and the old lines is small: replace the |
---|
2170 | # old lines. |
---|
2171 | |
---|
2172 | seg2line = self.seg2line |
---|
2173 | ver2point= self.ver2point |
---|
2174 | line2seg = self.line2seg |
---|
2175 | point2ver= self.point2ver |
---|
2176 | |
---|
2177 | #create dictionaries of lines -> segments |
---|
2178 | userSegments = self.segs_to_dict(self.userSegments) |
---|
2179 | alphaSegments = self.segs_to_dict(self.alphaUserSegments) |
---|
2180 | |
---|
2181 | #lump user and alpha segments |
---|
2182 | for key in alphaSegments.keys(): |
---|
2183 | userSegments[key]=alphaSegments[key] |
---|
2184 | |
---|
2185 | #point_keys = tuple -> vertex |
---|
2186 | #userVertices = vertex -> [line,line] - lines from that node |
---|
2187 | point_keys = {} |
---|
2188 | userVertices={} |
---|
2189 | for vertex in self.getUserVertices(): |
---|
2190 | point = ver2point(vertex) |
---|
2191 | if not point_keys.has_key(point): |
---|
2192 | point_keys[point]=vertex |
---|
2193 | userVertices[vertex]=[] |
---|
2194 | for key in userSegments.keys(): |
---|
2195 | line = key |
---|
2196 | point_0 = key[0] |
---|
2197 | point_1 = key[1] |
---|
2198 | userVertices[point_keys[point_0]].append(line) |
---|
2199 | userVertices[point_keys[point_1]].append(line) |
---|
2200 | |
---|
2201 | for point in point_keys.keys(): |
---|
2202 | try: |
---|
2203 | #removed keys can cause keyerrors |
---|
2204 | vertex = point_keys[point] |
---|
2205 | lines = userVertices[vertex] |
---|
2206 | |
---|
2207 | #if there are 2 lines on the node |
---|
2208 | if len(lines)==2: |
---|
2209 | line_0 = lines[0] |
---|
2210 | line_1 = lines[1] |
---|
2211 | |
---|
2212 | #if the tags are the the same on the 2 lines |
---|
2213 | if userSegments[line_0].tag == userSegments[line_1].tag: |
---|
2214 | tag = userSegments[line_0].tag |
---|
2215 | |
---|
2216 | #point_a is one of the next nodes, point_b is the other |
---|
2217 | if point==line_0[0]: |
---|
2218 | point_a = line_0[1] |
---|
2219 | if point==line_0[1]: |
---|
2220 | point_a = line_0[0] |
---|
2221 | if point==line_1[0]: |
---|
2222 | point_b = line_1[1] |
---|
2223 | if point==line_1[1]: |
---|
2224 | point_b = line_1[0] |
---|
2225 | |
---|
2226 | |
---|
2227 | #line_2 is proposed |
---|
2228 | line_2 = (point_a,point_b) |
---|
2229 | |
---|
2230 | #calculate the area of the triangle between |
---|
2231 | #the two existing segments and the proposed |
---|
2232 | #new segment |
---|
2233 | ax = point_a[0] |
---|
2234 | ay = point_a[1] |
---|
2235 | bx = point_b[0] |
---|
2236 | by = point_b[1] |
---|
2237 | cx = point[0] |
---|
2238 | cy = point[1] |
---|
2239 | area=abs((bx*ay-ax*by)+(cx*by-bx*cy)+(ax*cy-cx*ay))/2 |
---|
2240 | |
---|
2241 | #calculate the perimeter |
---|
2242 | len_a = ((cx-bx)**2+(cy-by)**2)**0.5 |
---|
2243 | len_b = ((ax-cx)**2+(ay-cy)**2)**0.5 |
---|
2244 | len_c = ((bx-ax)**2+(by-ay)**2)**0.5 |
---|
2245 | perimeter = len_a+len_b+len_c |
---|
2246 | |
---|
2247 | #calculate the radius |
---|
2248 | r = area/(2*perimeter) |
---|
2249 | |
---|
2250 | #if the radius is small: then replace the existing |
---|
2251 | #segments with the new one |
---|
2252 | if r < min_radius: |
---|
2253 | if len_c < min_radius: append = False |
---|
2254 | else: append = True |
---|
2255 | #if the new seg is also time, don't add it |
---|
2256 | if append: |
---|
2257 | segment = self.line2seg(line_2,tag=tag) |
---|
2258 | |
---|
2259 | list_a=userVertices[point_keys[point_a]] |
---|
2260 | list_b=userVertices[point_keys[point_b]] |
---|
2261 | |
---|
2262 | if line_0 in list_a: |
---|
2263 | list_a.remove(line_0) |
---|
2264 | else: |
---|
2265 | list_a.remove(line_1) |
---|
2266 | |
---|
2267 | if line_0 in list_b: |
---|
2268 | list_b.remove(line_0) |
---|
2269 | else: |
---|
2270 | list_b.remove(line_1) |
---|
2271 | |
---|
2272 | if append: |
---|
2273 | list_a.append(line_2) |
---|
2274 | list_b.append(line_2) |
---|
2275 | else: |
---|
2276 | if len(list_a)==0: |
---|
2277 | userVertices.pop(point_keys[point_a]) |
---|
2278 | point_keys.pop(point_a) |
---|
2279 | if len(list_b)==0: |
---|
2280 | userVertices.pop(point_keys[point_b]) |
---|
2281 | point_keys.pop(point_b) |
---|
2282 | |
---|
2283 | userVertices.pop(point_keys[point]) |
---|
2284 | point_keys.pop(point) |
---|
2285 | userSegments.pop(line_0) |
---|
2286 | userSegments.pop(line_1) |
---|
2287 | |
---|
2288 | if append: |
---|
2289 | userSegments[line_2]=segment |
---|
2290 | except: |
---|
2291 | pass |
---|
2292 | |
---|
2293 | #self.userVerticies = userVertices.keys() |
---|
2294 | #self.userSegments = [] |
---|
2295 | #for key in userSegments.keys(): |
---|
2296 | # self.userSegments.append(userSegments[key]) |
---|
2297 | #self.alphaUserSegments = [] |
---|
2298 | |
---|
2299 | self.userVerticies = [] |
---|
2300 | self.userSegments = [] |
---|
2301 | self.alphaUserSegments = [] |
---|
2302 | |
---|
2303 | return userVertices,userSegments,alphaSegments |
---|
2304 | |
---|
2305 | def triangles_to_polySet(self,setName): |
---|
2306 | #self.smooth_polySet() |
---|
2307 | |
---|
2308 | seg2line = self.seg2line |
---|
2309 | ver2point= self.ver2point |
---|
2310 | line2seg = self.line2seg |
---|
2311 | point2ver= self.point2ver |
---|
2312 | |
---|
2313 | from Numeric import array,allclose |
---|
2314 | #turn the triangles into a set |
---|
2315 | Triangles = self.sets[self.setID[setName]] |
---|
2316 | Triangles_dict = {} |
---|
2317 | for triangle in Triangles: |
---|
2318 | Triangles_dict[triangle]=None |
---|
2319 | |
---|
2320 | |
---|
2321 | #create a dict of points to vertexes (tuple -> object) |
---|
2322 | #also create a set of vertexes (object -> True) |
---|
2323 | point_keys = {} |
---|
2324 | userVertices={} |
---|
2325 | for vertex in self.getUserVertices(): |
---|
2326 | point = ver2point(vertex) |
---|
2327 | if not point_keys.has_key(point): |
---|
2328 | point_keys[point]=vertex |
---|
2329 | userVertices[vertex]=True |
---|
2330 | |
---|
2331 | #create a dict of lines to segments (tuple -> object) |
---|
2332 | userSegments = self.segs_to_dict(self.userSegments) |
---|
2333 | #append the userlines in an affine linespace |
---|
2334 | affine_lines = Affine_Linespace() |
---|
2335 | for line in userSegments.keys(): |
---|
2336 | affine_lines.append(line) |
---|
2337 | alphaSegments = self.segs_to_dict(self.alphaUserSegments) |
---|
2338 | for line in alphaSegments.keys(): |
---|
2339 | affine_lines.append(line) |
---|
2340 | |
---|
2341 | for triangle in Triangles: |
---|
2342 | for i in (0,1,2): |
---|
2343 | #for every triangles neighbour: |
---|
2344 | if not Triangles_dict.has_key(triangle.neighbors[i]): |
---|
2345 | #if the neighbour is not in the set: |
---|
2346 | a = triangle.vertices[i-1] |
---|
2347 | b = triangle.vertices[i-2] |
---|
2348 | #Get possible matches: |
---|
2349 | point_a = ver2point(a) |
---|
2350 | point_b = ver2point(b) |
---|
2351 | midpoint = ((a.x+b.x)/2,(a.y+b.y)/2) |
---|
2352 | line = (point_a,point_b) |
---|
2353 | tag = None |
---|
2354 | |
---|
2355 | |
---|
2356 | #this bit checks for matching lines |
---|
2357 | possible_lines = affine_lines[line] |
---|
2358 | possible_lines = unique(possible_lines) |
---|
2359 | found = 0 |
---|
2360 | for user_line in possible_lines: |
---|
2361 | if self.point_on_line(midpoint,user_line): |
---|
2362 | found+=1 |
---|
2363 | assert found<2 |
---|
2364 | if userSegments.has_key(user_line): |
---|
2365 | parent_segment = userSegments.pop(user_line) |
---|
2366 | if alphaSegments.has_key(user_line): |
---|
2367 | parent_segment = alphaSegments.pop(user_line) |
---|
2368 | tag = parent_segment.tag |
---|
2369 | offspring = [line] |
---|
2370 | offspring.extend(self.subtract_line(user_line,line)) |
---|
2371 | affine_lines.remove(user_line) |
---|
2372 | for newline in offspring: |
---|
2373 | line_vertices = [] |
---|
2374 | for point in newline: |
---|
2375 | if point_keys.has_key(point): |
---|
2376 | vert = point_keys[point] |
---|
2377 | else: |
---|
2378 | vert = Vertex(point[0],point[1]) |
---|
2379 | userVertices[vert]=True |
---|
2380 | point_keys[point]=vert |
---|
2381 | line_vertices.append(vert) |
---|
2382 | segment = Segment(line_vertices[0],line_vertices[1],tag) |
---|
2383 | userSegments[newline]=segment |
---|
2384 | affine_lines.append(newline) |
---|
2385 | #break |
---|
2386 | assert found<2 |
---|
2387 | |
---|
2388 | |
---|
2389 | |
---|
2390 | #if no matching lines |
---|
2391 | if not found: |
---|
2392 | line_vertices = [] |
---|
2393 | for point in line: |
---|
2394 | if point_keys.has_key(point): |
---|
2395 | vert = point_keys[point] |
---|
2396 | else: |
---|
2397 | vert = Vertex(point[0],point[1]) |
---|
2398 | userVertices[vert]=True |
---|
2399 | point_keys[point]=vert |
---|
2400 | line_vertices.append(vert) |
---|
2401 | segment = Segment(line_vertices[0],line_vertices[1],tag) |
---|
2402 | userSegments[line]=segment |
---|
2403 | affine_lines.append(line) |
---|
2404 | |
---|
2405 | self.userVerticies = [] |
---|
2406 | self.userSegments = [] |
---|
2407 | self.alphaUserSegments = [] |
---|
2408 | |
---|
2409 | return userVertices,userSegments,alphaSegments |
---|
2410 | |
---|
2411 | def subtract_line(self,parent,child): |
---|
2412 | #Subtracts child from parent |
---|
2413 | #Requires that the child is a |
---|
2414 | #subline of parent to work. |
---|
2415 | |
---|
2416 | from Numeric import allclose,dot,array |
---|
2417 | A= parent[0] |
---|
2418 | B= parent[1] |
---|
2419 | a = child[0] |
---|
2420 | b = child[1] |
---|
2421 | |
---|
2422 | A_array = array(parent[0]) |
---|
2423 | B_array = array(parent[1]) |
---|
2424 | a_array = array(child[0]) |
---|
2425 | b_array = array(child[1]) |
---|
2426 | |
---|
2427 | assert not A == B |
---|
2428 | assert not a == b |
---|
2429 | |
---|
2430 | answer = [] |
---|
2431 | |
---|
2432 | #if the new line does not share a |
---|
2433 | #vertex with the old one |
---|
2434 | if not (allclose(A_array,a_array)\ |
---|
2435 | or allclose(B_array,b_array)\ |
---|
2436 | or allclose(A_array,b_array)\ |
---|
2437 | or allclose(a_array,B_array)): |
---|
2438 | if dot(A_array-a_array,A_array-a_array) \ |
---|
2439 | < dot(A_array-b_array,A_array-b_array): |
---|
2440 | sibling1 = (A,a) |
---|
2441 | sibling2 = (B,b) |
---|
2442 | return [sibling1,sibling2] |
---|
2443 | else: |
---|
2444 | sibling1 = (A,b) |
---|
2445 | sibling2 = (B,a) |
---|
2446 | return [sibling1,sibling2] |
---|
2447 | |
---|
2448 | elif allclose(A_array,a_array): |
---|
2449 | if allclose(B_array,b_array): |
---|
2450 | return [] |
---|
2451 | else: |
---|
2452 | sibling = (b,B) |
---|
2453 | return [sibling] |
---|
2454 | elif allclose(B_array,b_array): |
---|
2455 | sibling = (a,A) |
---|
2456 | return [sibling] |
---|
2457 | |
---|
2458 | elif allclose(A_array,b_array): |
---|
2459 | if allclose(B,a): |
---|
2460 | return [] |
---|
2461 | else: |
---|
2462 | sibling = (a,B) |
---|
2463 | return [sibling] |
---|
2464 | elif allclose(a_array,B_array): |
---|
2465 | sibling = (b,A) |
---|
2466 | return [sibling] |
---|
2467 | |
---|
2468 | def point_on_line(self,point,line): |
---|
2469 | #returns true within a tolerance of 3 degrees |
---|
2470 | x=point[0] |
---|
2471 | y=point[1] |
---|
2472 | x0=line[0][0] |
---|
2473 | x1=line[1][0] |
---|
2474 | y0=line[0][1] |
---|
2475 | y1=line[1][1] |
---|
2476 | from Numeric import array, dot, allclose |
---|
2477 | from math import sqrt |
---|
2478 | tol = 3. #DEGREES |
---|
2479 | tol = tol*3.1415/180 |
---|
2480 | |
---|
2481 | a = array([x - x0, y - y0]) |
---|
2482 | a_normal = array([a[1], -a[0]]) |
---|
2483 | len_a_normal = sqrt(sum(a_normal**2)) |
---|
2484 | |
---|
2485 | b = array([x1 - x0, y1 - y0]) |
---|
2486 | len_b = sqrt(sum(b**2)) |
---|
2487 | |
---|
2488 | if abs(dot(a_normal, b)/(len_b*len_a_normal))< tol: |
---|
2489 | #Point is somewhere on the infinite extension of the line |
---|
2490 | |
---|
2491 | len_a = sqrt(sum(a**2)) |
---|
2492 | if dot(a, b) >= 0 and len_a <= len_b: |
---|
2493 | return True |
---|
2494 | else: |
---|
2495 | return False |
---|
2496 | else: |
---|
2497 | return False |
---|
2498 | |
---|
2499 | def line_length(self,line): |
---|
2500 | x0=line[0][0] |
---|
2501 | x1=line[1][0] |
---|
2502 | y0=line[0][1] |
---|
2503 | y1=line[1][1] |
---|
2504 | return ((x1-x0)**2-(y1-y0)**2)**0.5 |
---|
2505 | |
---|
2506 | def threshold(self,setName,min=None,max=None,attribute_name = 'elevation'): |
---|
2507 | """ |
---|
2508 | threshold using d |
---|
2509 | """ |
---|
2510 | triangles = self.sets[self.setID[setName]] |
---|
2511 | A = [] |
---|
2512 | |
---|
2513 | if attribute_name in self.attributeTitles: |
---|
2514 | i = self.attributeTitles.index(attribute_name) |
---|
2515 | else: i = -1#no attribute |
---|
2516 | if not max == None: |
---|
2517 | for t in triangles: |
---|
2518 | if (min<self.av_att(t,i)<max): |
---|
2519 | A.append(t) |
---|
2520 | else: |
---|
2521 | for t in triangles: |
---|
2522 | if (min<self.av_att(t,i)): |
---|
2523 | A.append(t) |
---|
2524 | self.sets[self.setID[setName]] = A |
---|
2525 | |
---|
2526 | def general_threshold(self,setName,min=None,max=None\ |
---|
2527 | ,attribute_name = 'elevation',function=None): |
---|
2528 | """ |
---|
2529 | Thresholds the triangles |
---|
2530 | """ |
---|
2531 | from visual.graph import arange,ghistogram,color as colour |
---|
2532 | triangles = self.sets[self.setID[setName]] |
---|
2533 | A = [] |
---|
2534 | data=[] |
---|
2535 | #data is for the graph |
---|
2536 | |
---|
2537 | if attribute_name in self.attributeTitles: |
---|
2538 | i = self.attributeTitles.index(attribute_name) |
---|
2539 | else: i = -1 |
---|
2540 | if not max == None: |
---|
2541 | for t in triangles: |
---|
2542 | value=function(t,i) |
---|
2543 | if (min<value<max): |
---|
2544 | A.append(t) |
---|
2545 | data.append(value) |
---|
2546 | else: |
---|
2547 | for t in triangles: |
---|
2548 | value=function(t,i) |
---|
2549 | if (min<value): |
---|
2550 | A.append(t) |
---|
2551 | data.append(value) |
---|
2552 | self.sets[self.setID[setName]] = A |
---|
2553 | |
---|
2554 | if self.visualise_graph: |
---|
2555 | if len(data)>0: |
---|
2556 | max=data[0] |
---|
2557 | min=data[0] |
---|
2558 | for value in data: |
---|
2559 | if value > max: |
---|
2560 | max = value |
---|
2561 | if value < min: |
---|
2562 | min = value |
---|
2563 | |
---|
2564 | inc = (max-min)/100 |
---|
2565 | |
---|
2566 | histogram = ghistogram(bins=arange(min,max,inc),\ |
---|
2567 | color = colour.red) |
---|
2568 | histogram.plot(data=data) |
---|
2569 | |
---|
2570 | def av_att(self,triangle,i): |
---|
2571 | if i==-1: return 1 |
---|
2572 | else: |
---|
2573 | #evaluates the average attribute of the vertices of a triangle. |
---|
2574 | V = triangle.getVertices() |
---|
2575 | a0 = (V[0].attributes[i]) |
---|
2576 | a1 = (V[1].attributes[i]) |
---|
2577 | a2 = (V[2].attributes[i]) |
---|
2578 | return (a0+a1+a2)/3 |
---|
2579 | |
---|
2580 | def Courant_ratio(self,triangle,index): |
---|
2581 | """ |
---|
2582 | Uses the courant threshold |
---|
2583 | """ |
---|
2584 | e = self.av_att(triangle,index) |
---|
2585 | A = triangle.calcArea() |
---|
2586 | P = triangle.calcP() |
---|
2587 | r = A/(2*P) |
---|
2588 | e = max(0.1,abs(e)) |
---|
2589 | return r/e**0.5 |
---|
2590 | |
---|
2591 | def Gradient(self,triangle,index): |
---|
2592 | V = triangle.vertices |
---|
2593 | x0, y0, x1, y1, x2, y2, q0, q1, q2 = V[0].x,V[0].y,V[1].x,V[1].y,V[2].x,V[2].y,V[0].attributes[index],V[1].attributes[index],V[2].attributes[index] |
---|
2594 | grad_x,grad_y = gradient(x0, y0, x1, y1, x2, y2, q0, q1, q2) |
---|
2595 | if ((grad_x**2)+(grad_y**2))**(0.5)<0: |
---|
2596 | print ((grad_x**2)+(grad_y**2))**(0.5) |
---|
2597 | return ((grad_x**2)+(grad_y**2))**(0.5) |
---|
2598 | |
---|
2599 | |
---|
2600 | def append_triangle(self,triangle): |
---|
2601 | self.meshTriangles.append(triangle) |
---|
2602 | |
---|
2603 | def replace_triangle(self,triangle,replacement): |
---|
2604 | i = self.meshTriangles.index(triangle) |
---|
2605 | self.meshTriangles[i]=replacement |
---|
2606 | assert replacement in self.meshTriangles |
---|
2607 | |
---|
2608 | def importUngenerateFile(ofile): |
---|
2609 | """ |
---|
2610 | import a file, ofile, with the format |
---|
2611 | [poly] |
---|
2612 | poly format: |
---|
2613 | First line: <# of vertices> <x centroid> <y centroid> |
---|
2614 | Following lines: <x> <y> |
---|
2615 | last line: "END" |
---|
2616 | |
---|
2617 | Note: These are clockwise. |
---|
2618 | """ |
---|
2619 | fd = open(ofile,'r') |
---|
2620 | Dict = readUngenerateFile(fd) |
---|
2621 | fd.close() |
---|
2622 | return Dict |
---|
2623 | |
---|
2624 | def readUngenerateFile(fd): |
---|
2625 | """ |
---|
2626 | import a file, ofile, with the format |
---|
2627 | [poly] |
---|
2628 | poly format: |
---|
2629 | First line: <# of polynomial> <x centroid> <y centroid> |
---|
2630 | Following lines: <x> <y> |
---|
2631 | last line: "END" |
---|
2632 | """ |
---|
2633 | END_DELIMITER = 'END\n' |
---|
2634 | |
---|
2635 | points = [] |
---|
2636 | segments = [] |
---|
2637 | |
---|
2638 | isEnd = False |
---|
2639 | line = fd.readline() #not used <# of polynomial> <x> <y> |
---|
2640 | while not isEnd: |
---|
2641 | line = fd.readline() |
---|
2642 | fragments = line.split() |
---|
2643 | vert = [float(fragments.pop(0)),float(fragments.pop(0))] |
---|
2644 | points.append(vert) |
---|
2645 | PreviousVertIndex = len(points)-1 |
---|
2646 | firstVertIndex = PreviousVertIndex |
---|
2647 | |
---|
2648 | line = fd.readline() #Read the next line |
---|
2649 | while line <> END_DELIMITER: |
---|
2650 | #print "line >" + line + "<" |
---|
2651 | fragments = line.split() |
---|
2652 | vert = [float(fragments.pop(0)),float(fragments.pop(0))] |
---|
2653 | points.append(vert) |
---|
2654 | thisVertIndex = len(points)-1 |
---|
2655 | segment = [PreviousVertIndex,thisVertIndex] |
---|
2656 | segments.append(segment) |
---|
2657 | PreviousVertIndex = thisVertIndex |
---|
2658 | line = fd.readline() #Read the next line |
---|
2659 | i =+ 1 |
---|
2660 | # If the last and first segments are the same, |
---|
2661 | # Remove the last segment and the last vertex |
---|
2662 | # then add a segment from the second last vert to the 1st vert |
---|
2663 | thisVertIndex = len(points)-1 |
---|
2664 | firstVert = points[firstVertIndex] |
---|
2665 | thisVert = points[thisVertIndex] |
---|
2666 | #print "firstVert",firstVert |
---|
2667 | #print "thisVert",thisVert |
---|
2668 | if (firstVert[0] == thisVert[0] and firstVert[1] == thisVert[1]): |
---|
2669 | points.pop() |
---|
2670 | segments.pop() |
---|
2671 | thisVertIndex = len(points)-1 |
---|
2672 | segments.append([thisVertIndex, firstVertIndex]) |
---|
2673 | |
---|
2674 | line = fd.readline() # read <# of polynomial> <x> <y> OR END |
---|
2675 | #print "line >>" + line + "<<" |
---|
2676 | if line == END_DELIMITER: |
---|
2677 | isEnd = True |
---|
2678 | |
---|
2679 | #print "points", points |
---|
2680 | #print "segments", segments |
---|
2681 | ungenerated_dict = {} |
---|
2682 | ungenerated_dict['points'] = points |
---|
2683 | ungenerated_dict['segments'] = segments |
---|
2684 | return ungenerated_dict |
---|
2685 | |
---|
2686 | def importMeshFromFile(ofile): |
---|
2687 | """returns a mesh object, made from a .xya/.pts or .tsh/.msh file |
---|
2688 | Often raises IOError,RuntimeError |
---|
2689 | """ |
---|
2690 | newmesh = None |
---|
2691 | if (ofile[-4:]== ".xya" or ofile[-4:]== ".pts"): |
---|
2692 | dict = load_mesh.loadASCII.import_points_file(ofile) |
---|
2693 | dict['points'] = dict['pointlist'] |
---|
2694 | dict['outline_segments'] = [] |
---|
2695 | dict['outline_segment_tags'] = [] |
---|
2696 | dict['regions'] = [] |
---|
2697 | dict['region_tags'] = [] |
---|
2698 | dict['region_max_areas'] = [] |
---|
2699 | dict['holes'] = [] |
---|
2700 | newmesh= Mesh(geo_reference = dict['geo_reference']) |
---|
2701 | newmesh.IOOutline2Mesh(dict) |
---|
2702 | counter = newmesh.removeDuplicatedUserVertices() |
---|
2703 | if (counter >0): |
---|
2704 | print "%i duplicate vertices removed from dataset" % (counter) |
---|
2705 | elif (ofile[-4:]== ".tsh" or ofile[-4:]== ".msh"): |
---|
2706 | dict = load_mesh.loadASCII.import_mesh_file(ofile) |
---|
2707 | #print "********" |
---|
2708 | #print "zq mesh.dict",dict |
---|
2709 | #print "********" |
---|
2710 | newmesh= Mesh() |
---|
2711 | newmesh.IOOutline2Mesh(dict) |
---|
2712 | newmesh.IOTriangulation2Mesh(dict) |
---|
2713 | else: |
---|
2714 | raise RuntimeError |
---|
2715 | |
---|
2716 | if dict.has_key('geo_reference') and not dict['geo_reference'] == None: |
---|
2717 | newmesh.geo_reference = dict['geo_reference'] |
---|
2718 | return newmesh |
---|
2719 | |
---|
2720 | def loadPickle(currentName): |
---|
2721 | fd = open(currentName) |
---|
2722 | mesh = pickle.load(fd) |
---|
2723 | fd.close() |
---|
2724 | return mesh |
---|
2725 | |
---|
2726 | def square_outline(side_length = 1,up = "top", left = "left", right = "right", |
---|
2727 | down = "bottom", regions = False): |
---|
2728 | |
---|
2729 | a = Vertex (0,0) |
---|
2730 | b = Vertex (0,side_length) |
---|
2731 | c = Vertex (side_length,0) |
---|
2732 | d = Vertex (side_length,side_length) |
---|
2733 | |
---|
2734 | s2 = Segment(b,d, tag = up) |
---|
2735 | s3 = Segment(b,a, tag = left) |
---|
2736 | s4 = Segment(d,c, tag = right) |
---|
2737 | s5 = Segment(a,c, tag = down) |
---|
2738 | |
---|
2739 | if regions: |
---|
2740 | e = Vertex (side_length/2,side_length/2) |
---|
2741 | s6 = Segment(a,e, tag = down + left) |
---|
2742 | s7 = Segment(b,e, tag = up + left) |
---|
2743 | s8 = Segment(c,e, tag = down + right) |
---|
2744 | s9 = Segment(d,e, tag = up + right) |
---|
2745 | r1 = Region(side_length/2,3.*side_length/4, tag = up) |
---|
2746 | r2 = Region(1.*side_length/4,side_length/2, tag = left) |
---|
2747 | r3 = Region(3.*side_length/4,side_length/2, tag = right) |
---|
2748 | r4 = Region(side_length/2,1.*side_length/4, tag = down) |
---|
2749 | mesh = Mesh(userVertices=[a,b,c,d,e], |
---|
2750 | userSegments=[s2,s3,s4,s5,s6,s7,s8,s9], |
---|
2751 | regions = [r1,r2,r3,r4]) |
---|
2752 | else: |
---|
2753 | mesh = Mesh(userVertices=[a,b,c,d], |
---|
2754 | userSegments=[s2,s3,s4,s5]) |
---|
2755 | |
---|
2756 | return mesh |
---|
2757 | |
---|
2758 | |
---|
2759 | |
---|
2760 | def region_strings2ints(region_list): |
---|
2761 | """Given a list of (x_int,y_int,tag_string) lists it returns a list of |
---|
2762 | (x_int,y_int,tag_int) and a list to convert the tag_int's back to |
---|
2763 | the tag_strings |
---|
2764 | """ |
---|
2765 | # Make sure "" has an index of 0 |
---|
2766 | region_list.reverse() |
---|
2767 | region_list.append((1.0,2.0,"")) |
---|
2768 | region_list.reverse() |
---|
2769 | convertint2string = [] |
---|
2770 | for i in xrange(len(region_list)): |
---|
2771 | convertint2string.append(region_list[i][2]) |
---|
2772 | if len(region_list[i]) == 4: # there's an area value |
---|
2773 | region_list[i] = (region_list[i][0], |
---|
2774 | region_list[i][1],i,region_list[i][3]) |
---|
2775 | elif len(region_list[i]) == 3: # no area value |
---|
2776 | region_list[i] = (region_list[i][0],region_list[i][1],i) |
---|
2777 | else: |
---|
2778 | print "The region list has a bad size" |
---|
2779 | # raise an error .. |
---|
2780 | raise Error |
---|
2781 | |
---|
2782 | #remove "" from the region_list |
---|
2783 | region_list.pop(0) |
---|
2784 | |
---|
2785 | return [region_list, convertint2string] |
---|
2786 | |
---|
2787 | def region_ints2strings(region_list,convertint2string): |
---|
2788 | """Reverses the transformation of region_strings2ints |
---|
2789 | """ |
---|
2790 | if region_list[0] != []: |
---|
2791 | for i in xrange(len(region_list)): |
---|
2792 | region_list[i] = [convertint2string[int(region_list[i][0])]] |
---|
2793 | return region_list |
---|
2794 | |
---|
2795 | def segment_ints2strings(intlist, convertint2string): |
---|
2796 | """Reverses the transformation of segment_strings2ints """ |
---|
2797 | stringlist = [] |
---|
2798 | for x in intlist: |
---|
2799 | stringlist.append(convertint2string[x]) |
---|
2800 | return stringlist |
---|
2801 | |
---|
2802 | def segment_strings2ints(stringlist, preset): |
---|
2803 | """Given a list of strings return a list of 0 to n ints which represent |
---|
2804 | the strings and a converting list of the strings, indexed by 0 to n ints. |
---|
2805 | Also, input an initial converting list of the strings |
---|
2806 | Note, the converting list starts off with |
---|
2807 | ["internal boundary", "external boundary", "internal boundary"] |
---|
2808 | example input and output |
---|
2809 | input ["a","b","a","c"],["c"] |
---|
2810 | output [[2, 1, 2, 0], ['c', 'b', 'a']] |
---|
2811 | |
---|
2812 | the first element in the converting list will be |
---|
2813 | overwritten with "". |
---|
2814 | ?This will become the third item in the converting list? |
---|
2815 | |
---|
2816 | # note, order the initial converting list is important, |
---|
2817 | since the index = the int tag |
---|
2818 | """ |
---|
2819 | nodups = unique(stringlist) |
---|
2820 | # note, order is important, the index = the int tag |
---|
2821 | #preset = ["internal boundary", "external boundary"] |
---|
2822 | #Remove the preset tags from the list with no duplicates |
---|
2823 | nodups = [x for x in nodups if x not in preset] |
---|
2824 | |
---|
2825 | try: |
---|
2826 | nodups.remove("") # this has to go to zero |
---|
2827 | except ValueError: |
---|
2828 | pass |
---|
2829 | |
---|
2830 | # Add the preset list at the beginning of no duplicates |
---|
2831 | preset.reverse() |
---|
2832 | nodups.extend(preset) |
---|
2833 | nodups.reverse() |
---|
2834 | |
---|
2835 | |
---|
2836 | convertstring2int = {} |
---|
2837 | convertint2string = [] |
---|
2838 | index = 0 |
---|
2839 | for x in nodups: |
---|
2840 | convertstring2int[x] = index |
---|
2841 | convertint2string.append(x) |
---|
2842 | index += 1 |
---|
2843 | convertstring2int[""] = 0 |
---|
2844 | |
---|
2845 | intlist = [] |
---|
2846 | for x in stringlist: |
---|
2847 | intlist.append(convertstring2int[x]) |
---|
2848 | return [intlist, convertint2string] |
---|
2849 | |
---|
2850 | |
---|
2851 | |
---|
2852 | |
---|
2853 | def unique(s): |
---|
2854 | """Return a list of the elements in s, but without duplicates. |
---|
2855 | |
---|
2856 | For example, unique([1,2,3,1,2,3]) is some permutation of [1,2,3], |
---|
2857 | unique("abcabc") some permutation of ["a", "b", "c"], and |
---|
2858 | unique(([1, 2], [2, 3], [1, 2])) some permutation of |
---|
2859 | [[2, 3], [1, 2]]. |
---|
2860 | |
---|
2861 | For best speed, all sequence elements should be hashable. Then |
---|
2862 | unique() will usually work in linear time. |
---|
2863 | |
---|
2864 | If not possible, the sequence elements should enjoy a total |
---|
2865 | ordering, and if list(s).sort() doesn't raise TypeError it's |
---|
2866 | assumed that they do enjoy a total ordering. Then unique() will |
---|
2867 | usually work in O(N*log2(N)) time. |
---|
2868 | |
---|
2869 | If that's not possible either, the sequence elements must support |
---|
2870 | equality-testing. Then unique() will usually work in quadratic |
---|
2871 | time. |
---|
2872 | """ |
---|
2873 | |
---|
2874 | n = len(s) |
---|
2875 | if n == 0: |
---|
2876 | return [] |
---|
2877 | |
---|
2878 | # Try using a dict first, as that's the fastest and will usually |
---|
2879 | # work. If it doesn't work, it will usually fail quickly, so it |
---|
2880 | # usually doesn't cost much to *try* it. It requires that all the |
---|
2881 | # sequence elements be hashable, and support equality comparison. |
---|
2882 | u = {} |
---|
2883 | try: |
---|
2884 | for x in s: |
---|
2885 | u[x] = 1 |
---|
2886 | except TypeError: |
---|
2887 | del u # move on to the next method |
---|
2888 | else: |
---|
2889 | return u.keys() |
---|
2890 | |
---|
2891 | # We can't hash all the elements. Second fastest is to sort, |
---|
2892 | # which brings the equal elements together; then duplicates are |
---|
2893 | # easy to weed out in a single pass. |
---|
2894 | # NOTE: Python's list.sort() was designed to be efficient in the |
---|
2895 | # presence of many duplicate elements. This isn't true of all |
---|
2896 | # sort functions in all languages or libraries, so this approach |
---|
2897 | # is more effective in Python than it may be elsewhere. |
---|
2898 | try: |
---|
2899 | t = list(s) |
---|
2900 | t.sort() |
---|
2901 | except TypeError: |
---|
2902 | del t # move on to the next method |
---|
2903 | else: |
---|
2904 | assert n > 0 |
---|
2905 | last = t[0] |
---|
2906 | lasti = i = 1 |
---|
2907 | while i < n: |
---|
2908 | if t[i] != last: |
---|
2909 | t[lasti] = last = t[i] |
---|
2910 | lasti += 1 |
---|
2911 | i += 1 |
---|
2912 | return t[:lasti] |
---|
2913 | |
---|
2914 | # Brute force is all that's left. |
---|
2915 | u = [] |
---|
2916 | for x in s: |
---|
2917 | if x not in u: |
---|
2918 | u.append(x) |
---|
2919 | return u |
---|
2920 | |
---|
2921 | """Refines triangles |
---|
2922 | |
---|
2923 | Implements the #triangular bisection?# algorithm. |
---|
2924 | |
---|
2925 | |
---|
2926 | """ |
---|
2927 | |
---|
2928 | def Refine(mesh, triangles): |
---|
2929 | """ |
---|
2930 | Given a general_mesh, and a triangle number, split |
---|
2931 | that triangle in the mesh in half. Then to prevent |
---|
2932 | vertices and edges from meeting, keep refining |
---|
2933 | neighbouring triangles until the mesh is clean. |
---|
2934 | """ |
---|
2935 | state = BisectionState(mesh) |
---|
2936 | for triangle in triangles: |
---|
2937 | if not state.refined_triangles.has_key(triangle): |
---|
2938 | triangle.rotate_longest_side() |
---|
2939 | state.start(triangle) |
---|
2940 | Refine_mesh(mesh, state) |
---|
2941 | |
---|
2942 | def Refine_mesh(mesh, state): |
---|
2943 | """ |
---|
2944 | """ |
---|
2945 | state.getState(mesh) |
---|
2946 | refine_triangle(mesh,state) |
---|
2947 | state.evolve() |
---|
2948 | if not state.end: |
---|
2949 | Refine_mesh(mesh,state) |
---|
2950 | |
---|
2951 | def refine_triangle(mesh,state): |
---|
2952 | split(mesh,state.current_triangle,state.new_point) |
---|
2953 | if state.case == 'one': |
---|
2954 | state.r[3]=state.current_triangle#triangle 2 |
---|
2955 | |
---|
2956 | new_triangle_id = len(mesh.meshTriangles)-1 |
---|
2957 | new_triangle = mesh.meshTriangles[new_triangle_id] |
---|
2958 | |
---|
2959 | split(mesh,new_triangle,state.old_point) |
---|
2960 | state.r[2]=new_triangle#triangle 1.2 |
---|
2961 | state.r[4]=mesh.meshTriangles[len(mesh.meshTriangles)-1]#triangle 1.1 |
---|
2962 | r = state.r |
---|
2963 | state.repairCaseOne() |
---|
2964 | |
---|
2965 | if state.case == 'two': |
---|
2966 | state.r[2]=mesh.meshTriangles[len(mesh.meshTriangles)-1]#triangle 1 |
---|
2967 | |
---|
2968 | new_triangle = state.current_triangle |
---|
2969 | |
---|
2970 | split(mesh,new_triangle,state.old_point) |
---|
2971 | |
---|
2972 | state.r[3]=mesh.meshTriangles[len(mesh.meshTriangles)-1]#triangle 2.1 |
---|
2973 | state.r[4]=new_triangle#triangle 2.2 |
---|
2974 | r = state.r |
---|
2975 | |
---|
2976 | state.repairCaseTwo() |
---|
2977 | |
---|
2978 | if state.case == 'vertex': |
---|
2979 | state.r[2]=state.current_triangle#triangle 2 |
---|
2980 | state.r[3]=mesh.meshTriangles[len(mesh.meshTriangles)-1]#triangle 1 |
---|
2981 | r = state.r |
---|
2982 | state.repairCaseVertex() |
---|
2983 | |
---|
2984 | if state.case == 'start': |
---|
2985 | state.r[2]=mesh.meshTriangles[len(mesh.meshTriangles)-1]#triangle 1 |
---|
2986 | state.r[3]=state.current_triangle#triangle 2 |
---|
2987 | |
---|
2988 | if state.next_case == 'boundary': |
---|
2989 | state.repairCaseBoundary() |
---|
2990 | |
---|
2991 | |
---|
2992 | def split(mesh, triangle, new_point): |
---|
2993 | """ |
---|
2994 | Given a mesh, triangle_id and a new point, |
---|
2995 | split the corrosponding triangle into two |
---|
2996 | new triangles and update the mesh. |
---|
2997 | """ |
---|
2998 | |
---|
2999 | new_triangle1 = Triangle(new_point,triangle.vertices[0],triangle.vertices[1],attribute = triangle.attribute, neighbors = None) |
---|
3000 | new_triangle2 = Triangle(new_point,triangle.vertices[2],triangle.vertices[0],attribute = triangle.attribute, neighbors = None) |
---|
3001 | |
---|
3002 | new_triangle1.setNeighbors(triangle.neighbors[2],None,new_triangle2) |
---|
3003 | new_triangle2.setNeighbors(triangle.neighbors[1],new_triangle1,None) |
---|
3004 | |
---|
3005 | mesh.meshTriangles.append(new_triangle1) |
---|
3006 | |
---|
3007 | triangle.vertices = new_triangle2.vertices |
---|
3008 | triangle.neighbors = new_triangle2.neighbors |
---|
3009 | |
---|
3010 | |
---|
3011 | class State: |
---|
3012 | |
---|
3013 | def __init__(self): |
---|
3014 | pass |
---|
3015 | |
---|
3016 | class BisectionState(State): |
---|
3017 | |
---|
3018 | |
---|
3019 | def __init__(self,mesh): |
---|
3020 | self.len = len(mesh.meshTriangles) |
---|
3021 | self.refined_triangles = {} |
---|
3022 | self.mesh = mesh |
---|
3023 | self.current_triangle = None |
---|
3024 | self.case = 'start' |
---|
3025 | self.end = False |
---|
3026 | self.r = [None,None,None,None,None] |
---|
3027 | |
---|
3028 | def start(self, triangle): |
---|
3029 | self.current_triangle = triangle |
---|
3030 | self.case = 'start' |
---|
3031 | self.end = False |
---|
3032 | self.r = [None,None,None,None,None] |
---|
3033 | |
---|
3034 | def getState(self,mesh): |
---|
3035 | if not self.case == 'vertex': |
---|
3036 | self.new_point=self.getNewVertex(mesh, self.current_triangle) |
---|
3037 | #self.neighbour=self.getNeighbour(mesh, self.current_triangle) |
---|
3038 | self.neighbour = self.current_triangle.neighbors[0] |
---|
3039 | if not self.neighbour is None: |
---|
3040 | self.neighbour.rotate_longest_side() |
---|
3041 | self.next_case = self.get_next_case(mesh,self.neighbour,self.current_triangle) |
---|
3042 | if self.case == 'vertex': |
---|
3043 | self.new_point=self.old_point |
---|
3044 | |
---|
3045 | |
---|
3046 | def evolve(self): |
---|
3047 | if self.case == 'vertex': |
---|
3048 | self.end = True |
---|
3049 | |
---|
3050 | self.last_case = self.case |
---|
3051 | self.case = self.next_case |
---|
3052 | |
---|
3053 | self.old_point = self.new_point |
---|
3054 | self.current_triangle = self.neighbour |
---|
3055 | |
---|
3056 | if self.case == 'boundary': |
---|
3057 | self.end = True |
---|
3058 | self.refined_triangles[self.r[2]]=1 |
---|
3059 | self.refined_triangles[self.r[3]]=1 |
---|
3060 | if not self.r[4] is None: |
---|
3061 | self.refined_triangles[self.r[4]]=1 |
---|
3062 | self.r[0]=self.r[2] |
---|
3063 | self.r[1]=self.r[3] |
---|
3064 | |
---|
3065 | |
---|
3066 | def getNewVertex(self,mesh,triangle): |
---|
3067 | coordinate1 = triangle.vertices[1] |
---|
3068 | coordinate2 = triangle.vertices[2] |
---|
3069 | a = ([coordinate1.x*1.,coordinate1.y*1.]) |
---|
3070 | b = ([coordinate2.x*1.,coordinate2.y*1.]) |
---|
3071 | attributes = [] |
---|
3072 | for i in range(len(coordinate1.attributes)): |
---|
3073 | att = (coordinate1.attributes[i]+coordinate2.attributes[i])/2 |
---|
3074 | attributes.append(att) |
---|
3075 | new_coordinate = [((a[0]-b[0])/2+b[0]),((a[1]-b[1])/2+b[1])] |
---|
3076 | newVertex = Vertex(new_coordinate[0],new_coordinate[1], attributes = attributes) |
---|
3077 | mesh.maxVertexIndex+=1 |
---|
3078 | newVertex.index = mesh.maxVertexIndex |
---|
3079 | mesh.meshVertices.append(newVertex) |
---|
3080 | return newVertex |
---|
3081 | |
---|
3082 | def get_next_case(self, mesh,neighbour,triangle): |
---|
3083 | """ |
---|
3084 | Given the locations of two neighbouring triangles, |
---|
3085 | examine the interior indices of their vertices (i.e. |
---|
3086 | 0,1 or 2) to determine what how the neighbour needs |
---|
3087 | to be refined. |
---|
3088 | """ |
---|
3089 | if (neighbour is None): |
---|
3090 | next_case = 'boundary' |
---|
3091 | else: |
---|
3092 | if triangle.vertices[1].x==neighbour.vertices[2].x: |
---|
3093 | if triangle.vertices[1].y==neighbour.vertices[2].y: |
---|
3094 | next_case = 'vertex' |
---|
3095 | if triangle.vertices[1].x==neighbour.vertices[0].x: |
---|
3096 | if triangle.vertices[1].y==neighbour.vertices[0].y: |
---|
3097 | next_case = 'two' |
---|
3098 | if triangle.vertices[1].x==neighbour.vertices[1].x: |
---|
3099 | if triangle.vertices[1].y==neighbour.vertices[1].y: |
---|
3100 | next_case = 'one' |
---|
3101 | return next_case |
---|
3102 | |
---|
3103 | |
---|
3104 | |
---|
3105 | def repairCaseVertex(self): |
---|
3106 | |
---|
3107 | r = self.r |
---|
3108 | |
---|
3109 | |
---|
3110 | self.link(r[0],r[2]) |
---|
3111 | self.repair(r[0]) |
---|
3112 | |
---|
3113 | self.link(r[1],r[3]) |
---|
3114 | self.repair(r[1]) |
---|
3115 | |
---|
3116 | self.repair(r[2]) |
---|
3117 | |
---|
3118 | self.repair(r[3]) |
---|
3119 | |
---|
3120 | |
---|
3121 | def repairCaseOne(self): |
---|
3122 | r = self.rkey |
---|
3123 | |
---|
3124 | |
---|
3125 | self.link(r[0],r[2]) |
---|
3126 | self.repair(r[0]) |
---|
3127 | |
---|
3128 | self.link(r[1],r[4]) |
---|
3129 | self.repair(r[1]) |
---|
3130 | |
---|
3131 | self.repair(r[4]) |
---|
3132 | |
---|
3133 | def repairCaseTwo(self): |
---|
3134 | r = self.r |
---|
3135 | |
---|
3136 | self.link(r[0],r[4]) |
---|
3137 | self.repair(r[0]) |
---|
3138 | |
---|
3139 | self.link(r[1],r[3]) |
---|
3140 | self.repair(r[1]) |
---|
3141 | |
---|
3142 | self.repair(r[4]) |
---|
3143 | |
---|
3144 | def repairCaseBoundary(self): |
---|
3145 | r = self.r |
---|
3146 | self.repair(r[2]) |
---|
3147 | self.repair(r[3]) |
---|
3148 | |
---|
3149 | |
---|
3150 | |
---|
3151 | def repair(self,triangle): |
---|
3152 | """ |
---|
3153 | Given a triangle that knows its neighbours, this will |
---|
3154 | force the neighbours to comply. |
---|
3155 | |
---|
3156 | However, it needs to compare the vertices of triangles |
---|
3157 | for this implementation |
---|
3158 | |
---|
3159 | But it doesn't work for invalid neighbour structures |
---|
3160 | """ |
---|
3161 | n=triangle.neighbors |
---|
3162 | for i in (0,1,2): |
---|
3163 | if not n[i] is None: |
---|
3164 | for j in (0,1,2):#to find which side of the list is broken |
---|
3165 | if not (n[i].vertices[j] in triangle.vertices): |
---|
3166 | #ie if j is the side of n that needs fixing |
---|
3167 | k = j |
---|
3168 | n[i].neighbors[k]=triangle |
---|
3169 | |
---|
3170 | |
---|
3171 | |
---|
3172 | def link(self,triangle1,triangle2): |
---|
3173 | """ |
---|
3174 | make triangle1 neighbors point to t |
---|
3175 | #count = 0riangle2 |
---|
3176 | """ |
---|
3177 | count = 0 |
---|
3178 | for i in (0,1,2):#to find which side of the list is broken |
---|
3179 | if not (triangle1.vertices[i] in triangle2.vertices): |
---|
3180 | j = i |
---|
3181 | count+=1 |
---|
3182 | assert count == 1 |
---|
3183 | triangle1.neighbors[j]=triangle2 |
---|
3184 | |
---|
3185 | class Discretised_Tuple_Set: |
---|
3186 | """ |
---|
3187 | if a={(0.0):[(0.01),(0.02)],(0.2):[(0.17)]} |
---|
3188 | a[(0.01)]=a[(0.0)]=[(0.01),(0.02)] |
---|
3189 | a[(10000)]=[] #NOT KEYERROR |
---|
3190 | |
---|
3191 | a.append[(0.01)] |
---|
3192 | => {0.0:[(0.01),(0.02),(0.01)],0.2:[(0.17)]} |
---|
3193 | |
---|
3194 | #NOT IMPLIMENTED |
---|
3195 | a.remove[(0.01)] |
---|
3196 | => {(0.0):[(0.02),(0.01)],0.2:[(0.17)]} |
---|
3197 | |
---|
3198 | a.remove[(0.17)] |
---|
3199 | => {(0.0):[(0.02),(0.01)],0.2:[]} |
---|
3200 | #NOT IMPLIMENTED |
---|
3201 | at a.precision = 2: |
---|
3202 | a.round_up_rel[0.0]= |
---|
3203 | a.round_flat[0.0]= |
---|
3204 | a.round_down_rel[0.0]= |
---|
3205 | |
---|
3206 | a.up((0.1,2.04))= |
---|
3207 | |
---|
3208 | If t_rel = 0, nothing gets rounded into |
---|
3209 | two bins. If t_rel = 0.5, everything does. |
---|
3210 | |
---|
3211 | Ideally, precision can be set high, so that multiple |
---|
3212 | entries are rarely in the same bin. And t_rel should |
---|
3213 | be low (<0.1 for 1 dimension!,<(0.1/n) for small n!!) |
---|
3214 | so that it is rare to put items in mutiple bins. |
---|
3215 | |
---|
3216 | Ex bins per entry = product(a,b,c...,n) |
---|
3217 | a = 1 or 2 s.t. Ex(a) = 1+2*t_rel |
---|
3218 | b = 1 or 2 ... |
---|
3219 | |
---|
3220 | BUT!!! to avoid missing the right bin: |
---|
3221 | (-10)**(precision+1)*t_rel must be greater than the |
---|
3222 | greatest possible variation that an identical element |
---|
3223 | can display. |
---|
3224 | |
---|
3225 | |
---|
3226 | Note that if tol = 0.5 (the max allowed) 0.6 will round to .7 and .5 |
---|
3227 | but not .6 - this looks wrong, but note that *everything* will round, |
---|
3228 | so .6 wont be missed as everything close to it will check in .7 and .5. |
---|
3229 | """ |
---|
3230 | def __init__(self,p_rel = 6,t_rel = 0.01): |
---|
3231 | self.__p_rel__ = p_rel |
---|
3232 | self.__t_rel__ = t_rel |
---|
3233 | |
---|
3234 | self.__p_abs__ = p_rel+1 |
---|
3235 | self.__t_abs__ = t_rel |
---|
3236 | |
---|
3237 | assert t_rel <= 0.5 |
---|
3238 | self.__items__ = {} |
---|
3239 | from math import frexp |
---|
3240 | self.frexp = frexp |
---|
3241 | roundings = [self.round_up_rel,\ |
---|
3242 | self.round_down_rel,self.round_flat_rel,\ |
---|
3243 | self.round_down_abs,self.round_up_abs,\ |
---|
3244 | self.round_flat_abs]# |
---|
3245 | |
---|
3246 | self.roundings = roundings |
---|
3247 | |
---|
3248 | def __repr__(self): |
---|
3249 | return '%s'%self.__items__ |
---|
3250 | |
---|
3251 | def rounded_keys(self,key): |
---|
3252 | key = tuple(key) |
---|
3253 | keys = [key] |
---|
3254 | keys = self.__rounded_keys__(key) |
---|
3255 | return (keys) |
---|
3256 | |
---|
3257 | def __rounded_keys__(self,key): |
---|
3258 | keys = [] |
---|
3259 | rounded_key=list(key) |
---|
3260 | rounded_values=list(key) |
---|
3261 | |
---|
3262 | roundings = list(self.roundings) |
---|
3263 | |
---|
3264 | #initialise rounded_values |
---|
3265 | round = roundings.pop(0) |
---|
3266 | for i in range(len(rounded_values)): |
---|
3267 | rounded_key[i]=round(key[i]) |
---|
3268 | rounded_values[i]={} |
---|
3269 | rounded_values[i][rounded_key[i]]=None |
---|
3270 | keys.append(tuple(rounded_key)) |
---|
3271 | |
---|
3272 | for round in roundings: |
---|
3273 | for i in range(len(rounded_key)): |
---|
3274 | rounded_value=round(key[i]) |
---|
3275 | if not rounded_values[i].has_key(rounded_value): |
---|
3276 | #ie unless round_up_rel = round_down_rel |
---|
3277 | #so the keys stay unique |
---|
3278 | for j in range(len(keys)): |
---|
3279 | rounded_key = list(keys[j]) |
---|
3280 | rounded_key[i]=rounded_value |
---|
3281 | keys.append(tuple(rounded_key)) |
---|
3282 | return keys |
---|
3283 | |
---|
3284 | def append(self,item): |
---|
3285 | keys = self.rounded_keys(item) |
---|
3286 | for key in keys: |
---|
3287 | if self.__items__.has_key(key): |
---|
3288 | self.__items__[key].append(item) |
---|
3289 | else: |
---|
3290 | self.__items__[key]=[item] |
---|
3291 | |
---|
3292 | def __getitem__(self,key): |
---|
3293 | answer = [] |
---|
3294 | keys = self.rounded_keys(key) |
---|
3295 | for key in keys: |
---|
3296 | if self.__items__.has_key(key): |
---|
3297 | answer.extend(self.__items__[key]) |
---|
3298 | #if len(answer)==0: |
---|
3299 | # raise KeyError#FIXME or return KeyError |
---|
3300 | # #FIXME or just return []? |
---|
3301 | else: |
---|
3302 | return answer #FIXME or unique(answer)? |
---|
3303 | |
---|
3304 | def __delete__(self,item): |
---|
3305 | keys = self.rounded_keys(item) |
---|
3306 | answer = False |
---|
3307 | #if any of the possible keys contains |
---|
3308 | #a list, return true |
---|
3309 | for key in keys: |
---|
3310 | if self.__items__.has_key(key): |
---|
3311 | if item in self.__items__[key]: |
---|
3312 | self.__items__[key].remove(item) |
---|
3313 | |
---|
3314 | def remove(self,item): |
---|
3315 | self.__delete__(item) |
---|
3316 | |
---|
3317 | def __contains__(self,item): |
---|
3318 | |
---|
3319 | keys = self.rounded_keys(item) |
---|
3320 | answer = False |
---|
3321 | #if any of the possible keys contains |
---|
3322 | #a list, return true |
---|
3323 | for key in keys: |
---|
3324 | if self.__items__.has_key(key): |
---|
3325 | if item in self.__items__[key]: |
---|
3326 | answer = True |
---|
3327 | return answer |
---|
3328 | |
---|
3329 | |
---|
3330 | def has_item(self,item): |
---|
3331 | return self.__contains__(item) |
---|
3332 | |
---|
3333 | def round_up_rel2(self,value): |
---|
3334 | t_rel=self.__t_rel__ |
---|
3335 | #Rounding up the value |
---|
3336 | m,e = self.frexp(value) |
---|
3337 | m = m/2 |
---|
3338 | e = e + 1 |
---|
3339 | #m is the mantissa, e the exponent |
---|
3340 | # 0.5 < |m| < 1.0 |
---|
3341 | m = m+t_rel*(10**-(self.__p_rel__)) |
---|
3342 | #bump m up |
---|
3343 | m = round(m,self.__p_rel__) |
---|
3344 | return m*(2.**e) |
---|
3345 | |
---|
3346 | def round_down_rel2(self,value): |
---|
3347 | t_rel=self.__t_rel__ |
---|
3348 | #Rounding down the value |
---|
3349 | m,e = self.frexp(value) |
---|
3350 | m = m/2 |
---|
3351 | e = e + 1 |
---|
3352 | #m is the mantissa, e the exponent |
---|
3353 | # 0.5 < m < 1.0 |
---|
3354 | m = m-t_rel*(10**-(self.__p_rel__)) |
---|
3355 | #bump the |m| down, by 5% or whatever |
---|
3356 | #self.p_rel dictates |
---|
3357 | m = round(m,self.__p_rel__) |
---|
3358 | return m*(2.**e) |
---|
3359 | |
---|
3360 | def round_flat_rel2(self,value): |
---|
3361 | #redundant |
---|
3362 | m,e = self.frexp(value) |
---|
3363 | m = m/2 |
---|
3364 | e = e + 1 |
---|
3365 | m = round(m,self.__p_rel__) |
---|
3366 | return m*(2.**e) |
---|
3367 | |
---|
3368 | def round_up_rel(self,value): |
---|
3369 | t_rel=self.__t_rel__ |
---|
3370 | #Rounding up the value |
---|
3371 | m,e = self.frexp(value) |
---|
3372 | #m is the mantissa, e the exponent |
---|
3373 | # 0.5 < |m| < 1.0 |
---|
3374 | m = m+t_rel*(10**-(self.__p_rel__)) |
---|
3375 | #bump m up |
---|
3376 | m = round(m,self.__p_rel__) |
---|
3377 | return m*(2.**e) |
---|
3378 | |
---|
3379 | def round_down_rel(self,value): |
---|
3380 | t_rel=self.__t_rel__ |
---|
3381 | #Rounding down the value |
---|
3382 | m,e = self.frexp(value) |
---|
3383 | #m is the mantissa, e the exponent |
---|
3384 | # 0.5 < m < 1.0 |
---|
3385 | m = m-t_rel*(10**-(self.__p_rel__)) |
---|
3386 | #bump the |m| down, by 5% or whatever |
---|
3387 | #self.p_rel dictates |
---|
3388 | m = round(m,self.__p_rel__) |
---|
3389 | return m*(2.**e) |
---|
3390 | |
---|
3391 | def round_flat_rel(self,value): |
---|
3392 | #redundant |
---|
3393 | m,e = self.frexp(value) |
---|
3394 | m = round(m,self.__p_rel__) |
---|
3395 | return m*(2.**e) |
---|
3396 | |
---|
3397 | def round_up_abs(self,value): |
---|
3398 | t_abs=self.__t_abs__ |
---|
3399 | #Rounding up the value |
---|
3400 | m = value+t_abs*(10**-(self.__p_abs__)) |
---|
3401 | #bump m up |
---|
3402 | m = round(m,self.__p_abs__) |
---|
3403 | return m |
---|
3404 | |
---|
3405 | def round_down_abs(self,value): |
---|
3406 | t_abs=self.__t_abs__ |
---|
3407 | #Rounding down the value |
---|
3408 | m = value-t_abs*(10**-(self.__p_abs__)) |
---|
3409 | #bump the |m| down, by 5% or whatever |
---|
3410 | #self.p_rel dictates |
---|
3411 | m = round(m,self.__p_abs__) |
---|
3412 | return m |
---|
3413 | |
---|
3414 | def round_flat_abs(self,value): |
---|
3415 | #redundant? |
---|
3416 | m = round(value,self.__p_abs__) |
---|
3417 | return m |
---|
3418 | |
---|
3419 | def keys(self): |
---|
3420 | return self.__items__.keys() |
---|
3421 | |
---|
3422 | |
---|
3423 | class Mapped_Discretised_Tuple_Set(Discretised_Tuple_Set): |
---|
3424 | """ |
---|
3425 | This is a discretised tuple set, but |
---|
3426 | based on a mapping. The mapping MUST |
---|
3427 | return a sequence. |
---|
3428 | |
---|
3429 | example: |
---|
3430 | def weight(animal): |
---|
3431 | return [animal.weight] |
---|
3432 | |
---|
3433 | a = Mapped_Discretised_Tuple_Set(weight) |
---|
3434 | a.append[cow] |
---|
3435 | a.append[fox] |
---|
3436 | a.append[horse] |
---|
3437 | |
---|
3438 | a[horse] -> [cow,horse] |
---|
3439 | a[dog] -> [fox] |
---|
3440 | a[elephant] -> [] |
---|
3441 | """ |
---|
3442 | def __init__(self,mapping,p_rel = 6, t_rel=0.01): |
---|
3443 | Discretised_Tuple_Set.__init__\ |
---|
3444 | (self,p_rel,t_rel = t_rel) |
---|
3445 | self.mapping = mapping |
---|
3446 | |
---|
3447 | def rounded_keys(self,key): |
---|
3448 | mapped_key = tuple(self.mapping(key)) |
---|
3449 | keys = self.__rounded_keys__(mapped_key) |
---|
3450 | return keys |
---|
3451 | |
---|
3452 | class Affine_Linespace(Mapped_Discretised_Tuple_Set): |
---|
3453 | """ |
---|
3454 | The affine linespace creates a way to record and compare lines. |
---|
3455 | Precision is a bit of a hack, but it creates a way to avoid |
---|
3456 | misses caused by round offs (between two lines of different |
---|
3457 | lenghts, the short one gets rounded off more). |
---|
3458 | I am starting to think that a quadratic search would be faster. |
---|
3459 | Nearly. |
---|
3460 | """ |
---|
3461 | def __init__(self,p_rel=4,t_rel=0.2): |
---|
3462 | Mapped_Discretised_Tuple_Set.__init__\ |
---|
3463 | (self,self.affine_line,\ |
---|
3464 | p_rel=p_rel,t_rel=t_rel) |
---|
3465 | |
---|
3466 | roundings = \ |
---|
3467 | [self.round_down_rel,self.round_up_rel,self.round_flat_rel] |
---|
3468 | self.roundings = roundings |
---|
3469 | #roundings = \ |
---|
3470 | #[self.round_down_abs,self.round_up_abs,self.round_flat_abs] |
---|
3471 | #self.roundings = roundings |
---|
3472 | |
---|
3473 | def affine_line(self,line): |
---|
3474 | point_1 = line[0] |
---|
3475 | point_2 = line[1] |
---|
3476 | #returns the equation of a line |
---|
3477 | #between two points, in the from |
---|
3478 | #(a,b,-c), as in ax+by-c=0 |
---|
3479 | #or line *dot* (x,y,1) = (0,0,0) |
---|
3480 | |
---|
3481 | #Note that it normalises the line |
---|
3482 | #(a,b,-c) so Line*Line = 1. |
---|
3483 | #This does not change the mathematical |
---|
3484 | #properties, but it makes comparism |
---|
3485 | #easier. |
---|
3486 | |
---|
3487 | #There are probably better algorithms. |
---|
3488 | x1 = point_1[0] |
---|
3489 | x2 = point_2[0] |
---|
3490 | y1 = point_1[1] |
---|
3491 | y2 = point_2[1] |
---|
3492 | dif_x = x1-x2 |
---|
3493 | dif_y = y1-y2 |
---|
3494 | |
---|
3495 | if dif_x == dif_y == 0: |
---|
3496 | msg = 'points are the same' |
---|
3497 | raise msg |
---|
3498 | elif abs(dif_x)>=abs(dif_y): |
---|
3499 | alpha = (-dif_y)/dif_x |
---|
3500 | #a = alpha * b |
---|
3501 | b = -1. |
---|
3502 | c = (x1*alpha+x2*alpha+y1+y2)/2. |
---|
3503 | a = alpha*b |
---|
3504 | else: |
---|
3505 | beta = dif_x/(-dif_y) |
---|
3506 | #b = beta * a |
---|
3507 | a = 1. |
---|
3508 | c = (x1+x2+y1*beta+y2*beta)/2. |
---|
3509 | b = beta*a |
---|
3510 | mag = abs(a)+abs(b) |
---|
3511 | #This does not change the mathematical |
---|
3512 | #properties, but it makes comparism possible. |
---|
3513 | |
---|
3514 | #note that the gradient is b/a, or (a/b)**-1. |
---|
3515 | #so |
---|
3516 | |
---|
3517 | #if a == 0: |
---|
3518 | # sign_a = 1. |
---|
3519 | #else: |
---|
3520 | # sign_a = a/((a**2)**0.5) |
---|
3521 | #if b == 0: |
---|
3522 | # sign_b = 1. |
---|
3523 | #else: |
---|
3524 | # sign_b = b/((b**2)**0.5) |
---|
3525 | #if c == 0: |
---|
3526 | # sign_c = 1. |
---|
3527 | #else: |
---|
3528 | # sign_c = c/((c**2)**0.5) |
---|
3529 | #a = a/mag*sign_a |
---|
3530 | #b = b/mag*sign_b |
---|
3531 | #c = c/mag*sign_c |
---|
3532 | a = a/mag |
---|
3533 | b = b/mag |
---|
3534 | c = c/mag |
---|
3535 | return a,b,c |
---|
3536 | |
---|
3537 | |
---|
3538 | |
---|
3539 | if __name__ == "__main__": |
---|
3540 | #from mesh import * |
---|
3541 | # THIS CAN BE DELETED |
---|
3542 | m = Mesh() |
---|
3543 | dict = importUngenerateFile("ungen_test.txt") |
---|
3544 | m.addVertsSegs(dict) |
---|
3545 | print m3 |
---|