[2051] | 1 | /* |
---|
| 2 | * Copyright 1997, Regents of the University of Minnesota |
---|
| 3 | * |
---|
| 4 | * mesh.c |
---|
| 5 | * |
---|
| 6 | * This file contains routines for converting 3D and 4D finite element |
---|
| 7 | * meshes into dual or nodal graphs |
---|
| 8 | * |
---|
| 9 | * Started 8/18/97 |
---|
| 10 | * George |
---|
| 11 | * |
---|
| 12 | * $Id: mesh.c,v 1.1 1998/11/27 17:59:20 karypis Exp $ |
---|
| 13 | * |
---|
| 14 | */ |
---|
| 15 | |
---|
| 16 | #include <metis.h> |
---|
| 17 | |
---|
| 18 | /***************************************************************************** |
---|
| 19 | * This function creates a graph corresponding to the dual of a finite element |
---|
| 20 | * mesh. At this point the supported elements are triangles, tetrahedrons, and |
---|
| 21 | * bricks. |
---|
| 22 | ******************************************************************************/ |
---|
| 23 | void METIS_MeshToDual(int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, |
---|
| 24 | idxtype *dxadj, idxtype *dadjncy) |
---|
| 25 | { |
---|
| 26 | int esizes[] = {-1, 3, 4, 8, 4}; |
---|
| 27 | |
---|
| 28 | if (*numflag == 1) |
---|
| 29 | ChangeMesh2CNumbering((*ne)*esizes[*etype], elmnts); |
---|
| 30 | |
---|
| 31 | GENDUALMETIS(*ne, *nn, *etype, elmnts, dxadj, dadjncy); |
---|
| 32 | |
---|
| 33 | if (*numflag == 1) |
---|
| 34 | ChangeMesh2FNumbering((*ne)*esizes[*etype], elmnts, *ne, dxadj, dadjncy); |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | |
---|
| 38 | /***************************************************************************** |
---|
| 39 | * This function creates a graph corresponding to the finite element mesh. |
---|
| 40 | * At this point the supported elements are triangles, tetrahedrons. |
---|
| 41 | ******************************************************************************/ |
---|
| 42 | void METIS_MeshToNodal(int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, |
---|
| 43 | idxtype *dxadj, idxtype *dadjncy) |
---|
| 44 | { |
---|
| 45 | int esizes[] = {-1, 3, 4, 8, 4}; |
---|
| 46 | |
---|
| 47 | if (*numflag == 1) |
---|
| 48 | ChangeMesh2CNumbering((*ne)*esizes[*etype], elmnts); |
---|
| 49 | |
---|
| 50 | switch (*etype) { |
---|
| 51 | case 1: |
---|
| 52 | TRINODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
| 53 | break; |
---|
| 54 | case 2: |
---|
| 55 | TETNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
| 56 | break; |
---|
| 57 | case 3: |
---|
| 58 | HEXNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
| 59 | break; |
---|
| 60 | case 4: |
---|
| 61 | QUADNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
| 62 | break; |
---|
| 63 | } |
---|
| 64 | |
---|
| 65 | if (*numflag == 1) |
---|
| 66 | ChangeMesh2FNumbering((*ne)*esizes[*etype], elmnts, *nn, dxadj, dadjncy); |
---|
| 67 | } |
---|
| 68 | |
---|
| 69 | |
---|
| 70 | |
---|
| 71 | /***************************************************************************** |
---|
| 72 | * This function creates the dual of a finite element mesh |
---|
| 73 | ******************************************************************************/ |
---|
| 74 | void GENDUALMETIS(int nelmnts, int nvtxs, int etype, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
| 75 | { |
---|
| 76 | int i, j, jj, k, kk, kkk, l, m, n, nedges, mask; |
---|
| 77 | idxtype *nptr, *nind; |
---|
| 78 | idxtype *mark, ind[200], wgt[200]; |
---|
| 79 | int esize, esizes[] = {-1, 3, 4, 8, 4}, |
---|
| 80 | mgcnum, mgcnums[] = {-1, 2, 3, 4, 2}; |
---|
| 81 | |
---|
| 82 | mask = (1<<11)-1; |
---|
| 83 | mark = idxsmalloc(mask+1, -1, "GENDUALMETIS: mark"); |
---|
| 84 | |
---|
| 85 | /* Get the element size and magic number for the particular element */ |
---|
| 86 | esize = esizes[etype]; |
---|
| 87 | mgcnum = mgcnums[etype]; |
---|
| 88 | |
---|
| 89 | /* Construct the node-element list first */ |
---|
| 90 | nptr = idxsmalloc(nvtxs+1, 0, "GENDUALMETIS: nptr"); |
---|
| 91 | for (j=esize*nelmnts, i=0; i<j; i++) |
---|
| 92 | nptr[elmnts[i]]++; |
---|
| 93 | MAKECSR(i, nvtxs, nptr); |
---|
| 94 | |
---|
| 95 | nind = idxmalloc(nptr[nvtxs], "GENDUALMETIS: nind"); |
---|
| 96 | for (k=i=0; i<nelmnts; i++) { |
---|
| 97 | for (j=0; j<esize; j++, k++) |
---|
| 98 | nind[nptr[elmnts[k]]++] = i; |
---|
| 99 | } |
---|
| 100 | for (i=nvtxs; i>0; i--) |
---|
| 101 | nptr[i] = nptr[i-1]; |
---|
| 102 | nptr[0] = 0; |
---|
| 103 | |
---|
| 104 | for (i=0; i<nelmnts; i++) |
---|
| 105 | dxadj[i] = esize*i; |
---|
| 106 | |
---|
| 107 | for (i=0; i<nelmnts; i++) { |
---|
| 108 | for (m=j=0; j<esize; j++) { |
---|
| 109 | n = elmnts[esize*i+j]; |
---|
| 110 | for (k=nptr[n+1]-1; k>=nptr[n]; k--) { |
---|
| 111 | if ((kk = nind[k]) <= i) |
---|
| 112 | break; |
---|
| 113 | |
---|
| 114 | kkk = kk&mask; |
---|
| 115 | if ((l = mark[kkk]) == -1) { |
---|
| 116 | ind[m] = kk; |
---|
| 117 | wgt[m] = 1; |
---|
| 118 | mark[kkk] = m++; |
---|
| 119 | } |
---|
| 120 | else if (ind[l] == kk) { |
---|
| 121 | wgt[l]++; |
---|
| 122 | } |
---|
| 123 | else { |
---|
| 124 | for (jj=0; jj<m; jj++) { |
---|
| 125 | if (ind[jj] == kk) { |
---|
| 126 | wgt[jj]++; |
---|
| 127 | break; |
---|
| 128 | } |
---|
| 129 | } |
---|
| 130 | if (jj == m) { |
---|
| 131 | ind[m] = kk; |
---|
| 132 | wgt[m++] = 1; |
---|
| 133 | } |
---|
| 134 | } |
---|
| 135 | } |
---|
| 136 | } |
---|
| 137 | for (j=0; j<m; j++) { |
---|
| 138 | if (wgt[j] == mgcnum) { |
---|
| 139 | k = ind[j]; |
---|
| 140 | dadjncy[dxadj[i]++] = k; |
---|
| 141 | dadjncy[dxadj[k]++] = i; |
---|
| 142 | } |
---|
| 143 | mark[ind[j]&mask] = -1; |
---|
| 144 | } |
---|
| 145 | } |
---|
| 146 | |
---|
| 147 | /* Go and consolidate the dxadj and dadjncy */ |
---|
| 148 | for (j=i=0; i<nelmnts; i++) { |
---|
| 149 | for (k=esize*i; k<dxadj[i]; k++, j++) |
---|
| 150 | dadjncy[j] = dadjncy[k]; |
---|
| 151 | dxadj[i] = j; |
---|
| 152 | } |
---|
| 153 | for (i=nelmnts; i>0; i--) |
---|
| 154 | dxadj[i] = dxadj[i-1]; |
---|
| 155 | dxadj[0] = 0; |
---|
| 156 | |
---|
| 157 | free(mark); |
---|
| 158 | free(nptr); |
---|
| 159 | free(nind); |
---|
| 160 | |
---|
| 161 | } |
---|
| 162 | |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | /***************************************************************************** |
---|
| 167 | * This function creates the nodal graph of a finite element mesh |
---|
| 168 | ******************************************************************************/ |
---|
| 169 | void TRINODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
| 170 | { |
---|
| 171 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
| 172 | idxtype *nptr, *nind; |
---|
| 173 | idxtype *mark; |
---|
| 174 | |
---|
| 175 | /* Construct the node-element list first */ |
---|
| 176 | nptr = idxsmalloc(nvtxs+1, 0, "TRINODALMETIS: nptr"); |
---|
| 177 | for (j=3*nelmnts, i=0; i<j; i++) |
---|
| 178 | nptr[elmnts[i]]++; |
---|
| 179 | MAKECSR(i, nvtxs, nptr); |
---|
| 180 | |
---|
| 181 | nind = idxmalloc(nptr[nvtxs], "TRINODALMETIS: nind"); |
---|
| 182 | for (k=i=0; i<nelmnts; i++) { |
---|
| 183 | for (j=0; j<3; j++, k++) |
---|
| 184 | nind[nptr[elmnts[k]]++] = i; |
---|
| 185 | } |
---|
| 186 | for (i=nvtxs; i>0; i--) |
---|
| 187 | nptr[i] = nptr[i-1]; |
---|
| 188 | nptr[0] = 0; |
---|
| 189 | |
---|
| 190 | |
---|
| 191 | mark = idxsmalloc(nvtxs, -1, "TRINODALMETIS: mark"); |
---|
| 192 | |
---|
| 193 | nedges = dxadj[0] = 0; |
---|
| 194 | for (i=0; i<nvtxs; i++) { |
---|
| 195 | mark[i] = i; |
---|
| 196 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
| 197 | for (jj=3*nind[j], k=0; k<3; k++, jj++) { |
---|
| 198 | kk = elmnts[jj]; |
---|
| 199 | if (mark[kk] != i) { |
---|
| 200 | mark[kk] = i; |
---|
| 201 | dadjncy[nedges++] = kk; |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | } |
---|
| 205 | dxadj[i+1] = nedges; |
---|
| 206 | } |
---|
| 207 | |
---|
| 208 | free(mark); |
---|
| 209 | free(nptr); |
---|
| 210 | free(nind); |
---|
| 211 | |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | |
---|
| 215 | /***************************************************************************** |
---|
| 216 | * This function creates the nodal graph of a finite element mesh |
---|
| 217 | ******************************************************************************/ |
---|
| 218 | void TETNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
| 219 | { |
---|
| 220 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
| 221 | idxtype *nptr, *nind; |
---|
| 222 | idxtype *mark; |
---|
| 223 | |
---|
| 224 | /* Construct the node-element list first */ |
---|
| 225 | nptr = idxsmalloc(nvtxs+1, 0, "TETNODALMETIS: nptr"); |
---|
| 226 | for (j=4*nelmnts, i=0; i<j; i++) |
---|
| 227 | nptr[elmnts[i]]++; |
---|
| 228 | MAKECSR(i, nvtxs, nptr); |
---|
| 229 | |
---|
| 230 | nind = idxmalloc(nptr[nvtxs], "TETNODALMETIS: nind"); |
---|
| 231 | for (k=i=0; i<nelmnts; i++) { |
---|
| 232 | for (j=0; j<4; j++, k++) |
---|
| 233 | nind[nptr[elmnts[k]]++] = i; |
---|
| 234 | } |
---|
| 235 | for (i=nvtxs; i>0; i--) |
---|
| 236 | nptr[i] = nptr[i-1]; |
---|
| 237 | nptr[0] = 0; |
---|
| 238 | |
---|
| 239 | |
---|
| 240 | mark = idxsmalloc(nvtxs, -1, "TETNODALMETIS: mark"); |
---|
| 241 | |
---|
| 242 | nedges = dxadj[0] = 0; |
---|
| 243 | for (i=0; i<nvtxs; i++) { |
---|
| 244 | mark[i] = i; |
---|
| 245 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
| 246 | for (jj=4*nind[j], k=0; k<4; k++, jj++) { |
---|
| 247 | kk = elmnts[jj]; |
---|
| 248 | if (mark[kk] != i) { |
---|
| 249 | mark[kk] = i; |
---|
| 250 | dadjncy[nedges++] = kk; |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | dxadj[i+1] = nedges; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | free(mark); |
---|
| 258 | free(nptr); |
---|
| 259 | free(nind); |
---|
| 260 | |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | |
---|
| 264 | /***************************************************************************** |
---|
| 265 | * This function creates the nodal graph of a finite element mesh |
---|
| 266 | ******************************************************************************/ |
---|
| 267 | void HEXNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
| 268 | { |
---|
| 269 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
| 270 | idxtype *nptr, *nind; |
---|
| 271 | idxtype *mark; |
---|
| 272 | int table[8][3] = {1, 3, 4, |
---|
| 273 | 0, 2, 5, |
---|
| 274 | 1, 3, 6, |
---|
| 275 | 0, 2, 7, |
---|
| 276 | 0, 5, 7, |
---|
| 277 | 1, 4, 6, |
---|
| 278 | 2, 5, 7, |
---|
| 279 | 3, 4, 6}; |
---|
| 280 | |
---|
| 281 | /* Construct the node-element list first */ |
---|
| 282 | nptr = idxsmalloc(nvtxs+1, 0, "HEXNODALMETIS: nptr"); |
---|
| 283 | for (j=8*nelmnts, i=0; i<j; i++) |
---|
| 284 | nptr[elmnts[i]]++; |
---|
| 285 | MAKECSR(i, nvtxs, nptr); |
---|
| 286 | |
---|
| 287 | nind = idxmalloc(nptr[nvtxs], "HEXNODALMETIS: nind"); |
---|
| 288 | for (k=i=0; i<nelmnts; i++) { |
---|
| 289 | for (j=0; j<8; j++, k++) |
---|
| 290 | nind[nptr[elmnts[k]]++] = i; |
---|
| 291 | } |
---|
| 292 | for (i=nvtxs; i>0; i--) |
---|
| 293 | nptr[i] = nptr[i-1]; |
---|
| 294 | nptr[0] = 0; |
---|
| 295 | |
---|
| 296 | |
---|
| 297 | mark = idxsmalloc(nvtxs, -1, "HEXNODALMETIS: mark"); |
---|
| 298 | |
---|
| 299 | nedges = dxadj[0] = 0; |
---|
| 300 | for (i=0; i<nvtxs; i++) { |
---|
| 301 | mark[i] = i; |
---|
| 302 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
| 303 | jj=8*nind[j]; |
---|
| 304 | for (k=0; k<8; k++) { |
---|
| 305 | if (elmnts[jj+k] == i) |
---|
| 306 | break; |
---|
| 307 | } |
---|
| 308 | ASSERT(k != 8); |
---|
| 309 | |
---|
| 310 | /* You found the index, now go and put the 3 neighbors */ |
---|
| 311 | kk = elmnts[jj+table[k][0]]; |
---|
| 312 | if (mark[kk] != i) { |
---|
| 313 | mark[kk] = i; |
---|
| 314 | dadjncy[nedges++] = kk; |
---|
| 315 | } |
---|
| 316 | kk = elmnts[jj+table[k][1]]; |
---|
| 317 | if (mark[kk] != i) { |
---|
| 318 | mark[kk] = i; |
---|
| 319 | dadjncy[nedges++] = kk; |
---|
| 320 | } |
---|
| 321 | kk = elmnts[jj+table[k][2]]; |
---|
| 322 | if (mark[kk] != i) { |
---|
| 323 | mark[kk] = i; |
---|
| 324 | dadjncy[nedges++] = kk; |
---|
| 325 | } |
---|
| 326 | } |
---|
| 327 | dxadj[i+1] = nedges; |
---|
| 328 | } |
---|
| 329 | |
---|
| 330 | free(mark); |
---|
| 331 | free(nptr); |
---|
| 332 | free(nind); |
---|
| 333 | |
---|
| 334 | } |
---|
| 335 | |
---|
| 336 | |
---|
| 337 | /***************************************************************************** |
---|
| 338 | * This function creates the nodal graph of a finite element mesh |
---|
| 339 | ******************************************************************************/ |
---|
| 340 | void QUADNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
| 341 | { |
---|
| 342 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
| 343 | idxtype *nptr, *nind; |
---|
| 344 | idxtype *mark; |
---|
| 345 | int table[4][2] = {1, 3, |
---|
| 346 | 0, 2, |
---|
| 347 | 1, 3, |
---|
| 348 | 0, 2}; |
---|
| 349 | |
---|
| 350 | /* Construct the node-element list first */ |
---|
| 351 | nptr = idxsmalloc(nvtxs+1, 0, "QUADNODALMETIS: nptr"); |
---|
| 352 | for (j=4*nelmnts, i=0; i<j; i++) |
---|
| 353 | nptr[elmnts[i]]++; |
---|
| 354 | MAKECSR(i, nvtxs, nptr); |
---|
| 355 | |
---|
| 356 | nind = idxmalloc(nptr[nvtxs], "QUADNODALMETIS: nind"); |
---|
| 357 | for (k=i=0; i<nelmnts; i++) { |
---|
| 358 | for (j=0; j<4; j++, k++) |
---|
| 359 | nind[nptr[elmnts[k]]++] = i; |
---|
| 360 | } |
---|
| 361 | for (i=nvtxs; i>0; i--) |
---|
| 362 | nptr[i] = nptr[i-1]; |
---|
| 363 | nptr[0] = 0; |
---|
| 364 | |
---|
| 365 | |
---|
| 366 | mark = idxsmalloc(nvtxs, -1, "QUADNODALMETIS: mark"); |
---|
| 367 | |
---|
| 368 | nedges = dxadj[0] = 0; |
---|
| 369 | for (i=0; i<nvtxs; i++) { |
---|
| 370 | mark[i] = i; |
---|
| 371 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
| 372 | jj=4*nind[j]; |
---|
| 373 | for (k=0; k<4; k++) { |
---|
| 374 | if (elmnts[jj+k] == i) |
---|
| 375 | break; |
---|
| 376 | } |
---|
| 377 | ASSERT(k != 4); |
---|
| 378 | |
---|
| 379 | /* You found the index, now go and put the 2 neighbors */ |
---|
| 380 | kk = elmnts[jj+table[k][0]]; |
---|
| 381 | if (mark[kk] != i) { |
---|
| 382 | mark[kk] = i; |
---|
| 383 | dadjncy[nedges++] = kk; |
---|
| 384 | } |
---|
| 385 | kk = elmnts[jj+table[k][1]]; |
---|
| 386 | if (mark[kk] != i) { |
---|
| 387 | mark[kk] = i; |
---|
| 388 | dadjncy[nedges++] = kk; |
---|
| 389 | } |
---|
| 390 | } |
---|
| 391 | dxadj[i+1] = nedges; |
---|
| 392 | } |
---|
| 393 | |
---|
| 394 | free(mark); |
---|
| 395 | free(nptr); |
---|
| 396 | free(nind); |
---|
| 397 | |
---|
| 398 | } |
---|