1 | /* |
---|
2 | * Copyright 1997, Regents of the University of Minnesota |
---|
3 | * |
---|
4 | * mesh.c |
---|
5 | * |
---|
6 | * This file contains routines for converting 3D and 4D finite element |
---|
7 | * meshes into dual or nodal graphs |
---|
8 | * |
---|
9 | * Started 8/18/97 |
---|
10 | * George |
---|
11 | * |
---|
12 | * $Id: mesh.c,v 1.1 1998/11/27 17:59:20 karypis Exp $ |
---|
13 | * |
---|
14 | */ |
---|
15 | |
---|
16 | #include <metis.h> |
---|
17 | |
---|
18 | /***************************************************************************** |
---|
19 | * This function creates a graph corresponding to the dual of a finite element |
---|
20 | * mesh. At this point the supported elements are triangles, tetrahedrons, and |
---|
21 | * bricks. |
---|
22 | ******************************************************************************/ |
---|
23 | void METIS_MeshToDual(int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, |
---|
24 | idxtype *dxadj, idxtype *dadjncy) |
---|
25 | { |
---|
26 | int esizes[] = {-1, 3, 4, 8, 4}; |
---|
27 | |
---|
28 | if (*numflag == 1) |
---|
29 | ChangeMesh2CNumbering((*ne)*esizes[*etype], elmnts); |
---|
30 | |
---|
31 | GENDUALMETIS(*ne, *nn, *etype, elmnts, dxadj, dadjncy); |
---|
32 | |
---|
33 | if (*numflag == 1) |
---|
34 | ChangeMesh2FNumbering((*ne)*esizes[*etype], elmnts, *ne, dxadj, dadjncy); |
---|
35 | } |
---|
36 | |
---|
37 | |
---|
38 | /***************************************************************************** |
---|
39 | * This function creates a graph corresponding to the finite element mesh. |
---|
40 | * At this point the supported elements are triangles, tetrahedrons. |
---|
41 | ******************************************************************************/ |
---|
42 | void METIS_MeshToNodal(int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, |
---|
43 | idxtype *dxadj, idxtype *dadjncy) |
---|
44 | { |
---|
45 | int esizes[] = {-1, 3, 4, 8, 4}; |
---|
46 | |
---|
47 | if (*numflag == 1) |
---|
48 | ChangeMesh2CNumbering((*ne)*esizes[*etype], elmnts); |
---|
49 | |
---|
50 | switch (*etype) { |
---|
51 | case 1: |
---|
52 | TRINODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
53 | break; |
---|
54 | case 2: |
---|
55 | TETNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
56 | break; |
---|
57 | case 3: |
---|
58 | HEXNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
59 | break; |
---|
60 | case 4: |
---|
61 | QUADNODALMETIS(*ne, *nn, elmnts, dxadj, dadjncy); |
---|
62 | break; |
---|
63 | } |
---|
64 | |
---|
65 | if (*numflag == 1) |
---|
66 | ChangeMesh2FNumbering((*ne)*esizes[*etype], elmnts, *nn, dxadj, dadjncy); |
---|
67 | } |
---|
68 | |
---|
69 | |
---|
70 | |
---|
71 | /***************************************************************************** |
---|
72 | * This function creates the dual of a finite element mesh |
---|
73 | ******************************************************************************/ |
---|
74 | void GENDUALMETIS(int nelmnts, int nvtxs, int etype, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
75 | { |
---|
76 | int i, j, jj, k, kk, kkk, l, m, n, nedges, mask; |
---|
77 | idxtype *nptr, *nind; |
---|
78 | idxtype *mark, ind[200], wgt[200]; |
---|
79 | int esize, esizes[] = {-1, 3, 4, 8, 4}, |
---|
80 | mgcnum, mgcnums[] = {-1, 2, 3, 4, 2}; |
---|
81 | |
---|
82 | mask = (1<<11)-1; |
---|
83 | mark = idxsmalloc(mask+1, -1, "GENDUALMETIS: mark"); |
---|
84 | |
---|
85 | /* Get the element size and magic number for the particular element */ |
---|
86 | esize = esizes[etype]; |
---|
87 | mgcnum = mgcnums[etype]; |
---|
88 | |
---|
89 | /* Construct the node-element list first */ |
---|
90 | nptr = idxsmalloc(nvtxs+1, 0, "GENDUALMETIS: nptr"); |
---|
91 | for (j=esize*nelmnts, i=0; i<j; i++) |
---|
92 | nptr[elmnts[i]]++; |
---|
93 | MAKECSR(i, nvtxs, nptr); |
---|
94 | |
---|
95 | nind = idxmalloc(nptr[nvtxs], "GENDUALMETIS: nind"); |
---|
96 | for (k=i=0; i<nelmnts; i++) { |
---|
97 | for (j=0; j<esize; j++, k++) |
---|
98 | nind[nptr[elmnts[k]]++] = i; |
---|
99 | } |
---|
100 | for (i=nvtxs; i>0; i--) |
---|
101 | nptr[i] = nptr[i-1]; |
---|
102 | nptr[0] = 0; |
---|
103 | |
---|
104 | for (i=0; i<nelmnts; i++) |
---|
105 | dxadj[i] = esize*i; |
---|
106 | |
---|
107 | for (i=0; i<nelmnts; i++) { |
---|
108 | for (m=j=0; j<esize; j++) { |
---|
109 | n = elmnts[esize*i+j]; |
---|
110 | for (k=nptr[n+1]-1; k>=nptr[n]; k--) { |
---|
111 | if ((kk = nind[k]) <= i) |
---|
112 | break; |
---|
113 | |
---|
114 | kkk = kk&mask; |
---|
115 | if ((l = mark[kkk]) == -1) { |
---|
116 | ind[m] = kk; |
---|
117 | wgt[m] = 1; |
---|
118 | mark[kkk] = m++; |
---|
119 | } |
---|
120 | else if (ind[l] == kk) { |
---|
121 | wgt[l]++; |
---|
122 | } |
---|
123 | else { |
---|
124 | for (jj=0; jj<m; jj++) { |
---|
125 | if (ind[jj] == kk) { |
---|
126 | wgt[jj]++; |
---|
127 | break; |
---|
128 | } |
---|
129 | } |
---|
130 | if (jj == m) { |
---|
131 | ind[m] = kk; |
---|
132 | wgt[m++] = 1; |
---|
133 | } |
---|
134 | } |
---|
135 | } |
---|
136 | } |
---|
137 | for (j=0; j<m; j++) { |
---|
138 | if (wgt[j] == mgcnum) { |
---|
139 | k = ind[j]; |
---|
140 | dadjncy[dxadj[i]++] = k; |
---|
141 | dadjncy[dxadj[k]++] = i; |
---|
142 | } |
---|
143 | mark[ind[j]&mask] = -1; |
---|
144 | } |
---|
145 | } |
---|
146 | |
---|
147 | /* Go and consolidate the dxadj and dadjncy */ |
---|
148 | for (j=i=0; i<nelmnts; i++) { |
---|
149 | for (k=esize*i; k<dxadj[i]; k++, j++) |
---|
150 | dadjncy[j] = dadjncy[k]; |
---|
151 | dxadj[i] = j; |
---|
152 | } |
---|
153 | for (i=nelmnts; i>0; i--) |
---|
154 | dxadj[i] = dxadj[i-1]; |
---|
155 | dxadj[0] = 0; |
---|
156 | |
---|
157 | free(mark); |
---|
158 | free(nptr); |
---|
159 | free(nind); |
---|
160 | |
---|
161 | } |
---|
162 | |
---|
163 | |
---|
164 | |
---|
165 | |
---|
166 | /***************************************************************************** |
---|
167 | * This function creates the nodal graph of a finite element mesh |
---|
168 | ******************************************************************************/ |
---|
169 | void TRINODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
170 | { |
---|
171 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
172 | idxtype *nptr, *nind; |
---|
173 | idxtype *mark; |
---|
174 | |
---|
175 | /* Construct the node-element list first */ |
---|
176 | nptr = idxsmalloc(nvtxs+1, 0, "TRINODALMETIS: nptr"); |
---|
177 | for (j=3*nelmnts, i=0; i<j; i++) |
---|
178 | nptr[elmnts[i]]++; |
---|
179 | MAKECSR(i, nvtxs, nptr); |
---|
180 | |
---|
181 | nind = idxmalloc(nptr[nvtxs], "TRINODALMETIS: nind"); |
---|
182 | for (k=i=0; i<nelmnts; i++) { |
---|
183 | for (j=0; j<3; j++, k++) |
---|
184 | nind[nptr[elmnts[k]]++] = i; |
---|
185 | } |
---|
186 | for (i=nvtxs; i>0; i--) |
---|
187 | nptr[i] = nptr[i-1]; |
---|
188 | nptr[0] = 0; |
---|
189 | |
---|
190 | |
---|
191 | mark = idxsmalloc(nvtxs, -1, "TRINODALMETIS: mark"); |
---|
192 | |
---|
193 | nedges = dxadj[0] = 0; |
---|
194 | for (i=0; i<nvtxs; i++) { |
---|
195 | mark[i] = i; |
---|
196 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
197 | for (jj=3*nind[j], k=0; k<3; k++, jj++) { |
---|
198 | kk = elmnts[jj]; |
---|
199 | if (mark[kk] != i) { |
---|
200 | mark[kk] = i; |
---|
201 | dadjncy[nedges++] = kk; |
---|
202 | } |
---|
203 | } |
---|
204 | } |
---|
205 | dxadj[i+1] = nedges; |
---|
206 | } |
---|
207 | |
---|
208 | free(mark); |
---|
209 | free(nptr); |
---|
210 | free(nind); |
---|
211 | |
---|
212 | } |
---|
213 | |
---|
214 | |
---|
215 | /***************************************************************************** |
---|
216 | * This function creates the nodal graph of a finite element mesh |
---|
217 | ******************************************************************************/ |
---|
218 | void TETNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
219 | { |
---|
220 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
221 | idxtype *nptr, *nind; |
---|
222 | idxtype *mark; |
---|
223 | |
---|
224 | /* Construct the node-element list first */ |
---|
225 | nptr = idxsmalloc(nvtxs+1, 0, "TETNODALMETIS: nptr"); |
---|
226 | for (j=4*nelmnts, i=0; i<j; i++) |
---|
227 | nptr[elmnts[i]]++; |
---|
228 | MAKECSR(i, nvtxs, nptr); |
---|
229 | |
---|
230 | nind = idxmalloc(nptr[nvtxs], "TETNODALMETIS: nind"); |
---|
231 | for (k=i=0; i<nelmnts; i++) { |
---|
232 | for (j=0; j<4; j++, k++) |
---|
233 | nind[nptr[elmnts[k]]++] = i; |
---|
234 | } |
---|
235 | for (i=nvtxs; i>0; i--) |
---|
236 | nptr[i] = nptr[i-1]; |
---|
237 | nptr[0] = 0; |
---|
238 | |
---|
239 | |
---|
240 | mark = idxsmalloc(nvtxs, -1, "TETNODALMETIS: mark"); |
---|
241 | |
---|
242 | nedges = dxadj[0] = 0; |
---|
243 | for (i=0; i<nvtxs; i++) { |
---|
244 | mark[i] = i; |
---|
245 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
246 | for (jj=4*nind[j], k=0; k<4; k++, jj++) { |
---|
247 | kk = elmnts[jj]; |
---|
248 | if (mark[kk] != i) { |
---|
249 | mark[kk] = i; |
---|
250 | dadjncy[nedges++] = kk; |
---|
251 | } |
---|
252 | } |
---|
253 | } |
---|
254 | dxadj[i+1] = nedges; |
---|
255 | } |
---|
256 | |
---|
257 | free(mark); |
---|
258 | free(nptr); |
---|
259 | free(nind); |
---|
260 | |
---|
261 | } |
---|
262 | |
---|
263 | |
---|
264 | /***************************************************************************** |
---|
265 | * This function creates the nodal graph of a finite element mesh |
---|
266 | ******************************************************************************/ |
---|
267 | void HEXNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
268 | { |
---|
269 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
270 | idxtype *nptr, *nind; |
---|
271 | idxtype *mark; |
---|
272 | int table[8][3] = {1, 3, 4, |
---|
273 | 0, 2, 5, |
---|
274 | 1, 3, 6, |
---|
275 | 0, 2, 7, |
---|
276 | 0, 5, 7, |
---|
277 | 1, 4, 6, |
---|
278 | 2, 5, 7, |
---|
279 | 3, 4, 6}; |
---|
280 | |
---|
281 | /* Construct the node-element list first */ |
---|
282 | nptr = idxsmalloc(nvtxs+1, 0, "HEXNODALMETIS: nptr"); |
---|
283 | for (j=8*nelmnts, i=0; i<j; i++) |
---|
284 | nptr[elmnts[i]]++; |
---|
285 | MAKECSR(i, nvtxs, nptr); |
---|
286 | |
---|
287 | nind = idxmalloc(nptr[nvtxs], "HEXNODALMETIS: nind"); |
---|
288 | for (k=i=0; i<nelmnts; i++) { |
---|
289 | for (j=0; j<8; j++, k++) |
---|
290 | nind[nptr[elmnts[k]]++] = i; |
---|
291 | } |
---|
292 | for (i=nvtxs; i>0; i--) |
---|
293 | nptr[i] = nptr[i-1]; |
---|
294 | nptr[0] = 0; |
---|
295 | |
---|
296 | |
---|
297 | mark = idxsmalloc(nvtxs, -1, "HEXNODALMETIS: mark"); |
---|
298 | |
---|
299 | nedges = dxadj[0] = 0; |
---|
300 | for (i=0; i<nvtxs; i++) { |
---|
301 | mark[i] = i; |
---|
302 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
303 | jj=8*nind[j]; |
---|
304 | for (k=0; k<8; k++) { |
---|
305 | if (elmnts[jj+k] == i) |
---|
306 | break; |
---|
307 | } |
---|
308 | ASSERT(k != 8); |
---|
309 | |
---|
310 | /* You found the index, now go and put the 3 neighbors */ |
---|
311 | kk = elmnts[jj+table[k][0]]; |
---|
312 | if (mark[kk] != i) { |
---|
313 | mark[kk] = i; |
---|
314 | dadjncy[nedges++] = kk; |
---|
315 | } |
---|
316 | kk = elmnts[jj+table[k][1]]; |
---|
317 | if (mark[kk] != i) { |
---|
318 | mark[kk] = i; |
---|
319 | dadjncy[nedges++] = kk; |
---|
320 | } |
---|
321 | kk = elmnts[jj+table[k][2]]; |
---|
322 | if (mark[kk] != i) { |
---|
323 | mark[kk] = i; |
---|
324 | dadjncy[nedges++] = kk; |
---|
325 | } |
---|
326 | } |
---|
327 | dxadj[i+1] = nedges; |
---|
328 | } |
---|
329 | |
---|
330 | free(mark); |
---|
331 | free(nptr); |
---|
332 | free(nind); |
---|
333 | |
---|
334 | } |
---|
335 | |
---|
336 | |
---|
337 | /***************************************************************************** |
---|
338 | * This function creates the nodal graph of a finite element mesh |
---|
339 | ******************************************************************************/ |
---|
340 | void QUADNODALMETIS(int nelmnts, int nvtxs, idxtype *elmnts, idxtype *dxadj, idxtype *dadjncy) |
---|
341 | { |
---|
342 | int i, j, jj, k, kk, kkk, l, m, n, nedges; |
---|
343 | idxtype *nptr, *nind; |
---|
344 | idxtype *mark; |
---|
345 | int table[4][2] = {1, 3, |
---|
346 | 0, 2, |
---|
347 | 1, 3, |
---|
348 | 0, 2}; |
---|
349 | |
---|
350 | /* Construct the node-element list first */ |
---|
351 | nptr = idxsmalloc(nvtxs+1, 0, "QUADNODALMETIS: nptr"); |
---|
352 | for (j=4*nelmnts, i=0; i<j; i++) |
---|
353 | nptr[elmnts[i]]++; |
---|
354 | MAKECSR(i, nvtxs, nptr); |
---|
355 | |
---|
356 | nind = idxmalloc(nptr[nvtxs], "QUADNODALMETIS: nind"); |
---|
357 | for (k=i=0; i<nelmnts; i++) { |
---|
358 | for (j=0; j<4; j++, k++) |
---|
359 | nind[nptr[elmnts[k]]++] = i; |
---|
360 | } |
---|
361 | for (i=nvtxs; i>0; i--) |
---|
362 | nptr[i] = nptr[i-1]; |
---|
363 | nptr[0] = 0; |
---|
364 | |
---|
365 | |
---|
366 | mark = idxsmalloc(nvtxs, -1, "QUADNODALMETIS: mark"); |
---|
367 | |
---|
368 | nedges = dxadj[0] = 0; |
---|
369 | for (i=0; i<nvtxs; i++) { |
---|
370 | mark[i] = i; |
---|
371 | for (j=nptr[i]; j<nptr[i+1]; j++) { |
---|
372 | jj=4*nind[j]; |
---|
373 | for (k=0; k<4; k++) { |
---|
374 | if (elmnts[jj+k] == i) |
---|
375 | break; |
---|
376 | } |
---|
377 | ASSERT(k != 4); |
---|
378 | |
---|
379 | /* You found the index, now go and put the 2 neighbors */ |
---|
380 | kk = elmnts[jj+table[k][0]]; |
---|
381 | if (mark[kk] != i) { |
---|
382 | mark[kk] = i; |
---|
383 | dadjncy[nedges++] = kk; |
---|
384 | } |
---|
385 | kk = elmnts[jj+table[k][1]]; |
---|
386 | if (mark[kk] != i) { |
---|
387 | mark[kk] = i; |
---|
388 | dadjncy[nedges++] = kk; |
---|
389 | } |
---|
390 | } |
---|
391 | dxadj[i+1] = nedges; |
---|
392 | } |
---|
393 | |
---|
394 | free(mark); |
---|
395 | free(nptr); |
---|
396 | free(nind); |
---|
397 | |
---|
398 | } |
---|