[2051] | 1 | /* |
---|
| 2 | * Copyright 1997, Regents of the University of Minnesota |
---|
| 3 | * |
---|
| 4 | * smbfactor.c |
---|
| 5 | * |
---|
| 6 | * This file performs the symbolic factorization of a matrix |
---|
| 7 | * |
---|
| 8 | * Started 8/1/97 |
---|
| 9 | * George |
---|
| 10 | * |
---|
| 11 | * $Id: smbfactor.c,v 1.1 1998/11/27 17:59:40 karypis Exp $ |
---|
| 12 | * |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | #include <metis.h> |
---|
| 16 | |
---|
| 17 | |
---|
| 18 | /************************************************************************* |
---|
| 19 | * This function sets up data structures for fill-in computations |
---|
| 20 | **************************************************************************/ |
---|
| 21 | void ComputeFillIn(GraphType *graph, idxtype *iperm) |
---|
| 22 | { |
---|
| 23 | int i, j, k, nvtxs, maxlnz, maxsub; |
---|
| 24 | idxtype *xadj, *adjncy; |
---|
| 25 | idxtype *perm, *xlnz, *xnzsub, *nzsub; |
---|
| 26 | double opc; |
---|
| 27 | |
---|
| 28 | /* |
---|
| 29 | printf("\nSymbolic factorization... --------------------------------------------\n"); |
---|
| 30 | */ |
---|
| 31 | |
---|
| 32 | nvtxs = graph->nvtxs; |
---|
| 33 | xadj = graph->xadj; |
---|
| 34 | adjncy = graph->adjncy; |
---|
| 35 | |
---|
| 36 | maxsub = 4*xadj[nvtxs]; |
---|
| 37 | |
---|
| 38 | /* Relabel the vertices so that it starts from 1 */ |
---|
| 39 | k = xadj[nvtxs]; |
---|
| 40 | for (i=0; i<k; i++) |
---|
| 41 | adjncy[i]++; |
---|
| 42 | for (i=0; i<nvtxs+1; i++) |
---|
| 43 | xadj[i]++; |
---|
| 44 | |
---|
| 45 | /* Allocate the required memory */ |
---|
| 46 | perm = idxmalloc(nvtxs+1, "ComputeFillIn: perm"); |
---|
| 47 | xlnz = idxmalloc(nvtxs+1, "ComputeFillIn: xlnz"); |
---|
| 48 | xnzsub = idxmalloc(nvtxs+1, "ComputeFillIn: xnzsub"); |
---|
| 49 | nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub"); |
---|
| 50 | |
---|
| 51 | /* Construct perm from iperm and change the numbering of iperm */ |
---|
| 52 | for (i=0; i<nvtxs; i++) |
---|
| 53 | perm[iperm[i]] = i; |
---|
| 54 | for (i=0; i<nvtxs; i++) { |
---|
| 55 | iperm[i]++; |
---|
| 56 | perm[i]++; |
---|
| 57 | } |
---|
| 58 | |
---|
| 59 | /* |
---|
| 60 | * Call sparspak routine. |
---|
| 61 | */ |
---|
| 62 | if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) { |
---|
| 63 | free(nzsub); |
---|
| 64 | |
---|
| 65 | maxsub = 4*maxsub; |
---|
| 66 | nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub"); |
---|
| 67 | if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) |
---|
| 68 | errexit("MAXSUB is too small!"); |
---|
| 69 | } |
---|
| 70 | |
---|
| 71 | opc = 0; |
---|
| 72 | for (i=0; i<nvtxs; i++) |
---|
| 73 | xlnz[i]--; |
---|
| 74 | for (i=0; i<nvtxs; i++) |
---|
| 75 | opc += (xlnz[i+1]-xlnz[i])*(xlnz[i+1]-xlnz[i]) - (xlnz[i+1]-xlnz[i]); |
---|
| 76 | |
---|
| 77 | printf(" Nonzeros: %d, \tOperation Count: %6.4le\n", maxlnz, opc); |
---|
| 78 | |
---|
| 79 | |
---|
| 80 | GKfree(&perm, &xlnz, &xnzsub, &nzsub, LTERM); |
---|
| 81 | |
---|
| 82 | |
---|
| 83 | /* Relabel the vertices so that it starts from 0 */ |
---|
| 84 | for (i=0; i<nvtxs; i++) |
---|
| 85 | iperm[i]--; |
---|
| 86 | for (i=0; i<nvtxs+1; i++) |
---|
| 87 | xadj[i]--; |
---|
| 88 | k = xadj[nvtxs]; |
---|
| 89 | for (i=0; i<k; i++) |
---|
| 90 | adjncy[i]--; |
---|
| 91 | |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | /************************************************************************* |
---|
| 97 | * This function sets up data structures for fill-in computations |
---|
| 98 | **************************************************************************/ |
---|
| 99 | idxtype ComputeFillIn2(GraphType *graph, idxtype *iperm) |
---|
| 100 | { |
---|
| 101 | int i, j, k, nvtxs, maxlnz, maxsub; |
---|
| 102 | idxtype *xadj, *adjncy; |
---|
| 103 | idxtype *perm, *xlnz, *xnzsub, *nzsub; |
---|
| 104 | double opc; |
---|
| 105 | |
---|
| 106 | nvtxs = graph->nvtxs; |
---|
| 107 | xadj = graph->xadj; |
---|
| 108 | adjncy = graph->adjncy; |
---|
| 109 | |
---|
| 110 | maxsub = 4*xadj[nvtxs]; |
---|
| 111 | |
---|
| 112 | /* Relabel the vertices so that it starts from 1 */ |
---|
| 113 | k = xadj[nvtxs]; |
---|
| 114 | for (i=0; i<k; i++) |
---|
| 115 | adjncy[i]++; |
---|
| 116 | for (i=0; i<nvtxs+1; i++) |
---|
| 117 | xadj[i]++; |
---|
| 118 | |
---|
| 119 | /* Allocate the required memory */ |
---|
| 120 | perm = idxmalloc(nvtxs+1, "ComputeFillIn: perm"); |
---|
| 121 | xlnz = idxmalloc(nvtxs+1, "ComputeFillIn: xlnz"); |
---|
| 122 | xnzsub = idxmalloc(nvtxs+1, "ComputeFillIn: xnzsub"); |
---|
| 123 | nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub"); |
---|
| 124 | |
---|
| 125 | /* Construct perm from iperm and change the numbering of iperm */ |
---|
| 126 | for (i=0; i<nvtxs; i++) |
---|
| 127 | perm[iperm[i]] = i; |
---|
| 128 | for (i=0; i<nvtxs; i++) { |
---|
| 129 | iperm[i]++; |
---|
| 130 | perm[i]++; |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | /* |
---|
| 134 | * Call sparspak routine. |
---|
| 135 | */ |
---|
| 136 | if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) { |
---|
| 137 | free(nzsub); |
---|
| 138 | |
---|
| 139 | maxsub = 4*maxsub; |
---|
| 140 | nzsub = idxmalloc(maxsub, "ComputeFillIn: nzsub"); |
---|
| 141 | if (smbfct(nvtxs, xadj, adjncy, perm, iperm, xlnz, &maxlnz, xnzsub, nzsub, &maxsub)) |
---|
| 142 | errexit("MAXSUB is too small!"); |
---|
| 143 | } |
---|
| 144 | |
---|
| 145 | opc = 0; |
---|
| 146 | for (i=0; i<nvtxs; i++) |
---|
| 147 | xlnz[i]--; |
---|
| 148 | for (i=0; i<nvtxs; i++) |
---|
| 149 | opc += (xlnz[i+1]-xlnz[i])*(xlnz[i+1]-xlnz[i]) - (xlnz[i+1]-xlnz[i]); |
---|
| 150 | |
---|
| 151 | |
---|
| 152 | GKfree(&perm, &xlnz, &xnzsub, &nzsub, LTERM); |
---|
| 153 | |
---|
| 154 | |
---|
| 155 | /* Relabel the vertices so that it starts from 0 */ |
---|
| 156 | for (i=0; i<nvtxs; i++) |
---|
| 157 | iperm[i]--; |
---|
| 158 | for (i=0; i<nvtxs+1; i++) |
---|
| 159 | xadj[i]--; |
---|
| 160 | k = xadj[nvtxs]; |
---|
| 161 | for (i=0; i<k; i++) |
---|
| 162 | adjncy[i]--; |
---|
| 163 | |
---|
| 164 | return maxlnz; |
---|
| 165 | |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | |
---|
| 169 | /***************************************************************** |
---|
| 170 | ********** SMBFCT ..... SYMBOLIC FACTORIZATION ********* |
---|
| 171 | ****************************************************************** |
---|
| 172 | * PURPOSE - THIS ROUTINE PERFORMS SYMBOLIC FACTORIZATION |
---|
| 173 | * ON A PERMUTED LINEAR SYSTEM AND IT ALSO SETS UP THE |
---|
| 174 | * COMPRESSED DATA STRUCTURE FOR THE SYSTEM. |
---|
| 175 | * |
---|
| 176 | * INPUT PARAMETERS - |
---|
| 177 | * NEQNS - NUMBER OF EQUATIONS. |
---|
| 178 | * (XADJ, ADJNCY) - THE ADJACENCY STRUCTURE. |
---|
| 179 | * (PERM, INVP) - THE PERMUTATION VECTOR AND ITS INVERSE. |
---|
| 180 | * |
---|
| 181 | * UPDATED PARAMETERS - |
---|
| 182 | * MAXSUB - SIZE OF THE SUBSCRIPT ARRAY NZSUB. ON RETURN, |
---|
| 183 | * IT CONTAINS THE NUMBER OF SUBSCRIPTS USED |
---|
| 184 | * |
---|
| 185 | * OUTPUT PARAMETERS - |
---|
| 186 | * XLNZ - INDEX INTO THE NONZERO STORAGE VECTOR LNZ. |
---|
| 187 | * (XNZSUB, NZSUB) - THE COMPRESSED SUBSCRIPT VECTORS. |
---|
| 188 | * MAXLNZ - THE NUMBER OF NONZEROS FOUND. |
---|
| 189 | * |
---|
| 190 | *******************************************************************/ |
---|
| 191 | int smbfct(int neqns, idxtype *xadj, idxtype *adjncy, idxtype *perm, idxtype *invp, idxtype *xlnz, |
---|
| 192 | int *maxlnz, idxtype *xnzsub, idxtype *nzsub, int *maxsub) |
---|
| 193 | { |
---|
| 194 | /* Local variables */ |
---|
| 195 | int node, rchm, mrgk, lmax, i, j, k, m, nabor, nzbeg, nzend; |
---|
| 196 | int kxsub, jstop, jstrt, mrkflg, inz, knz, flag; |
---|
| 197 | idxtype *mrglnk, *marker, *rchlnk; |
---|
| 198 | |
---|
| 199 | rchlnk = idxmalloc(neqns+1, "smbfct: rchlnk"); |
---|
| 200 | marker = idxsmalloc(neqns+1, 0, "smbfct: marker"); |
---|
| 201 | mrglnk = idxsmalloc(neqns+1, 0, "smbfct: mgrlnk"); |
---|
| 202 | |
---|
| 203 | /* Parameter adjustments */ |
---|
| 204 | --marker; |
---|
| 205 | --mrglnk; |
---|
| 206 | --rchlnk; |
---|
| 207 | --nzsub; |
---|
| 208 | --xnzsub; |
---|
| 209 | --xlnz; |
---|
| 210 | --invp; |
---|
| 211 | --perm; |
---|
| 212 | --adjncy; |
---|
| 213 | --xadj; |
---|
| 214 | |
---|
| 215 | /* Function Body */ |
---|
| 216 | flag = 0; |
---|
| 217 | nzbeg = 1; |
---|
| 218 | nzend = 0; |
---|
| 219 | xlnz[1] = 1; |
---|
| 220 | |
---|
| 221 | /* FOR EACH COLUMN KNZ COUNTS THE NUMBER OF NONZEROS IN COLUMN K ACCUMULATED IN RCHLNK. */ |
---|
| 222 | for (k = 1; k <= neqns; ++k) { |
---|
| 223 | knz = 0; |
---|
| 224 | mrgk = mrglnk[k]; |
---|
| 225 | mrkflg = 0; |
---|
| 226 | marker[k] = k; |
---|
| 227 | if (mrgk != 0) |
---|
| 228 | marker[k] = marker[mrgk]; |
---|
| 229 | xnzsub[k] = nzend; |
---|
| 230 | node = perm[k]; |
---|
| 231 | |
---|
| 232 | if (xadj[node] >= xadj[node+1]) { |
---|
| 233 | xlnz[k+1] = xlnz[k]; |
---|
| 234 | continue; |
---|
| 235 | } |
---|
| 236 | |
---|
| 237 | /* USE RCHLNK TO LINK THROUGH THE STRUCTURE OF A(*,K) BELOW DIAGONAL */ |
---|
| 238 | rchlnk[k] = neqns+1; |
---|
| 239 | for (j=xadj[node]; j<xadj[node+1]; j++) { |
---|
| 240 | nabor = invp[adjncy[j]]; |
---|
| 241 | if (nabor <= k) |
---|
| 242 | continue; |
---|
| 243 | rchm = k; |
---|
| 244 | |
---|
| 245 | do { |
---|
| 246 | m = rchm; |
---|
| 247 | rchm = rchlnk[m]; |
---|
| 248 | } while (rchm <= nabor); |
---|
| 249 | |
---|
| 250 | knz++; |
---|
| 251 | rchlnk[m] = nabor; |
---|
| 252 | rchlnk[nabor] = rchm; |
---|
| 253 | if (marker[nabor] != marker[k]) |
---|
| 254 | mrkflg = 1; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /* TEST FOR MASS SYMBOLIC ELIMINATION */ |
---|
| 258 | lmax = 0; |
---|
| 259 | if (mrkflg != 0 || mrgk == 0 || mrglnk[mrgk] != 0) |
---|
| 260 | goto L350; |
---|
| 261 | xnzsub[k] = xnzsub[mrgk] + 1; |
---|
| 262 | knz = xlnz[mrgk + 1] - (xlnz[mrgk] + 1); |
---|
| 263 | goto L1400; |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | /* LINK THROUGH EACH COLUMN I THAT AFFECTS L(*,K) */ |
---|
| 267 | L350: |
---|
| 268 | i = k; |
---|
| 269 | while ((i = mrglnk[i]) != 0) { |
---|
| 270 | inz = xlnz[i+1] - (xlnz[i]+1); |
---|
| 271 | jstrt = xnzsub[i] + 1; |
---|
| 272 | jstop = xnzsub[i] + inz; |
---|
| 273 | |
---|
| 274 | if (inz > lmax) { |
---|
| 275 | lmax = inz; |
---|
| 276 | xnzsub[k] = jstrt; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | /* MERGE STRUCTURE OF L(*,I) IN NZSUB INTO RCHLNK. */ |
---|
| 280 | rchm = k; |
---|
| 281 | for (j = jstrt; j <= jstop; ++j) { |
---|
| 282 | nabor = nzsub[j]; |
---|
| 283 | do { |
---|
| 284 | m = rchm; |
---|
| 285 | rchm = rchlnk[m]; |
---|
| 286 | } while (rchm < nabor); |
---|
| 287 | |
---|
| 288 | if (rchm != nabor) { |
---|
| 289 | knz++; |
---|
| 290 | rchlnk[m] = nabor; |
---|
| 291 | rchlnk[nabor] = rchm; |
---|
| 292 | rchm = nabor; |
---|
| 293 | } |
---|
| 294 | } |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | /* CHECK IF SUBSCRIPTS DUPLICATE THOSE OF ANOTHER COLUMN */ |
---|
| 298 | if (knz == lmax) |
---|
| 299 | goto L1400; |
---|
| 300 | |
---|
| 301 | /* OR IF TAIL OF K-1ST COLUMN MATCHES HEAD OF KTH */ |
---|
| 302 | if (nzbeg > nzend) |
---|
| 303 | goto L1200; |
---|
| 304 | |
---|
| 305 | i = rchlnk[k]; |
---|
| 306 | for (jstrt = nzbeg; jstrt <= nzend; ++jstrt) { |
---|
| 307 | if (nzsub[jstrt] < i) |
---|
| 308 | continue; |
---|
| 309 | |
---|
| 310 | if (nzsub[jstrt] == i) |
---|
| 311 | goto L1000; |
---|
| 312 | else |
---|
| 313 | goto L1200; |
---|
| 314 | } |
---|
| 315 | goto L1200; |
---|
| 316 | |
---|
| 317 | L1000: |
---|
| 318 | xnzsub[k] = jstrt; |
---|
| 319 | for (j = jstrt; j <= nzend; ++j) { |
---|
| 320 | if (nzsub[j] != i) |
---|
| 321 | goto L1200; |
---|
| 322 | |
---|
| 323 | i = rchlnk[i]; |
---|
| 324 | if (i > neqns) |
---|
| 325 | goto L1400; |
---|
| 326 | } |
---|
| 327 | nzend = jstrt - 1; |
---|
| 328 | |
---|
| 329 | /* COPY THE STRUCTURE OF L(*,K) FROM RCHLNK TO THE DATA STRUCTURE (XNZSUB, NZSUB) */ |
---|
| 330 | L1200: |
---|
| 331 | nzbeg = nzend + 1; |
---|
| 332 | nzend += knz; |
---|
| 333 | |
---|
| 334 | if (nzend > *maxsub) { |
---|
| 335 | flag = 1; /* Out of memory */ |
---|
| 336 | break; |
---|
| 337 | } |
---|
| 338 | |
---|
| 339 | i = k; |
---|
| 340 | for (j=nzbeg; j<=nzend; ++j) { |
---|
| 341 | i = rchlnk[i]; |
---|
| 342 | nzsub[j] = i; |
---|
| 343 | marker[i] = k; |
---|
| 344 | } |
---|
| 345 | xnzsub[k] = nzbeg; |
---|
| 346 | marker[k] = k; |
---|
| 347 | |
---|
| 348 | /* |
---|
| 349 | * UPDATE THE VECTOR MRGLNK. NOTE COLUMN L(*,K) JUST FOUND |
---|
| 350 | * IS REQUIRED TO DETERMINE COLUMN L(*,J), WHERE |
---|
| 351 | * L(J,K) IS THE FIRST NONZERO IN L(*,K) BELOW DIAGONAL. |
---|
| 352 | */ |
---|
| 353 | L1400: |
---|
| 354 | if (knz > 1) { |
---|
| 355 | kxsub = xnzsub[k]; |
---|
| 356 | i = nzsub[kxsub]; |
---|
| 357 | mrglnk[k] = mrglnk[i]; |
---|
| 358 | mrglnk[i] = k; |
---|
| 359 | } |
---|
| 360 | |
---|
| 361 | xlnz[k + 1] = xlnz[k] + knz; |
---|
| 362 | } |
---|
| 363 | |
---|
| 364 | if (flag == 0) { |
---|
| 365 | *maxlnz = xlnz[neqns] - 1; |
---|
| 366 | *maxsub = xnzsub[neqns]; |
---|
| 367 | xnzsub[neqns + 1] = xnzsub[neqns]; |
---|
| 368 | } |
---|
| 369 | |
---|
| 370 | marker++; |
---|
| 371 | mrglnk++; |
---|
| 372 | rchlnk++; |
---|
| 373 | nzsub++; |
---|
| 374 | xnzsub++; |
---|
| 375 | xlnz++; |
---|
| 376 | invp++; |
---|
| 377 | perm++; |
---|
| 378 | adjncy++; |
---|
| 379 | xadj++; |
---|
| 380 | GKfree(&rchlnk, &mrglnk, &marker, LTERM); |
---|
| 381 | |
---|
| 382 | return flag; |
---|
| 383 | |
---|
| 384 | } |
---|
| 385 | |
---|